Khadichakhan Rafikova | Analytical Chemistry | Research Excellence Award

Mrs. Khadichakhan Rafikova | Analytical Chemistry | Research Excellence Award

Satbayev University | Kazakhstan

Dr. Khadichakhan Rafikova is a chemist specializing in petrochemistry, catalysis, and ionic liquid chemistry, with a strong focus on green and sustainable technologies. Her research centers on the synthesis of metal-containing and functional ionic liquids and their application in extractive desulfurization, denitrogenation of fuels, and transfer hydrogenation reactions. She has made significant contributions to organometallic catalysis, asymmetric hydrogenation, and environmentally benign catalytic systems. Her work bridges fundamental physical chemistry with industrial petrochemical applications, resulting in high-impact publications, funded projects, and practical innovations in clean fuel processing.

Citation Metrics (Scopus)

 350
 250
 150
   50
     0

Citations
263

Documents
34

h-index
9

Citations

Documents

h-index

View Scopus Profile View ORCID Profile View Google Scholar Profile

Featured Publications

Metin Özer | Analytical Chemistry | Analytical Chemistry Award

Prof. Dr. Metin Özer | Analytical Chemistry | Analytical Chemistry Award

Marmara University | Turkey

Dr. Metin Özer is Professor and Head of the Chemistry Department at Marmara University. He earned his B.Sc. in Chemical Engineering from Istanbul University, followed by M.Sc. and Ph.D. degrees in Chemistry from Marmara University. Since becoming a full professor, his research has centered on the synthesis and detailed characterization of functional chemical and nanostructured materials. His work primarily explores electrochemical properties relevant to energy storage and sensing technologies, with particular emphasis on supercapacitors and electrochemical sensors. His research integrates fundamental chemistry with applied electrochemical performance.

Citation Metrics (Scopus)

  800
  600
  400
   200
     0

Citations
629

Documents
23

h-index
14

Citations

Documents

h-index

View Scopus Profile View ORCID Profile View Google Scholar Profile

Featured Publications

Alena Novoselova | Analytical Chemistry | Best Researcher Award

Prof. Alena Novoselova | Analytical Chemistry | Best Researcher Award

IHTE UB RAS | Russia

Profiles

Scopus
Orcid

Early Academic Pursuits

Prof. Alena V. Novoselova laid a strong academic foundation in the field of chemistry, advancing into a specialization in high-temperature electrochemistry and radiochemistry. Her focus on analytical and thermodynamic studies of rare earth and actinide elements set the stage for her future scientific leadership. Her academic journey reflects a persistent dedication to exploring the fundamental behaviors of complex chemical systems, particularly those relevant to the nuclear sciences.

Professional Endeavors

As a Leading Researcher at the Radiochemistry Laboratory of the Institute of High-Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences (IHTE UB RAS), Prof. Novoselova plays a central role in advancing research on the electrochemical behavior of lanthanides and actinides. She actively collaborates with national and international scientific bodies and contributes to strategic research at state and academic levels. She also holds memberships in prestigious dissertation councils and serves as an expert evaluator for the Russian Academy of Sciences.

Contributions and Research Focus

Her core research revolves around the electrochemistry and thermodynamics of rare earth and actinide compounds, with a strong emphasis on molten salt media, which are critical in nuclear material processing and recycling. She investigates the formation of alloys, separation of fission products, and high-purity metal production using molten salt systems. The outcomes of her work are essential in the context of closed nuclear fuel cycle technologies, contributing to innovations in nuclear waste reprocessing.

Impact and Influence

Prof. Novoselova’s research has had a notable influence on the development of advanced nuclear technologies. Her work informs safe and efficient methodologies for nuclear fuel reprocessing. She has collaborated with institutions such as the State Scientific Center – Research Institute of Atomic Reactors, Ural Federal University, and Harbin Engineering University, playing a pivotal role in the education of new scientists and engineers. Her citation indices on Scopus (h-index: 19) and Web of Science (h-index: 17) underscore the relevance and reach of her scientific publications.

Academic Citations and Publications

With over 75 publications indexed in Scopus, Prof. Novoselova has established herself as a prolific researcher. Her scholarly output includes chapters in internationally recognized books on electrochemical and thermodynamic studies of radioactive and rare-earth elements, notably focusing on uranium, curium, ytterbium, and thulium. Her publications are frequently cited, reflecting sustained academic impact in her field.

Technical Skills

Prof. Alena V. Novoselova possesses a comprehensive set of technical skills that are essential to the advancement of nuclear material science and the development of closed nuclear fuel cycles. Her expertise spans electrochemical techniques specifically designed for molten salt environments, enabling precise control over high-temperature chemical processes. She is proficient in thermodynamic modeling and measurement, which supports the prediction and analysis of chemical behaviors in complex systems. Prof. Novoselova has made significant contributions to the separation processes of lanthanides and actinides key elements in nuclear reprocessing and is skilled in the characterization of nuclear materials. Furthermore, her deep understanding of high-temperature reactor chemistry and material recovery technologies positions her as a vital contributor to the innovation and safety of next-generation nuclear energy solutions.

Teaching Experience and Academic Roles

In addition to her research contributions, Prof. Novoselova is engaged in student training and academic mentorship. She has served as a guest professor at Harbin Engineering University, sharing her expertise with the next generation of chemists and engineers. She is an active member of doctoral and post-doctoral evaluation boards, contributing to the quality and rigor of academic standards in chemical sciences.

Legacy and Future Contributions

Prof. Novoselova’s work contributes to the strategic goal of achieving sustainable and safe nuclear energy through recycling and reprocessing. Her role in advancing the scientific understanding of actinide behavior in molten salts has significant implications for global nuclear policy and technology. Future contributions are likely to focus on developing cleaner, more efficient processes for rare earth and nuclear material handling.

Notable Publications

Electrochemical properties and extraction of erbium on a liquid gallium electrode in the 3LiCl–2KCl molten salt

Authors: Jiabao Gao, Kewei Jiang, Alena Novoselova, Valeri Smolenski, Jing Yu, Qi Liu, Rumin Li, Jun Wang
Journal: New Journal of Chemistry
Year: 2025

Electrochemical behavior and effective extraction of erbium in fused LiCl–KCl eutectic

Authors: Henan Zhang, Wantong Li, Jing Yu, Qi Liu, Alena Novoselova, Valeri Smolenski, Yongde Yan, Milin Zhang, Jun Wang
Journal: Journal of Rare Earths
Year: 2025

Electrochemistry of Uranium on Liquid Sn Electrode in Molten NaCl–2CsCl Eutectic

Authors: Alena Novoselova, Valeri Smolenski
Journal: Journal of The Electrochemical Society
Year: 2025

Potentiometric study of the interaction of Sm³⁺ and O²⁻ ions: thermodynamic properties of samarium compounds in molten NaCl–2CsCl eutectic

Authors: Henan Zhang, Qi Liu, Alena Novoselova, Valeri Smolenski, Kewei Jiang, Yongde Yan, Milin Zhang, Jun Wang
Journal: New Journal of Chemistry
Year: 2024

Cathode processes and uranium electrochemical extraction on W and Ga electrodes in LiCl–KCl melt

Authors: Alena Novoselova, Valeri Smolenski
Journal: Journal of Radioanalytical and Nuclear Chemistry
Year: 2024

Conclusion

Prof. Alena V. Novoselova is a distinguished figure in high-temperature electrochemistry and radiochemistry. Through her sustained academic excellence, impactful collaborations, and mentorship, she is advancing essential scientific knowledge in the field of nuclear chemistry. Her contributions are not only academically significant but also offer tangible pathways for improving global nuclear energy strategies.

Md Ahasan Ahamed | Analytical Chemistry | Analytical Chemistry Award

Mr. Md Ahasan Ahamed | Analytical Chemistry | Analytical Chemistry Award

Bangladesh University of Textiles, Bangladesh

👨‍🎓Profiles

📘 Early Academic Pursuits

The academic journey began with a B.Sc. in Mechanical Engineering from Bangladesh University of Engineering and Technology (BUET) in 2014. During this phase, research was conducted on electricity generation from compression of speed breakers, demonstrating an early interest in applied engineering solutions. Further academic advancement led to a M.S. in Mechanical Design and Production Engineering from Konkuk University, South Korea (2020-2022), where the research focused on developing a pre-programmed microdroplet generator for controlling chemical concentrations. Currently, pursuing a Ph.D. in Electrical Engineering at Pennsylvania State University (2022-2026), integrating Recombinase Polymerase Amplification (RPA) with nanopore sensing for point-of-care disease detection.

🏆 Professional Endeavors

With over six years of teaching and research experience, the professional journey includes roles as Lecturer and Assistant Professor at Bangladesh University of Textiles (BUTEX) and BGMEA University of Fashion & Technology (BUFT) from 2014 to 2020. Transitioning into the research domain, positions were held as a Graduate Research Assistant at Konkuk University (2020-2022) and Pennsylvania State University (2022-Present). Recently, appointed as a Visiting Scholar at Indiana University, Bloomington (2025-Present), further broadening the academic and research exposure.

🔬 Contributions and Research Focus

A strong research background in point-of-care (POC) devices, disease diagnosis, and sensor technology has led to significant contributions in designing microfluidic devices and nanopore sensors. Proficiency in biochemical reaction methodologies, including Polymerase Chain Reaction (PCR), Recombinase Polymerase Amplification (RPA), Loop-mediated Isothermal Amplification (LAMP), and CRISPR/Cas12, has played a crucial role in developing diagnostic tools for infectious diseases like Monkeypox, SARS-COVID, Cowpox, and HIV.

🌍 Impact and Influence

The research has had a profound impact on healthcare and diagnostic technologies, especially in early detection methods for infectious diseases. The work in integrating machine learning algorithms with sensor-based diagnostics has pushed the boundaries of automation and accuracy in medical testing. The interdisciplinary nature of the research—bridging mechanical design, electrical engineering, and biotechnology—positions it as a key contributor to next-generation disease detection systems.

📊 Academic Citations & Publications

With a growing influence in the academic world, the research work has been recognized with 67 citations, 18 published papers, and 6 conference and poster presentations. The continuous contribution to high-impact journals and international conferences highlights the commitment to advancing knowledge in biomedical engineering and sensor technology.

🛠️ Technical Skills

Expertise spans across instrumentation, fabrication, and analysis, including hands-on experience with: 3D Printing: Asiga UV Max X43, Ultimaker 3.0, Laser Systems: Universal Laser Systems, Microscopy: Optical Microscopes, Nikon Ti U Inverted Camera, pco.edge 5.5, Sensors & Electronics: Pressure Sensors (PX-309 series, Eve flow series), Axopatch 200b, Molecular Diagnostic Tools: Thermal Cycler (BIORAD T100), Plasma Treatment Machines, Software & Programming: MATLAB, Python, and Machine Learning Algorithms.

🎓 Teaching Experience

With over six years of teaching experience, expertise has been shared in Mechanical Engineering, Engineering Drawing, Machine Design, MATLAB, and Python programming with undergraduate students. The ability to bridge theoretical knowledge with hands-on applications has benefited students in engineering and research domains.

🌱 Legacy and Future Contributions

Looking ahead, the focus remains on developing innovative diagnostic devices that are cost-effective, rapid, and highly accurate for real-world applications. The integration of machine learning with nanopore sensors will continue to be a significant area of exploration. Additionally, mentoring future researchers and students in interdisciplinary fields will be an integral part of academic and professional contributions.

📖Notable Publications

Sensitive and specific CRISPR-Cas12a assisted nanopore with RPA for Monkeypox detection
Authors: MA Ahamed, MAU Khalid, M Dong, AJ Politza, Z Zhang, A Kshirsagar, ...
Journal: Biosensors and Bioelectronics 246, 115866
Year: 2024

Electricity generation from speed breaker by air compression method using wells turbine
Authors: MA Ahamed, MI Reza, M Al-Amin
Journal: Journal of Advanced Engineering and Computation 4 (2), 140-148
Year: 2020

Pre-programmed microdroplet generator to control wide-ranging chemical concentrations
Authors: MA Ahamed, G Kim, Z Li, SJ Kim
Journal: Analytica Chimica Acta 1236, 340587
Year: 2022

Functionalized Cellulose for Textile Organic Pollutant Treatment: a Comprehensive Review
Authors: MM Rashid, N Abir, SAB Kamal, M Al-Amin, MA Ahamed, MT Islam, ...
Journal: Water Conservation Science and Engineering 9 (11)
Year: 2024

A Portable Centrifuge for Universal Nucleic Acid Extraction at the Point-of-Care
Authors: AJ Politza, T Liu, A Kshirsagar, M Dong, MA Ahamed, W Guan
Journal: Available at SSRN 4781228
Year: 2024