Jungpil Noh | Electrochemistry | Best Researcher Award

Prof. Jungpil Noh | Electrochemistry | Best Researcher Award

Gyeongsang National University, South Korea

👨‍🎓Profiles

🎓 Early Academic Pursuits

Prof. Jungpil Noh began his academic journey with a strong foundation in materials science and engineering. He earned his bachelor’s and master’s degrees in Metallurgical and Materials Engineering from Gyeongsang National University, South Korea, under the supervision of Prof. Tae-Hyun Nam. Demonstrating a keen interest in advancing materials research, he pursued a Ph.D. in Material Science at the Japan Advanced Institute of Science and Technology, under the guidance of Prof. Nobuo Otsuka. During this time, he immersed himself in physical materials science, which laid the groundwork for his future research in energy-related materials.

💼 Professional Endeavors

Prof. Noh has steadily advanced through various academic positions in both Japan and South Korea. He served as an assistant professor at JAIST before returning to Gyeongsang National University, where he contributed as an academic research professor and later rose through the ranks as assistant professor, associate professor, and currently, full professor. He is presently based in the Department of Energy & Mechanical Engineering, College of Marine Science, at Gyeongsang National University in Tongyeong. His academic career reflects commitment, international experience, and a consistent record of professional growth.

🔬 Contributions and Research Focus

Prof. Noh’s research spans several key areas within materials science. His expertise in lithium-ion batteries has led to innovations in energy storage technologies. He also focuses on thin film deposition techniques, contributing to the development of functional coatings for energy and electronic applications. In addition, his work on TiNi-based shape memory alloys is notable for its relevance to smart materials and actuating systems. Across all his research, Prof. Noh emphasizes both fundamental understanding and practical applications, making his work valuable to both academic and industrial stakeholders.

🌍 Impact and Influence

Prof. Noh’s research has had a meaningful impact in the fields of energy materials and functional alloys. His experience in both South Korea and Japan allows him to bridge international academic practices, bringing a global perspective to his work. Through his contributions, he supports the development of sustainable technologies and positions Gyeongsang National University as a hub for advanced materials research. His collaborations and influence extend to students, peers, and interdisciplinary teams working on energy and mechanical systems.

📚 Academic Citations and Recognition

Prof. Noh is widely acknowledged within the academic community for his scientific contributions. His publications are frequently cited in research related to batteries, thin films, and shape memory alloys. While specific citation metrics are not detailed here, his longstanding roles in academia and research leadership are a testament to his recognition and authority in his field.

🧰 Technical Skills

Prof. Noh possesses robust technical competencies across multiple domains. His skill set includes advanced techniques for thin film fabrication such as sputtering and evaporation, along with materials characterization tools like SEM, TEM, XRD, and DSC. He also excels in electrochemical analysis methods relevant to battery performance, such as cyclic voltammetry and impedance spectroscopy. His work with TiNi-based shape memory alloys demonstrates his deep understanding of thermomechanical behavior and functional performance.

👨‍🏫 Teaching Experience

Prof. Noh has played a pivotal role in teaching and mentoring students at Gyeongsang National University. He delivers lectures in materials science, energy systems, electrochemistry, and smart materials, integrating theoretical instruction with hands-on laboratory experiences. His guidance has supported numerous graduate and undergraduate research projects, helping to develop the next generation of engineers and materials scientists.

🏆 Legacy and Future Contributions

Prof. Noh continues to make substantial contributions to materials science and energy engineering. His legacy lies in advancing practical technologies such as high-performance batteries and intelligent material systems. Looking ahead, his work is expected to shape the future of clean energy, smart devices, and sustainable material solutions. Through academic leadership, international collaboration, and impactful research, he is paving the way for meaningful scientific and societal advancements.

📖Notable Publications

Aluminum Co-Deposition via DC Magnetron Sputtering for Enhanced Pitting Resistance of Copper–Nickel Alloys
Authors: Sang-Du Yun, Yeonwon Kim, Jun-Seok Lee, Jungpil Noh, Beomsoo Kim, Jae-Sung Kwon, Sung-Woong Choi, Jeong Hyeon Yang
Journal: Coatings
Year: 2024

Unraveling the Mechanism and Practical Implications of the Sol-Gel Synthesis of Spinel LiMn₂O₄ as a Cathode Material for Li-Ion Batteries: Critical Effects of Cation Distribution at the Matrix Level
Authors: Oyunbayar Nyamaa, Gyeong-Ho Kang, Sun-Chul Huh, Jeong-Hyeon Yang, Tae-Hyun Nam, Jungpil Noh
Journal: Molecules
Year: 2023

Free-Standing Li₄Ti₅O₁₂/Carbon Nanotube Electrodes for Flexible Lithium-Ion Batteries
Authors: Jun-Seok Lee, Sang-Du Yun, Oyunbayar Nyamaa, Jeong Hyeon Yang, Sun-Chul Huh, Hyo-Min Jeong, Tae-Hyun Nam, Yeon-Ju Ryu, Jungpil Noh
Journal: Energies
Year: 2022

Electrochemical Properties of Multilayered Sn/TiNi Shape-Memory-Alloy Thin-Film Electrodes for High-Performance Anodes in Li-Ion Batteries
Authors: Duck-Hyeon Seo, Jun-Seok Lee, Sang-Du Yun, Jeong Hyeon Yang, Sun-Chul Huh, Yonmo Sung, Hyo-Min Jeong, Jungpil Noh
Journal: Materials
Year: 2022

High Electrochemical Performance Silicon Thin-Film Free-Standing Electrodes Based on Buckypaper for Flexible Lithium-Ion Batteries
Authors: Oyunbayar Nyamaa, Duck-Hyeon Seo, Jun-Seok Lee, Hyo-Min Jeong, Sun-Chul Huh, Jeong Hyeon Yang, Erdenechimeg Dolgor, Jungpil Noh
Journal: Materials
Year: 2021

Grain Size and Phase Transformation Behavior of TiNi Shape-Memory-Alloy Thin Film under Different Deposition Conditions
Authors: Joohyeon Bae, Hyunsuk Lee, Duckhyeon Seo, Sangdu Yun
Journal: Materials
Year: 2020

Binbin Li | Physical Chemistry | Best Researcher Award

Dr. Binbin Li | Physical Chemistry | Best Researcher Award

Central South University, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Binbin Li embarked on his academic journey in mineral processing engineering, developing a strong foundation in the fundamentals of extractive metallurgy and flotation chemistry. His formative education cultivated a keen interest in the intricate mechanisms governing flotation interface chemistry. His academic excellence laid the groundwork for his future research into the molecular design of flotation pharmaceuticals and the environmentally conscious separation of complex ores.

👨‍🔬 Professional Endeavors

Dr. Li is currently affiliated with the School of Minerals Processing and Bioengineering at Central South University, a national leader in resource engineering. He operates within key national disciplines and provincial key laboratories, actively engaging in the practical and theoretical challenges of the mining industry. His work is directly aligned with China’s “Double Carbon” strategy, emphasizing green development and sustainable resource utilization.

🔬 Contributions and Research Focus

Dr. Binbin Li’s research bridges flotation interface chemistry, high-efficiency reagent design, and the comprehensive utilization of strategic minerals like Cu-Ni-Mo ores, phosphate, and fluorite. He adopts an interdisciplinary approach, integrating bioengineering, materials science, and environmental engineering to advance cleaner and more effective mineral separation techniques. His projects tackle both fundamental surface interactions and applied process optimizations, demonstrating a rare blend of theoretical insight and industrial relevance.

🌍 Impact and Influence

Dr. Li’s scholarly output has been published in prestigious international journals such as the Journal of Cleaner Production, Energy & Fuels, Minerals Engineering, Process Safety and Environmental Protection, and Journal of Molecular Liquids. His research not only enhances the efficiency of mineral separation but also reduces the ecological footprint of mining operations—contributing significantly to global efforts in green and sustainable mining.

📈 Academic Citations

Dr. Li has accrued numerous citations from both domestic and international scholars, signaling his rising impact within the fields of nonferrous metals processing and flotation reagent chemistry. His works are frequently referenced for their novel mechanistic insights and practical applications in cleaner production and mineral beneficiation.

🛠️ Technical Skills

Dr. Li is proficient in advanced interface analysis techniques, molecular modeling, reagent synthesis, and bioflotation process design. His expertise extends to the use of spectroscopy, surface tension analysis, and computational chemistry to design reagents that interact optimally with mineral surfaces under varying pH and ionic conditions.

🧑‍🏫 Teaching Experience

In addition to his research, Dr. Li contributes to the academic community through teaching and mentorship at Central South University. He guides undergraduate and postgraduate students in projects focusing on mineral processing technologies and sustainable chemical engineering, fostering the next generation of innovative engineers and researchers.

📚 Publications and Patents

He has contributed to a wide range of publications indexed in SCI and Scopus, and is actively involved in patent development related to novel reagent formulations and flotation process innovations. While specific ISBNs or patent numbers are pending release, his intellectual contributions continue to fuel technological progress in resource engineering.

🌟 Legacy and Future Contributions

As a young yet impactful scholar, Dr. Binbin Li’s legacy is being built on innovation, sustainability, and practical engineering solutions. Moving forward, he aims to deepen the integration of molecular-level flotation mechanisms with scalable industrial technologies. His commitment to supporting China’s ecological goals through cleaner mining practices ensures that his research will remain both timely and transformative.

📖Notable Publications

IMU-Based quantitative assessment of stroke from gait
Journal: Scientific Reports
Year: 2025
Citations: 2

Enhancing Li-storage ability of FeC₂O₄ anode enabled by oxygen-vacancy-enriched amorphous carbon microspheres compositing via hydrogen bonding interactions
Journal: Electrochimica Acta
Year: 2025

Application of graphitic carbon nitride (g-C₃N₄) in solid polymer electrolytes: A mini review
Journal: (Journal name not specified)
Year: 2025