Eduard Tokar | Analytical Chemistry | Best Researcher Award

Mr. Eduard Tokar | Analytical Chemistry | Best Researcher Award

Sakhalin State University, Russia

👨‍🎓Profiles

🎓 Education and Academic Journey

Mr. Eduard Tokar’ has built a solid academic foundation in chemistry and industrial ecology. He earned his Bachelor’s (2011-2015) and Master’s (2015-2017) degrees in Chemistry from Far Eastern Federal University (FEFU), Russia. His passion for research led him to postgraduate studies (2017-2021) in Industrial Ecology and Biotechnology, where he specialized in the environmental impact of industrial processes. In 2022, he was awarded the title of Candidate of Chemical Sciences (PhD) in Physical Chemistry and Ecology, solidifying his expertise in both chemical sciences and environmental sustainability.

🏛️ Professional Experience and Teaching

Eduard Tokar’ has an extensive background in both academic research and teaching, with a focus on nuclear technology and environmental safety. His career at Far Eastern Federal University began in 2015 as a laboratory research assistant and leading engineer in the Department of General Inorganic and Organoelement Chemistry. From 2019 to 2021, he served as a Junior Researcher in the Academic Department of Nuclear Technology, contributing to advancements in radiation safety and nuclear materials.

Currently, he is a Senior Lecturer at the Department of Nuclear Technology (2021 – Present) at Sakhalin State University. In this role, he is actively involved in student supervision, curriculum development, and research projects. He manages the educational process for undergraduate and graduate students in courses such as:

🔬 Research Interests and Contributions

Mr. Tokar’ specializes in nuclear and radiation safety at nuclear power facilities, working on methods to reduce environmental hazards associated with nuclear energy. His research extends to radiochemistry, materials science, and water purification techniques for removing radionuclides. His expertise in industrial ecology contributes to the development of sustainable solutions for managing nuclear waste and minimizing environmental contamination.

🏆 Impact and Influence in Nuclear and Environmental Chemistry

With a strong focus on nuclear technology and radiation safety, Mr. Tokar’ plays a crucial role in preparing students for careers in nuclear power, radiochemistry, and environmental protection. His work ensures that future scientists and engineers are equipped with the knowledge and skills necessary to maintain nuclear safety and develop sustainable energy solutions.

🛠️ Technical Expertise

Mr. Tokar’ has in-depth knowledge of chemical and nuclear technologies, with expertise in: Radiochemistry and Radioecology, Water purification and environmental remediation, Mathematical modeling and statistical analysis in experiments, Materials chemistry for nuclear energy applications, Chemical safety and risk assessment in nuclear power plants.

🎓 Teaching and Mentorship

A dedicated educator and mentor, Mr. Tokar’ has guided numerous students in chemical technology and nuclear safety, supervising theses on modern energy materials. His ability to integrate theoretical knowledge with practical applications helps students gain real-world expertise in nuclear power facility management and environmental protection.

🌍 Legacy and Future Contributions

Eduard Tokar’ continues to make significant contributions to nuclear and environmental chemistry, aiming to develop safer and more sustainable nuclear energy technologies. His expertise in radiation safety and water purification is critical for minimizing the environmental impact of nuclear energy production. As the world moves towards cleaner and more efficient energy solutions, his research will remain at the forefront of ensuring safety and sustainability in the nuclear industry.

📖Notable Publications

Sorbents Based on Polyacrylonitrile Fiber for Complex Recovery of Artificial 137Cs and Natural Radionuclides from Natural Media
Authors: Iuliia G. Shibetskaia, Viktoriia A. Razina, N. A. Bezhin, Sofia B. Yarusova, Ivan Gundarovich Tananaev
Journal: Water (Switzerland)
Year: 2025

Composite Sorbents Based on Chitosan Polymer Matrix and Derivatives of 4-Amino-N′-hydroxy-1,2,5-oxadiazole-3-carboximidamide for Uranium Removal from Liquid Mineralized Media
Authors: Anna I. Matskevich, Konstantin V. Maslov, Veronika A. Prokudina, Nikita S. Markin, E. A. Tokar’
Journal: Gels
Year: 2025

Composite Sorbents Based on Polymeric Se-Derivative of Amidoximes and SiO2 for the Uranium Removal from Liquid Mineralized Media
Authors: Anna I. Matskevich, Konstantin V. Maslov, Veronika A. Prokudina, Evgenij A. Eliseenko, E. A. Tokar’
Journal: Gels
Year: 2025

Decontamination of Spent Ion-Exchange Resins from the Nuclear Fuel Cycle Using Chemical Decontamination and Direct Current
Authors: Anna I. Matskevich, Nikita S. Markin, Marina Palamarchuk, E. A. Tokar’, Andrei Mikhailovich Egorin
Journal: Journal of Cleaner Production
Year: 2024

Distribution of Np, Pu, and Am in Water, Suspended Matter, and Bottom Sediments of Peter the Great Bay
Authors: Natalia V. Kuzmenkova, Vladimir G. Petrov, Alexandra K. Rozhkova, S. N. Kalmykov, Xiaolin Hou
Journal: Radiochemistry
Year: 2024

New Sorbents Based on Polyacrylonitrile Fiber and Transition Metal Ferrocyanides for 137Cs Recovery from Various Composition Solutions
Authors: Iuliia G. Shibetskaia, Viktoriia A. Razina, N. A. Bezhin, Victoria S. Yankovskaya, Ivan Gundarovich Tananaev
Journal: Applied Sciences (Switzerland)
Year: 2024

Thulya Chakkumpulakkal Puthan Veettil | Analytical Chemistry | Women Researcher Award

Dr. Thulya Chakkumpulakkal Puthan Veettil | Analytical Chemistry | Women Researcher Award

Nutrition Care, Australia

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Thulya Chakkumpulakkal Puthan Veettil began her academic journey with a B.Sc. in Physics (2009-2012) from the University of Calicut, India, where she developed a strong foundation in materials science. She then pursued an M.Tech in Materials Science and Technology with a specialization in Nanotechnology (2013-2016) at the University of Mysore, India, securing an impressive GPA of 9.00/10.00. Her passion for advanced materials, point-of-care diagnostics, and biomedical applications led her to the Monash–Bath Global PhD Programme (2019-2024). During her Ph.D. at Monash University, Australia, and the University of Bath, UK, she conducted extensive research in disease diagnostics, microfluidic devices, antimicrobial resistance, biomaterials, and regenerative medicine.

🏛️ Professional Endeavors

Dr. Thulya has amassed significant experience in academia, research, and industry. Currently, she is serving as a Senior Quality Control Chemist at Nutrition Care Pharmaceuticals, Victoria, Australia (September 2024 – Present), where she plays a crucial role in ensuring pharmaceutical product quality and safety. Alongside her industry experience, she has an extensive teaching background as a Teaching Associate at Monash University (2021-2024), mentoring students in first-year to final-year undergraduate chemistry courses. She has also contributed to pharmacy education at the University of Bath, UK (2023-2024) and has taught master's courses in Materials Science and Engineering at Monash University. Her academic contributions are complemented by her role as a Programme Officer – Scientist B (2016-2018) at the Vikram A. Sarabhai Community Science Centre (VASCSC), India, where she was actively involved in STEM education and scientific research projects.

🔬 Research Focus and Contributions

Dr. Thulya’s research revolves around point-of-care disease diagnostics, antimicrobial resistance, biomaterials, regenerative medicine, and Process Analytical Technology (PAT). She has significantly contributed to the development of microfluidic point-of-care devices for early and precise disease detection. Her expertise in chemometrics and machine learning has enhanced diagnostic accuracy, making disease detection more efficient. She has also conducted extensive research on antimicrobial resistance (AMR) and its public health implications, contributing valuable insights into combatting drug-resistant pathogens. Additionally, her work in biomaterials and regenerative medicine has facilitated advancements in tissue engineering and drug delivery systems. Her research expertise extends to vibrational spectroscopic techniques such as Infrared (IR), Raman, UV-Vis-NIR, and Atomic Force Microscopy (AFM), which she employs for material characterization and quality control in pharmaceutical and biomedical applications.

🌍 Impact and Influence

Dr. Thulya’s research holds significant global relevance in healthcare, materials science, and pharmaceuticals. Her work in point-of-care diagnostics and antimicrobial resistance research is crucial in the fight against drug-resistant infections. By developing microfluidic devices and novel biomaterials, she is helping advance personalized medicine and regenerative therapies. Her expertise in Process Analytical Technology (PAT) methods ensures high-quality control standards in pharmaceutical manufacturing, impacting both industrial and clinical applications.

📈 Academic Citations & Recognition

As a dedicated researcher, Dr. Thulya has contributed to several peer-reviewed journal articles, book chapters, and industry reports, showcasing her commitment to advancing scientific knowledge. Her work has gained recognition in materials science, biomedical engineering, and pharmaceutical research, further solidifying her reputation as a pioneering scientist in her field.

🛠️ Technical Skills

Dr. Thulya possesses a comprehensive technical skill set, making her a versatile scientist in pharmaceutical, biomedical, and materials science research. Her expertise includes chemometrics and machine learning for data analysis, microfluidic device development for disease diagnostics, and advanced spectroscopy techniques such as Infrared (IR), Raman, UV-Vis-NIR, and AFM for material characterization. She is also skilled in Process Analytical Technology (PAT), quality control, and pharmaceutical product evaluation, ensuring compliance with industry standards.

📚 Teaching & Mentorship

With her strong academic background, Dr. Thulya has played a pivotal role as a Teaching Associate at Monash University and the University of Bath. She has mentored students at various levels, from undergraduate chemistry courses to final-year pharmacy and master's programs in materials science and engineering. Her interdisciplinary expertise allows her to provide valuable insights to students in chemistry, materials science, biomedical engineering, and pharmaceuticals. Her dedication to teaching and mentorship has contributed to the academic growth of many aspiring scientists and industry professionals.

🌟 Legacy and Future Contributions

Dr. Thulya Chakkumpulakkal Puthan Veettil continues to drive innovation in healthcare, pharmaceuticals, and materials science. Her contributions to point-of-care diagnostics, antimicrobial resistance research, biomaterials, and regenerative medicine will pave the way for new treatments, medical technologies, and quality control advancements. As she continues her journey as a Senior Quality Control Chemist in Australia’s pharmaceutical sector, she will play a key role in enhancing healthcare solutions and ensuring the safety and efficacy of medical products. Her passion for scientific discovery and translational research will undoubtedly leave a lasting impact on both academia and industry.

📖Notable Publications

  1. Evolution of vibrational biospectroscopy: multimodal techniques and miniaturisation supported by machine learning
    Authors: Mclean A., Veettil T.C.P., Giergiel M., Wood B.R.
    Journal: Vibrational Spectroscopy
    Year: 2024

  2. Revolutionising Health Science: A Historical and Future Perspective on Multimodal, Miniaturisation, and Machine Learning in Biospectroscopy
    Authors: Aaron McLean, Thulya Chakkumpulakkal Puthan Veettil, Magdalena Giergiel, Bayden R. Wood
    Journal: Preprint
    Year: 2024

  3. A Multimodal Spectroscopic Approach Combining Mid-infrared and Near-infrared for Discriminating Gram-positive and Gram-negative Bacteria
    Authors: Thulya Chakkumpulakkal Puthan Veettil, Kamila Kochan, Galain C. Williams, Kimberley Bourke, Xenia Kostoulias, Anton Y. Peleg, Dena Lyras, Paul A. De Bank, David Perez-Guaita, Bayden R. Wood
    Journal: Analytical Chemistry
    Year: 2024

  4. Illuminating Malaria: Spectroscopy’s Vital Role in Diagnosis and Research
    Authors: Bayden R. Wood, John A. Adegoke, Thulya Chakkumpulakkal Puthan Veettil, Ankit Dodla, Keith Dias, Neha Mehlawat, Callum Gassner, Victoria Stock, Sarika Joshi, Magdalena Giergiel et al.
    Journal: Spectroscopy Journal
    Year: 2024

  5. Ultrafast and Ultrasensitive Bacterial Detection in Biofluids: Leveraging Resazurin as a Visible and Fluorescent Spectroscopic Marker
    Authors: Neha Mehlawat, Thulya Chakkumpulakkal Puthan Veettil, Rosemary Sharpin, Bayden R. Wood, Tuncay Alan
    Journal: Analytical Chemistry
    Year: 2024

 

 

4o

Md Ahasan Ahamed | Analytical Chemistry | Analytical Chemistry Award

Mr. Md Ahasan Ahamed | Analytical Chemistry | Analytical Chemistry Award

Bangladesh University of Textiles, Bangladesh

👨‍🎓Profiles

📘 Early Academic Pursuits

The academic journey began with a B.Sc. in Mechanical Engineering from Bangladesh University of Engineering and Technology (BUET) in 2014. During this phase, research was conducted on electricity generation from compression of speed breakers, demonstrating an early interest in applied engineering solutions. Further academic advancement led to a M.S. in Mechanical Design and Production Engineering from Konkuk University, South Korea (2020-2022), where the research focused on developing a pre-programmed microdroplet generator for controlling chemical concentrations. Currently, pursuing a Ph.D. in Electrical Engineering at Pennsylvania State University (2022-2026), integrating Recombinase Polymerase Amplification (RPA) with nanopore sensing for point-of-care disease detection.

🏆 Professional Endeavors

With over six years of teaching and research experience, the professional journey includes roles as Lecturer and Assistant Professor at Bangladesh University of Textiles (BUTEX) and BGMEA University of Fashion & Technology (BUFT) from 2014 to 2020. Transitioning into the research domain, positions were held as a Graduate Research Assistant at Konkuk University (2020-2022) and Pennsylvania State University (2022-Present). Recently, appointed as a Visiting Scholar at Indiana University, Bloomington (2025-Present), further broadening the academic and research exposure.

🔬 Contributions and Research Focus

A strong research background in point-of-care (POC) devices, disease diagnosis, and sensor technology has led to significant contributions in designing microfluidic devices and nanopore sensors. Proficiency in biochemical reaction methodologies, including Polymerase Chain Reaction (PCR), Recombinase Polymerase Amplification (RPA), Loop-mediated Isothermal Amplification (LAMP), and CRISPR/Cas12, has played a crucial role in developing diagnostic tools for infectious diseases like Monkeypox, SARS-COVID, Cowpox, and HIV.

🌍 Impact and Influence

The research has had a profound impact on healthcare and diagnostic technologies, especially in early detection methods for infectious diseases. The work in integrating machine learning algorithms with sensor-based diagnostics has pushed the boundaries of automation and accuracy in medical testing. The interdisciplinary nature of the research—bridging mechanical design, electrical engineering, and biotechnology—positions it as a key contributor to next-generation disease detection systems.

📊 Academic Citations & Publications

With a growing influence in the academic world, the research work has been recognized with 67 citations, 18 published papers, and 6 conference and poster presentations. The continuous contribution to high-impact journals and international conferences highlights the commitment to advancing knowledge in biomedical engineering and sensor technology.

🛠️ Technical Skills

Expertise spans across instrumentation, fabrication, and analysis, including hands-on experience with: 3D Printing: Asiga UV Max X43, Ultimaker 3.0, Laser Systems: Universal Laser Systems, Microscopy: Optical Microscopes, Nikon Ti U Inverted Camera, pco.edge 5.5, Sensors & Electronics: Pressure Sensors (PX-309 series, Eve flow series), Axopatch 200b, Molecular Diagnostic Tools: Thermal Cycler (BIORAD T100), Plasma Treatment Machines, Software & Programming: MATLAB, Python, and Machine Learning Algorithms.

🎓 Teaching Experience

With over six years of teaching experience, expertise has been shared in Mechanical Engineering, Engineering Drawing, Machine Design, MATLAB, and Python programming with undergraduate students. The ability to bridge theoretical knowledge with hands-on applications has benefited students in engineering and research domains.

🌱 Legacy and Future Contributions

Looking ahead, the focus remains on developing innovative diagnostic devices that are cost-effective, rapid, and highly accurate for real-world applications. The integration of machine learning with nanopore sensors will continue to be a significant area of exploration. Additionally, mentoring future researchers and students in interdisciplinary fields will be an integral part of academic and professional contributions.

📖Notable Publications

Sensitive and specific CRISPR-Cas12a assisted nanopore with RPA for Monkeypox detection
Authors: MA Ahamed, MAU Khalid, M Dong, AJ Politza, Z Zhang, A Kshirsagar, ...
Journal: Biosensors and Bioelectronics 246, 115866
Year: 2024

Electricity generation from speed breaker by air compression method using wells turbine
Authors: MA Ahamed, MI Reza, M Al-Amin
Journal: Journal of Advanced Engineering and Computation 4 (2), 140-148
Year: 2020

Pre-programmed microdroplet generator to control wide-ranging chemical concentrations
Authors: MA Ahamed, G Kim, Z Li, SJ Kim
Journal: Analytica Chimica Acta 1236, 340587
Year: 2022

Functionalized Cellulose for Textile Organic Pollutant Treatment: a Comprehensive Review
Authors: MM Rashid, N Abir, SAB Kamal, M Al-Amin, MA Ahamed, MT Islam, ...
Journal: Water Conservation Science and Engineering 9 (11)
Year: 2024

A Portable Centrifuge for Universal Nucleic Acid Extraction at the Point-of-Care
Authors: AJ Politza, T Liu, A Kshirsagar, M Dong, MA Ahamed, W Guan
Journal: Available at SSRN 4781228
Year: 2024

Marium Arif | Analytical Techniques | Best Researcher Award

Dr. Marium Arif | Analytical Techniques | Best Researcher Award

Sehatkahani, Pakistan

👨‍🎓Profiles

🏥 Early Academic Pursuits

Dr. Marium Arif began her academic journey with an MBBS from Sir Syed Medical College, where she developed a strong foundation in clinical medicine. Her passion for education and virtual healthcare led her to pursue a Master of Health Professions Education (MHPE) from Riphah International University. This specialized training provided her with the expertise to integrate medical education with modern technological advancements, preparing her for a career in telehealth and digital learning.

💼 Professional Endeavors

As a Telehealth Physician at Sehatkahani, Dr. Marium Arif has been instrumental in providing virtual healthcare solutions, bridging the gap between patients and quality medical services. Her role extends beyond clinical care into medical education, where she actively contributes to the design and implementation of online continuing medical education (CME) programs. Her experience in telemedicine allows her to train healthcare professionals in utilizing digital platforms effectively, ensuring accessibility and efficiency in remote healthcare delivery.

🔬 Contributions and Research Focus

Dr. Marium Arif's research primarily revolves around medical education and telehealth learning environments. She has led the development and validation of the Telehealth Educational Environment Measure (THEEM), a tool designed to assess telehealth education quality. Her work in digital instructional strategies has optimized physician engagement in virtual learning platforms, making medical education more accessible and evidence-based.

🌍 Impact and Influence

Her contributions to telehealth-based CME programs and educational assessment tools have had a significant impact on healthcare education. By implementing data-driven instructional designs and evaluating the effectiveness of digital learning strategies, she has transformed the way medical professionals engage in virtual training. Her research, published in BMC Medical Education, supports global efforts to enhance remote learning environments in healthcare.

📖 Academic Citations and Recognitions

Dr. Marium Arif's work in medical pedagogy and digital learning environments has gained recognition within the research community. Her publication in BMC Medical Education stands as a testament to her commitment to advancing telehealth education. With ongoing research in telehealth learning effectiveness, she continues to contribute valuable insights into digital curriculum development.

🛠️ Technical Skills

Dr. Marium Arif possesses a diverse set of technical and research skills, including:

  • Quantitative and qualitative data analysis
  • Curriculum development for remote medical training
  • Instructional design for virtual education
  • Medical educational assessment methodologies
  • Leadership in digital healthcare initiatives

👩‍🏫 Teaching Experience

As a medical educator, Dr. Marium Arif has trained numerous healthcare professionals in the field of telehealth and online medical education. Her expertise in designing virtual learning environments has allowed her to mentor physicians, ensuring their adaptability to digital healthcare platforms. She actively participates in workshops and educational research, contributing to the professional development of medical practitioners.

🏆 Legacy and Future Contributions

Dr. Marium Arif’s legacy lies in her pioneering contributions to telehealth education. With the successful validation of THEEM and her ongoing research in digital medical pedagogy, she aims to further refine virtual healthcare training methods. Her future work will focus on enhancing telehealth engagement metrics, developing new digital learning frameworks, and expanding her research collaborations to strengthen telehealth education globally.