Yi Zhang | Physical Chemistry | Best Researcher Award

Prof. Dr. Yi zhang | Physical chemistry | Best Researcher Award

Nanjing University, china

👨‍🎓Profiles

Early Academic Pursuits

Professor Yi Zhang's academic journey began with a Bachelor of Science degree in Physics from the prestigious Peking University (2002–2006). Demonstrating early promise, he pursued a Ph.D. in Condensed Matter Physics at the Institute of Physics, Chinese Academy of Sciences (2006–2011), under the supervision of Prof. Qi-Kun Xue. His formative academic years were marked by a deep immersion in solid-state physics, particularly focusing on advanced material growth techniques and surface science.

Professional Endeavors

After earning his doctorate, Prof. Zhang embarked on a globally collaborative postdoctoral fellowship (2011–2015), jointly hosted by the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory and the Stanford Institute for Materials and Energy Sciences (SIMES), under the mentorship of renowned physicist Prof. Zhi-Xun Shen. In 2015, he returned to China as a full Professor at the School of Physics, Nanjing University, where he began to lead his own independent research group.

Contributions and Research Focus

Prof. Zhang's research is at the forefront of experimental condensed matter physics. His work combines molecular beam epitaxy (MBE) and angle-resolved photoemission spectroscopy (ARPES) to explore the electronic properties of two-dimensional (2D) materials, topological insulators, and magnetic materials. Notable achievements include the MBE growth and ARPES characterization of topological Dirac semimetals (Na₃Bi), topological crystalline insulators (SnTe (111)), and 2D transition metal dichalcogenides (MoSe₂, WSe₂, NbSe₂). His pioneering studies on the band structure transitions in 2D materials and topological systems have significantly advanced our understanding of quantum materials at the atomic scale.

Impact and Influence

Professor Zhang is widely recognized for his influential scientific output. He was named a Clarivate Highly Cited Researcher in 2023, a testament to the global impact of his publications across multiple disciplines. In 2011, his research was ranked among the Top 100 Most Cited Chinese Papers Published in International Journals, highlighting his early influence in the field. His role as Principal Scientist in China's National Key R&D Program further cements his leadership in cutting-edge materials science.

Academic Cites and Honors

His prolific output has earned numerous prestigious honors:

  • 2023 Clarivate Highly Cited Researcher (Cross-Field)

  • 2015 National Program for Thousand Young Talents of China

  • 2020 & 2017 Jiangsu Province High-Level Talent Programs

  • 2011 Top 100 Most Cited Chinese Papers

  • Chinese Academy of Sciences & Institute of Physics Student Excellence Awards (2010)

These accolades reflect both the depth and breadth of his academic influence.

Technical Skills

Prof. Zhang is an expert in molecular beam epitaxy (MBE), mastering the growth of complex thin-film materials with atomic precision. His skill in angle-resolved photoemission spectroscopy (ARPES) enables him to probe electronic band structures and surface states with remarkable clarity. Additionally, his early work included scanning tunneling microscopy (STM) studies, demonstrating his versatility across multiple surface science techniques.

Teaching and Mentorship

As a professor at Nanjing University, Prof. Zhang is dedicated to nurturing the next generation of physicists. He combines rigorous training in experimental methods with a forward-thinking perspective on quantum materials, offering students and postdocs a rich, interdisciplinary research environment. Many of his mentees go on to pursue successful academic and research careers.

Legacy and Future Contributions

Prof. Yi Zhang stands at the intersection of innovation and impact. His research group continues to push the boundaries of quantum materials science, with a strong emphasis on emerging 2D magnetic and topological systems. As materials physics enters an era of quantum information and next-gen electronics, Prof. Zhang’s ongoing and future work promises to shape fundamental understanding and inspire transformative technologies.

Notable Publications

  • Title: Discovery of a Three-Dimensional Topological Dirac Semimetal, Na₃Bi
    Authors: Z.K. Liu, B. Zhou, Y. Zhang, Z.J. Wang, H.M. Weng, D. Prabhakaran, S.-K. Mo, et al.
    Journal: Science
    Year: 2014


  • Title: Giant Bandgap Renormalization and Excitonic Effects in a Monolayer Transition Metal Dichalcogenide Semiconductor
    Authors: M.M. Ugeda, A.J. Bradley, S.F. Shi, H. Felipe, Y. Zhang, D.Y. Qiu, W. Ruan, et al.
    Journal: Nature Materials
    Year: 2014​

  • Title: Crossover of the Three-Dimensional Topological Insulator Bi₂Se₃ to the Two-Dimensional Limit
    Authors: Y. Zhang, K. He, C.-Z. Chang, C.-L. Song, L.-L. Wang, X. Chen, J.-F. Jia, et al.
    Journal: Nature Physics
    Year: 2010


  • Title: Direct Observation of the Transition from Indirect to Direct Bandgap in Atomically Thin Epitaxial MoSe₂
    Authors: Y. Zhang, T.-R. Chang, B. Zhou, Y.-T. Cui, H. Yan, Z. Liu, F. Schmitt, et al.
    Journal: Nature Nanotechnology
    Year: 2014

  • Title: Topological Quantum Compiling with Reinforcement Learning
    Authors: Yuan-Hang Zhang, Pei-Lin Zheng, Yi Zhang*, Dong-Ling Deng*
    Journal: Physical Review Letters
    Year: 2020​

 

Yikang Liu | Chemical Kinetics | Best Researcher Award

Dr. Yikang Liu |  Chemical Kinetics | Best Researcher Award

University of Science and Technology Beijing,China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Yikang Liu began his academic journey with a deep-rooted interest in energy and environmental safety, which led to his specialization in mine fire prevention. His foundational studies at the University of Science and Technology Beijing (USTB) provided a rigorous training ground where he developed the technical and theoretical knowledge that would later define his research trajectory.

🧑‍🔬 Professional Endeavors

Currently serving at USTB, Dr. Liu collaborates with national research centers and mining corporations to translate laboratory findings into field-ready fire prevention strategies. His research integrates real-world mining challenges with cutting-edge scientific approaches, positioning him as a bridge between academia and industry.

🔬 Contributions and Research Focus

Dr. Liu’s core research areas include spontaneous combustion of water-immersed coal, competitive gas adsorption, and the suppression of coal ignition using inert gases. His work significantly contributes to developing practical solutions for underground fire hazards. A highlight of his current research is the optimization of early-warning systems through the dynamics of gas adsorption, alongside advanced inertization techniques for high-risk mining zones.

🌍 Impact and Influence

With nearly 20 peer-reviewed publications and five patents to his name, Dr. Liu has made a marked impact on the field of fire prevention in mining. His methodologies are already influencing safety protocols in Chinese coal mines and contributing to safer working environments. Collaborations with major mining groups amplify his influence, ensuring that his innovations are both scalable and sustainable.

📚 Academic Citations

Among his contributions, his paper indexed under DOI: 10.1016/j.fuel.2025.134572 has gained notable recognition. It underpins much of the ongoing work in coal combustion prevention and continues to be cited across related scientific literature.

🛠️ Technical Skills

Dr. Liu demonstrates a strong command of gas adsorption modeling, fire suppression system design, coal thermal analysis, and mine safety instrumentation. His cross-disciplinary expertise blends chemistry, engineering, and environmental science, empowering him to innovate within complex, high-risk industrial systems.

👨‍🏫 Teaching Experience

While primarily research-focused, Dr. Liu actively mentors graduate students and young researchers. He has guided several thesis projects related to mine fire dynamics and safety innovations, fostering a new generation of scientists in his field.

🌟 Legacy and Future Contributions

Looking forward, Dr. Liu aims to expand his work into AI-driven predictive systems for mine fire hazards and broaden his collaborations internationally. His legacy lies in transforming theoretical research into life-saving technologies, with long-term goals of influencing global mine safety standards.

📖Notable Publications

  • Title: Study on CO formation and pore structure development during low-temperature oxidation of coal in CO₂-N₂ environment
    Authors: Liu Yikang, Wang Haiyan, Niu Huiyong, Shao Zhuangzhuang, Yang Yanxiao, Liu Xiaolu, Wang Gongda, Zhou Zhenxing, Wang Hui
    Journal: Journal of Cleaner Production
    Year: 2025

  • Title: Time-shift effect of spontaneous combustion characteristics and microstructure difference of dry-soaked coal
    Authors: Liu Yikang, Wang Haiyan, Niu Huiyong, Wang Tao, Chen Zhiwen, Chen Yuqi, Qi Qingjie
    Journal: International Journal of Coal Science and Technology
    Year: 2024

  • Title: Study on the difference of coal spontaneous combustion characteristic parameters after lean oxygen combustion in different inert gas environments: Microscopic and macroscopic
    Authors: Wang Haiyan, Liu Yikang, Niu Huiyong, Shao Zhuangzhuang, Wang Gongda, Wang Hui
    Journal: Fuel
    Year: 2025

  • Title: Coal Pore Structure Evolution Under Drying – Wetting Cycle
    Authors: Liu Yikang, Wang Haiyan, Niu Huiyong, Xing Shuwen, Wang Gongda, Zhou Zhenxing, Yang Yanxiao, Liu Xiaolu
    Journal: Natural Resources Research
    Year: 2025

  • Research Progress and Visualization Analysis of Spontaneous Combustion of Water-Immersed Coal
    Authors: Liu Yikang, Wang Haiyan, Niu Huiyong, Chen Yuqi, Wang Gongda, Tian Fan, Tang Jiawen, Qi Qingjie
    Journal: Combustion Science and Technology
    Year: 2025 (assumed)

Ozgur Afsar | Analytical Chemistry | Best Researcher Award

Assoc. Prof. Dr. Ozgur Afsar | Analytical Chemistry | Best Researcher Award 

Ege University, Turkey

Profiles

Early Academic Pursuits

Assoc. Prof. Dr. Ozgur Afsar began his academic journey at Ege University, where he pursued his Ph.D. in Physics. His early academic interests centered around complex systems and nonequilibrium thermodynamics, fields that would go on to shape his future research path. He was also affiliated with Celal Bayar University in his early years, contributing to nuclear statistical mechanics through ARDEB 3501-funded research.

Professional Endeavors

Currently serving as a faculty member at the Faculty of Science, Ege University, Dr. Afsar has also carried out prestigious postdoctoral research at the Potsdam Institute for Climate Impact Research (PIK) in Germany. His academic career is marked by a strong foundation in theoretical physics, complexity, and entropy analysis, with leadership and consultancy roles in numerous TÜBİTAK and BAP-funded national research projects.

Contributions and Research Focus

Dr. Afsar’s research delves into entropy-based complexity measures, dynamical systems, and statistical mechanics. His work has practical implications, particularly in analyzing physiological signals in neurodegenerative disorders such as Parkinson's, ALS, and Huntington’s disease. He has applied advanced mathematical models to real-world problems, blending theoretical frameworks with experimental data, and has developed robust measures for complexity in both natural and synthetic time series.

Impact and Influence

With 16 publications in high-impact journals such as Physica D, Entropy, Scientific Reports, and Chaos, Dr. Afsar has established himself as a prominent researcher in his field. His citation index of 8 reflects a growing academic footprint, supported by fruitful collaborations with renowned scholars like Prof. Dr. Juergen Kurths and Dr. Norbert Marwan. His studies on entropy, nonequilibrium states, and complex dynamics have enhanced our understanding of chaotic systems and self-organization.

Academic Cites and Collaborations

Dr. Afsar maintains an active Google Scholar profile here, where his research is accessible to the global academic community. He is deeply involved in interdisciplinary collaborations, notably with institutions in Germany and Türkiye, which amplify the international scope and relevance of his work.

Technical Skills

His expertise spans time series analysis, recurrence quantification, entropy metrics, nonextensive statistical mechanics, and computational modeling. These tools are foundational in his research on both physical systems and biological signals, revealing patterns that contribute to diagnostics and system behavior analysis.

Teaching Experience

As an associate professor, Dr. Afsar has mentored undergraduate and graduate students at Ege University, guiding them through complex theoretical and experimental physics. His consultancy role in TÜBİTAK’s BİDEB 2209-A projects also reflects his engagement in academic development and support of emerging scholars in the field of entropy analysis and dynamical systems.

Legacy and Future Contributions

Looking ahead, Dr. Afsar aims to expand the application of complexity measures to broader scientific problems, including climate dynamics and medical diagnostics. His interdisciplinary methodology and commitment to research excellence position him as a vital contributor to the evolution of statistical physics and applied mathematics. His trajectory promises to influence both theoretical exploration and practical innovation in the years to come.

Notable Publications

Recurrence Quantification Analysis at work: Quasi-periodicity based interpretation of gait force profiles for patients with Parkinson disease
Authors: O. Afsar, U. Tirnakli, N. Marwan
Journal: Scientific Reports
Year: 2018

Probability densities for the sums of iterates of the sine-circle map in the vicinity of the quasiperiodic edge of chaos
Authors: O. Afsar, U. Tirnakli
Journal: Physical Review E—Statistical, Nonlinear, and Soft Matter Physics
Year: 2010

Generalized Huberman-Rudnick scaling law and robustness of q-Gaussian probability distributions
Authors: O. Afsar, U. Tirnakli
Journal: Europhysics Letters
Year: 2013

Entropy-based complexity measures for gait data of patients with Parkinson's disease
Authors: O. Afsar, U. Tirnakli, J. Kurths
Journal: Chaos: An Interdisciplinary Journal of Nonlinear Science
Year: 2016

Renormalized entropy for one dimensional discrete maps: periodic and quasi-periodic route to chaos and their robustness
Authors: O. Afsar, G.B. Bagci, U. Tirnakli
Journal: The European Physical Journal B
Year: 2013

Md. Tushar Ali | Environmental Chemistry | Young Scientist Award -1966

Mr. Md. Tushar Ali | Environmental Chemistry | Young Scientist Award

Khulna University of Engineering & Technology, Bangladesh

👨‍🎓Profiles

🎓 Early Academic Pursuits

Md. Tushar Ali began his academic journey in Civil Engineering at Khulna University of Engineering & Technology (KUET), Bangladesh, majoring in Structural Engineering with a minor in Environmental Engineering. From January 2019 to March 2024, he maintained a strong academic record, graduating with a CGPA of 3.47 out of 4.00, peaking at an impressive 3.94 in a single term. His undergraduate foundation laid a solid groundwork in structural systems, sustainability, and environmental dynamics, which became the springboard for his transition into multidisciplinary research. Early exposure to complex environmental problems inspired Tushar to explore intersections between engineering, atmospheric science, and ecological resilience.

💼 Professional Endeavors

Currently, Tushar serves as a Research Assistant in the SCIP Plastics Project—an international collaboration between KUET and Bauhaus-Universität Weimar, funded by the German Government. In this role, he engages in diverse tasks ranging from field surveys and lab analyses to advanced modeling and scientific reporting. His work focuses on real-world issues like landfill gas emissions, plastic pollution, and ecological risk assessments. Tushar applies sophisticated tools such as MATLAB, Fuzzy Logic systems, and statistical modeling to analyze landfill impacts. In parallel, he contributes to atmospheric research alongside Dr. Towfiqul Islam and Dr. Hamidul Bari, exploring urban air quality, greenhouse gas trends, and climate behavior through satellite remote sensing and analytical models like PCA and GAM. His dual involvement in waste and climate research marks him as a rare multidisciplinary asset.

🔬 Contributions and Research Focus

Tushar’s research contributions span across several pivotal areas in environmental science and engineering. His field measurements of landfill gases across various waste compositions and seasons offer critical insights into emission patterns. He has developed environmental risk models integrating PCA, DEA, and Fuzzy Logic in MATLAB, enhancing the precision of hazard prediction. His research also explores how plastics escape from landfills via wind, floods, and human interaction, supporting data-driven plastic waste mitigation strategies. A noteworthy technical endeavor includes using LiDAR drone-based Digital Terrain Modeling (DTM) to estimate landfill capacity and predict operational lifespan. Furthermore, his satellite-based work investigates air pollution trends, GHG dynamics, and meteorological variables before, during, and after the COVID-19 pandemic. Tushar has also delved into Atmospheric River (AR) behavior using ERA5 and GrADS, highlighting links between rainfall surges and atmospheric circulation. His seasonal studies on GHG trends and their interaction with urban heat island effects demonstrate a mature understanding of urban climate interactions.

🌱 Undergraduate Research Highlights

Even during his undergraduate years, Tushar was deeply involved in both computational and experimental research. He carried out comparative studies on the thermal performance of traditional vs. pervious concrete pavements using embedded thermocouples, which later resulted in a Q2 journal publication. He further explored the mechanical and thermal behavior of pervious concrete systems and studied cement grout behavior under temperature variations—research that he presented at a national conference. Additionally, his work on using recycled aggregates in sustainable construction is currently under review in a prestigious Q1 journal. These early achievements reflect his commitment to sustainability and innovative material use in civil engineering.

💡 Impact and Influence

Tushar’s interdisciplinary approach enables him to address critical environmental challenges in both urban and rural contexts. His work provides valuable data for policymakers, urban planners, and environmental scientists tackling the pressing issues of waste management, air quality, and climate adaptation. Through high-impact research and modeling, Tushar is influencing conversations around landfill safety, urban emissions, and infrastructure planning. His Bangladesh-centered studies are equally relevant to other rapidly urbanizing regions across the globe. By combining engineering rigor with environmental awareness, he serves as a bridge between academia and real-world climate solutions.

📚 Academic Recognition and Publications

Md. Tushar Ali has published several journal articles and conference papers in Q1 and Q2 indexed journals—an impressive achievement for a researcher at this early stage. His work in landfill gas modeling, satellite climate analytics, and sustainable construction materials has already been recognized in professional and academic forums. Several of his studies are under peer review, indicating a consistent research pipeline. His early academic and research excellence positions him as a rising star in environmental engineering and climate science.

🧠 Technical Skills

Tushar possesses a wide-ranging technical skillset that enhances his research versatility. In programming and modeling, he is proficient in MATLAB, Python, and Google Earth Engine. His mapping and remote sensing capabilities include ArcGIS, GrADS, and satellite image analysis. From a civil engineering perspective, he is skilled in ETABS and AutoCAD for structural modeling. He also excels in data visualization and analysis using OriginPro, Microsoft Excel, and scientific presentation tools such as MS Word and PowerPoint.

👨‍🏫 Teaching and Mentorship Experience

Though not formally appointed as an instructor, Tushar has played an active mentorship role within his academic and research teams. He has guided junior peers in lab experiments, environmental modeling, software tools, and research methodologies. His collaborative style and ability to simplify complex tools have made him an informal but impactful mentor, laying the groundwork for future academic leadership and teaching roles.

🚀 Legacy and Future Contributions

Md. Tushar Ali is crafting a legacy built on research excellence, cross-disciplinary integration, and commitment to solving real-world environmental problems. His work in landfill management, urban climate studies, and sustainable construction is already contributing to both national and global sustainability goals. As he moves forward, Tushar aims to expand his impact through international collaboration, higher academic pursuits, and climate policy engagement. With a strong foundation and a clear vision, he is well-positioned to become a key figure in shaping resilient and sustainable environmental infrastructures for the future.

📖Notable Publications

  • mpact of brick dust addition on the physical and mechanical performance of pervious concrete
    Authors: Md. Tushar Ali; Muhammad Harunur Rashid
    Journal: Innovative Infrastructure Solutions
    Year: 2025

  • Environmental risks of plastic losses from landfills: A comparative study of divisional cities in Bangladesh
    Authors: Md. Tushar Ali; Islam M. Rafizul
    Journal: Journal of Hazardous Materials Advances
    Year: 2024

  • Dynamics of atmospheric emissions and meteorological variables in Bangladesh from pre-to post-COVID-19 lockdown
    Authors: Md. Tushar Ali; Islam M. Rafizul; Quazi Hamidul Bari
    Journal: Heliyon
    Year: 2024

  • The effects of coarser sand addition on thermal properties of pervious concrete
    Authors: Md. Tushar Ali; Muhammad Harunur Rashid
    Journal: Innovative Infrastructure Solutions
    Year: 2024

 

Assist. Prof. Dr. Tuba Cayır Tasdemirci | Physical Chemistry | Best Researcher Award | 1746

Assist. Prof. Dr Tuba Cayır TaSdemirci | Physical Chemistry | Best Researcher Award

Assist. Proffessor at Erzincan Binali Yıldırım University, Turkey

Publication Profile

Early Academic Pursuits 🎓

Tuba Taşdemirci’s journey in academia began with a solid foundation in physics. She earned her Bachelor’s Degree in Physics from Balıkesir University in 2010, where her passion for materials science and engineering took root. Continuing her studies, she pursued a Master’s in Physics at Erzincan University, culminating in a thesis on the growth and characterization of NiO thin films using the SILAR technique in 2012. Her pursuit of knowledge further deepened with a PhD in Biomedical Engineering at Kocaeli University, focusing on the structural and elemental characterization of human cartilage, which she completed in 2018.

Professional Endeavors 👩‍🏫

Tuba’s professional career is marked by her dedication to research and education. Starting as a Research Assistant in Biomedical Engineering at Erzincan University (2013-2016) and Kocaeli University (2016-2019), she laid the groundwork for her expertise in biomaterials. In 2019, she was appointed as an Assistant Professor at Erzincan Binali Yıldırım University, where she also served as Head of the Department of Biomedical Engineering from 2019 to 2021.

Contributions and Research Focus 🔬

Dr. Taşdemirci has made significant strides in the fields of thin-film materials and biomedical engineering. Her research includes the synthesis and characterization of metal oxide thin films and the investigation of their structural, optical, and electrical properties. Her work on SILAR-deposited materials, such as NiO and CuO, has advanced our understanding of semiconductor thin films. Additionally, her studies on the structural and molecular characterization of human cartilage provide insights into osteoarthritis and other degenerative diseases.

Accolades and Recognition 🏆

Dr. Taşdemirci’s contributions have been widely recognized in academia. In 2017, she received the Best Presenter Award, underscoring her ability to communicate complex ideas effectively. Her published works in high-impact journals and participation in numerous international conferences further highlight her influence in the scientific community.

Impact and Influence 🌍

Through her research projects, Tuba has played a pivotal role in advancing materials science and biomedical applications. Her contributions to the study of thin films have implications for fields like electronics, energy, and biomedicine. As a mentor and educator, she has inspired students to explore innovative solutions to scientific and engineering challenges.

Legacy and Future Contributions ✨

With her ongoing research on semiconductor thin films and their applications, Dr. Taşdemirci is poised to leave a lasting legacy in materials science and biomedical engineering. Her leadership in academic and administrative roles reflects her commitment to fostering innovation and collaboration. Looking ahead, her work promises to drive advancements in environmentally sustainable technologies and medical diagnostics, leaving an indelible mark on science and society.

Publication Top Notes : Physical Chemistry
  1. Title: Synthesis of copper-doped nickel oxide thin films: Structural and optical studies
    Author(s): Taşdemirci Tuba
    Journal: Chemical Physics Letters
    Year: 2020

  2. Title: Copper Oxide Thin Films Synthesized by SILAR: Role of Varying Annealing Temperature
    Author(s): Taşdemirci Tuba
    Journal: Electronic Materials Letters
    Year: 2020

  3. Title: Influence of annealing on properties of SILAR deposited nickel oxide films
    Author(s): Taşdemirci Tuba
    Journal: Vacuum
    Year: 2019

  4. Title: Study of the physical properties of CuS thin films grown by SILAR method
    Author(s): Taşdemirci Tuba
    Journal: Optical and Quantum Electronics
    Year: 2019

  5. Title: Effect of Different Thickness and Solution Concentration on CuS Thin Film Grown by SILAR Method
    Author(s): Taşdemirci Tuba
    Journal: Journal of Scientific Perspectives
    Year: 2019

  6. Title: Structural, Elemental and Molecular Characterization of Normal and Osteoarthritic Human Articular Cartilage
    Author(s): Çayır Tuba, Akaltun Yunus, Memişoğlu Kaya, Gündoğdu Özcan
    Journal: Journal of Materials Science and Nanotechnology
    Year: 2017

  7. Title: The effect of wettability on corrosion resistance of oxide films produced by SILAR method on magnesium, aluminum, and copper substrates
    Author(s): Akaltun Yunus, Aslan Mevra, Yetim Tuba, Çayır Tuba, Çelik Ayhan
    Journal: Surface and Coatings Technology
    Year: 2016

  8. Title: Effect of Thickness on Electrical Properties of SILAR Deposited SnS Thin Films
    Author(s): Akaltun Yunus, Astam Aykut, Cerhan Asena, Çayır Tuba
    Journal: 9th International Physics Conference of the Balkan Physical Union (BPU-9)
    Year: 2016

  9. Title: Fabrication and characterization of NiO thin films prepared by SILAR method
    Author(s): Akaltun Yunus, Çayır Tuba
    Journal: Journal of Alloys and Compounds
    Year: 2015

Imran Ali | Chemistry | Outstanding Scientist Award

Prof. Imran Ali | Chemistry | Outstanding Scientist Award

Jamia Millia Islamia Central University, India

👨‍🎓Profiles

🎓 Early Academic Pursuits

Prof. Imran Ali began his academic journey with a B.Sc. in Chemistry, Botany, and Zoology from Meerut University in 1983. He went on to complete his M.Sc. in Chemistry from the University of Roorkee (now IIT Roorkee) in 1986, followed by a Ph.D. in Chemistry from the same institution in 1990. These formative years laid the groundwork for his interdisciplinary approach to chemistry.

🏢 Professional Endeavors

With over 35 years of experience in academia and research, Prof. Ali has held prestigious roles such as Professor at Jamia Millia Islamia, New Delhi, since 2012, and previously as a scientist at the National Institute of Hydrology. His academic career also includes tenures as Associate Professor and Reader at Jamia Millia Islamia and postdoctoral fellowships at Roorkee University. Additionally, he has contributed as an industrial consultant for over a decade, bridging the gap between research and practical applications.

🧪 Contributions and Research Focus

His research spans multiple domains of chemistry: Analytical Chemistry: Specializing in chiral separations, pharmaceutical analyses, and miniaturized techniques in separation science. Environmental Chemistry: Innovating nano-adsorbents for water treatment and studying water quality using electrochemical methods. Green Energy: Developing graphene-based nanomaterials for water splitting and hydrogen production. Medicinal Chemistry: Synthesizing anti-cancer drugs and exploring drug targets. His interdisciplinary approach has positioned him as a leading researcher in chiral pollutants and sustainable nanotechnology.

🌟 Impact and Influence

His work has made significant global contributions, earning him recognition as a Clarivate Highly Cited Researcher (2020-2022) and ranking among the top global analytical chemists. His collaborative efforts extend to researchers across 13 countries, and he has visited numerous international institutions, fostering scientific exchange and innovation.

📈 Academic Citations and Metrics

With an h-index of 114, an i10-index of 369, and over 44,400 citations, Prof. Ali’s academic impact is profound. His more than 550 publications include research papers, books, encyclopedia chapters, and technical reports, many of which are in high-impact journals like Nature Protocol and Chemical Reviews.

🔬 Technical Skills

He is proficient in advanced analytical instruments, including: HPLC, GC, LC-MS, and GC-MS. Electrochemical techniques and spectrometric tools like NMR, UV-Vis, and FT-IR. Imaging techniques such as SEM and TEM. Specialized techniques like chiral HPLC and ICP-MS. These skills underscore his expertise in both theoretical and practical chemistry applications.

🧑‍🏫 Teaching Experience

As an educator, Prof. Ali has innovatively taught courses in organic, analytical, environmental chemistry, and nanotechnology. He has mentored students at all levels, inspiring the next generation of chemists. His dedication to teaching has earned him multiple awards, including the Dr. Sarvepalli Radhakrishnan Best Teacher Award in 2021.

🏅 Outstanding Achievements and Honors

His accolades include: Fellow of the Royal Society of Chemistry (FRSC). Recognition as a top-ranked Indian researcher in analytical chemistry by Stanford University. Awards like the Clarivate India Research Excellence Citation Award  and the Teachers Excellence Award. These honors highlight his leadership in the field of chemistry and his contributions to both science and society.

🌍 Legacy and Future Contributions

His legacy is marked by his transformative research and commitment to public awareness. He has actively worked to educate communities on water quality and cancer prevention. Looking ahead, his focus remains on sustainable solutions in green energy and environmental chemistry, ensuring a lasting impact on both academia and society.

📖Notable Publications

Combating microplastic pollution in Malaysia's marine ecosystems using technological solutions, policy instruments, and public participation: A review

Authors: Goh, K.C.; Kurniawan, T.A.; Sarpin, N.; Mahmoud, M.; Onn, C.W.
Journal: Journal of Hazardous Materials Advances
Year: 2025

Innovative transformation of palm oil biomass waste into sustainable biofuel: Technological breakthroughs and future prospects

Authors: Kurniawan, T.A.; Ali, M.; Mohyuddin, A.; Alkhadher, S.A.A.; Alsultan, G.A.
Journal: Process Safety and Environmental Protection
Year: 2025

Preparation and characterization of chitosan graphene oxide nanocomposite for the removal of 17-β-estradiol sulfate from water: Kinetics, thermodynamics and simulation studies

Authors: Ali, I.; Aljazzar, S.O.; Al-Humaidi, J.Y.; Nahid Siddiqui, M.; Imanova, G.
Journal: Chemical Engineering Communications
Year: 2025

Modeling of the adsorption of tigecycline from water on CoFe2O4-Graphene nanocomposites

Authors: Ali, I.; Hasan, S.Z.; Garcia, H.; Bentalib, A.; Imanova, G.
Journal: Langmuir
Year: 2024

Use of macromolecules lignosulfonate and graphene oxide to prepare non-autoclaved aerated concrete

Authors: Ali, I.; Burakova, I.V.; Burakov, A.E.; Bentalib, A.; Imanova, G.
Journal: International Journal of Biological Macromolecules
Year: 2024

Recent trends in sampling and sorbent-based sample preparation procedures for bioanalytical applications

Authors: Locatelli, M.; Kabir, A.; Perrucci, M.; Cetinkaya, A.; Ozkan, S.A.
Journal: Microchemical Journal
Year: 2024

Enantiomeric separation of flavanone on Chiralpak® IA column and determination of the chiral mechanism

Authors: Ali, I.; Mimouni, F.Z.; Belboukhari, N.; Demir, E.; Yusuf, K.
Journal: Biomedical Chromatography
Year: 2024

Advances in pharmacotoxicological investigation of Sudden Cardiac Death: Literature review and novel perspectives

Authors: Catena, A.M.; Locatelli, M.; Perrucci, M.; Savini, F.; D'Ovidio, C.
Journal: Journal of Chromatography Open
Year: 2024

Radiation-catalytic activity of zirconium surface during water splitting for hydrogen production

Authors: Ali, I.; Imanova, G.; Agayev, T.; Kurniawan, T.A.; Habila, M.A.
Journal: Radiation Physics and Chemistry
Year: 2024

Generation of hydrogen from various aqueous media using gamma radiation

Authors: Ali, I.; Imanova, G.; Agayev, T.; Kurniawan, T.A.; Jumah, A.B.
Journal: Journal of Radioanalytical and Nuclear Chemistry
Year: 2024

Hulugirgesh Degefu Weldekirstos | Chemistry | Best Researcher Award

Dr. Hulugirgesh Degefu Weldekirstos | Chemistry | Best Researcher Award

Debre Brehan University, Ethiopia

👨‍🎓Profiles

🌱 Early Academic Pursuits

Hulugirgesh Degefu Weldekirstos began her academic journey with an earnest focus on chemistry, earning significant milestones early in her career. A recipient of the Female Scholarship under a collaboration between Addis Ababa University and SIDA in 2011, she demonstrated a passion for advancing her education and contributing to science. Her Taiwan International Graduate Program (TIGP) scholarship in 2014 further underscores her commitment to international academic excellence.

🧪 Professional Endeavors

Currently, Hulugirgesh serves as an Associate Professor at Debre Berhan University, Ethiopia, where she leads research initiatives, mentors students, and advises staff. She is actively involved in academic development, combining her expertise in physical chemistry with her leadership abilities. Before her promotion, Hulugirgesh made significant contributions as an Assistant Professor. Her efforts as a senior lecturer, science club seminar organizer, and editorial board member showcased her multifaceted role in academia. At the Institute of Chemistry, Academia Sinica, Taiwan, she worked as a postdoctoral fellow, mentoring MSc students and contributing to advanced research projects. At Dilla University, Ethiopia, Hulugirgesh taught physical chemistry courses and participated actively as a Department Council Member.

Contributions and Research Focus

Hulugirgesh has dedicated her career to exploring critical aspects of physical chemistry. Her research has been instrumental in advancing the understanding of chemical processes, contributing to scientific publications, and supporting the development of innovative solutions. Her involvement in various roles—ranging from mentoring graduate students to serving on editorial boards—has amplified the impact of her research. She has also been recognized for organizing seminars to foster scientific discussions among peers and students.

🌍 Impact and Influence

Hulugirgesh's research has had a significant influence on the field of physical chemistry, as reflected in her active presence on platforms like ResearchGate and Google Scholar. Her publications have garnered considerable citations, showcasing the relevance and reach of her scientific contributions.

📚 Academic Citations

With a growing body of research work, Hulugirgesh has established a strong academic presence. Her work is widely referenced, indicating her role as a thought leader in her field.

🛠️ Technical Skills

Hulugirgesh possesses advanced skills in experimental and theoretical physical chemistry. Her technical proficiency, combined with her ability to communicate complex scientific concepts, has made her a valuable mentor and researcher.

👩‍🏫 Teaching Experience

As a seasoned educator, Hulugirgesh has taught a range of physical chemistry courses and guided numerous students through their academic journeys. Her role as a mentor and advisor has been pivotal in shaping future scientists.

🌟 Legacy and Future Contributions

Hulugirgesh is committed to continuing her contributions to chemistry and academia. Her vision includes fostering research that addresses real-world challenges and mentoring the next generation of scientists. By building on her impressive legacy, she aims to leave an enduring impact on the global scientific community.

📖Notable Publications

Lignin modified glassy carbon electrode for the electrochemical determination of histamine in human urine and wine samples

Authors: H Degefu, M Amare, M Tessema, S Admassie
Journal: Electrochimica Acta
Year: 2014

Surfactant-assisted synthesis of NiO-ZnO and NiO-CuO nanocomposites for enhanced photocatalytic degradation of methylene blue under UV light irradiation

Authors: HD Weldekirstos, B Habtewold, DM Kabtamu
Journal: Frontiers in Materials
Year: 2022

Structural engineering of organic D–a− π–A dyes incorporated with a dibutyl-fluorene moiety for high-performance dye-sensitized solar cells

Authors: GZ Wubie, MN Lu, MA Desta, HD Weldekirstos, MM Lee, WT Wu, SR Li, ...
Journal: ACS Applied Materials & Interfaces
Year: 2021

Enhanced photocatalytic degradation of methylene blue dye using eco-friendly synthesized rGO@ ZnO nanocomposites

Authors: A Negash, S Mohammed, HD Weldekirstos, AD Ambaye, M Gashu
Journal: Scientific Reports
Year: 2023

Enhanced Photocatalytic Degradation of Methylene Blue Dye Using Fascily synthesized g-C3N4/CoFe2O4 Composite Under Sun Light Irradiation

Authors: HD Weldekirstos, T Mengist, N Belachew, ML Mekonnen
Journal: Results in Chemistry
Year: 2024