Oumarou Savadogo | Electrochemistry | Research Excellence Award

Prof. Dr. Oumarou Savadogo | Electrochemistry | Research Excellence Award

Polytechnique Montreal | Canada

Professor Oumarou Savadogo is a distinguished researcher whose pioneering contributions span materials science, electrochemistry, and sustainable energy technologies. With advanced training in physics, materials engineering, and metallurgical engineering, he has dedicated his career to developing innovative materials and processes that advance clean and renewable energy systems. His expertise encompasses energy materials, solar photovoltaic and thermal technologies, electrochemical energy storage including batteries, fuel cells, and supercapacitors hydrogen production and utilization, biomaterials, corrosion science, and physico-chemical characterization of complex materials. As Chairholder of the UNESCO Chair in Sustainable Engineering: Applied Solar Technologies and Head of the Laboratory of New Materials for Energy and Electrochemistry, Professor Savadogo leads multidisciplinary programs focused on the design and optimization of advanced electrochemical materials. His research includes breakthroughs in oxygen cathode development for PEM fuel cells, new formalisms for understanding electrocatalytic reactions, and advanced simulation methods for adsorption–desorption processes. His work also extends to thin-film semiconductors for solar cells, corrosion-resistant coatings, nanostructured electrodes, conducting membranes, and biomaterial surface engineering demonstrating remarkable breadth and impact. Professor Savadogo’s scientific productivity is exceptional, with more than 180 peer-reviewed journal articles, influential book chapters, a 2024 book on nanostructured lithium-ion battery materials, and two foundational patents spanning biomedical implants and hydrogen fuel cell electrocatalysts. Recent publications highlight his leadership in emerging research areas, including techno-economic analyses of hydrogen production systems, bio-derived electrode materials for batteries, catalytic pathways for CO₂ reduction, molten carbonate fuel cells, and composite coatings with enhanced corrosion resistance. Beyond his research, Professor Savadogo serves the global scientific community through longstanding roles on advisory and editorial boards in electrochemical energy science and hydrogen technologies. His work continues to shape the future of sustainable energy materials, combining scientific rigor, innovation, and societal relevance. His contributions stand as a model of excellence in advancing technologies central to a low-carbon and sustainable global energy future.

Profiles : Scopus | Google Scholar

Featured Publications

1. Zemane, W.-W. A., & Savadogo, O. (2025). Electrochemical performances of Li-ion batteries based on LiFePO₄ cathodes supported by bio-sourced activated carbon from millet cob (MC) and water hyacinth (WH). Batteries, 11(10), 361.

2. Mihin, T., Savadogo, O., & Tartakovsky, B. (2025). Impact of non-noble bimetallic oxides on bioelectrochemical reduction of carbon dioxide to volatile fatty acids. Process Biochemistry, 159, 51–63.

3. Shanian, S., & Savadogo, O. (2024). A critical review of the techno-economic analysis of hydrogen production from water electrolysers using multi-criteria decision making (MCDM). Journal of New Materials for Electrochemical Systems, 27(2), 107–134.

4. Thiam, B., & Savadogo, O. (2024). Effects of silico-tungstic acid on the pseudocapacitive properties of manganese oxide for electrochemical capacitor applications. DeCarbon, Article 100066.

5. Shanian, S., & Savadogo, O. (2024). Techno-economic analysis of electrolytic hydrogen production by alkaline and PEM electrolysers using MCDM methods. Discover Energy, 4(1), 23. )

Mihaela Georieva | Chemical Engineering | Best Researcher Award

Assoc. Prof. Dr. Mihaela Georieva | Chemical Engineering | Best Researcher Award

Technical University of Sofia | Bulgaria

Dr. Mihaela Georgieva is an accomplished Associate Professor and Head of the Department of Chemistry at the Technical University of Sofia (TU-Sofia), Bulgaria. With over 18 years of research experience in the fields of electroless and electrochemical metallization, corrosion protection, and nanocomposite materials, she has established herself as a leading scientist in applied electrochemistry. Dr. Georgieva began her academic journey with a Bachelor’s and Master’s degree in Chemical Engineering from the University of Chemical Technology and Metallurgy, Sofia, specializing in Electrochemistry and Corrosion Protection. She earned her PhD in Physical Chemistry from the Bulgarian Academy of Sciences with a dissertation on the electroless deposition of copper composite coatings on polymer substrates. Her scientific output includes 31 peer-reviewed publications, co-authorship of 2 patents, and participation in 13 research projects, three of which she has led as a principal investigator. Her work has received 122 citations across 77 documents, and she holds an h-index of 7 (Scopus), reflecting the impact and visibility of her research in the scientific community. Dr. Georgieva is actively involved in national and European research collaborations and has presented her findings at numerous international conferences. She has also contributed as a reviewer for more than 10 academic journals. Her dedication to both teaching and research continues to inspire innovation in materials science and electrochemistry.

Profiles : Scopus | Orcid 

Featured Publications

  • Petrova, S., Lazarova, D., Georgieva, M., Petrova, M., Dobrev, D., & Ditchev, D. (2025). Metallization of 3D-printed PET and PETG samples with different filling densities of the inner layers. Materials, 18(14), 3401.

  • Petrova, M., Lazarova, D., Dobrev, D., Georgieva, M., & Petrova, S. (2025). Development of an environmentally friendly pre-treatment for electroless metallisation of glasses. Transactions of the IMF, 103(1), 1–8.

  • Georgieva, M., Lazarova, D., Petrova, M., & Dobreva, E. (2023). Selection of a suitable environmentally friendly (non-toxic) etching solution in the electroless metallisation of ABS polymers. Transactions of the IMF, 101(6), 321–329.

  • Georgieva, M., Lazarova, D., Petrova, M., Tzaneva, B., & Dobreva, E. (2023). Modification of the surface of ABS polymer by swelling operation and its influence on some properties of electroless deposited metal coatings. Transactions of the IMF, 101(1), 18–26.

  • Georgieva, M. G. (2022). Study of a system for creating a statistical model of the electroless plating of Cu-Ni-P alloys. Transactions of the IMF, 100(6), 345–351.

 

Maria Zednikova | Chemical Engineering | Best Researcher Award

Dr. Maria Zednikova | Chemical Engineering | Best Researcher Award

Institute of Chemical Process Fundamentals of the CAS | Czech Republic

Profiles

Scopus 
Orcid
Google scholar

Early Academic Pursuits

Dr. Mária Zedníková began her academic journey in chemical engineering with a master’s degree followed by a doctoral degree, both from the Institute of Chemical Technology in Prague. Her strong foundational training laid the groundwork for her subsequent focus in multiphase systems, fluid mechanics, and process engineering. These formative years were marked by deep engagement with core engineering principles and practical laboratory experience, which shaped her research orientation toward hydrodynamics and gas-liquid interactions.

Professional Endeavors

Dr. Zedníková’s professional career is deeply rooted in the Institute of Chemical Process Fundamentals (ICPF), where she has steadily progressed from junior researcher to research scientist and eventually to a leadership role as Head of the Department of Chemical Engineering and Head of the Research Group for Multiphase Reactors. Her trajectory reflects both scientific depth and leadership capacity. She has also taken on academic responsibilities as a teacher at the University of Chemistry and Technology in Prague, expanding her influence to the educational sphere. Notably, her international experience includes collaborative research stays in the United Kingdom and Italy, reflecting her commitment to cross-border scientific exchange and cooperation.

Contributions and Research Focus

Dr. Zedníková’s research is centered on multiphase flow systems with a special emphasis on gas-liquid interactions, bubble dynamics, and mass transfer phenomena. Her work delves into the complex behaviors of bubbles and drops in turbulent environments, investigating how these particles deform, break up, and interact with fluid structures. She has developed theoretical models and experimental setups to study hydrodynamics, drop-particle collisions, and surfactant effects on fluid interfaces. Additionally, her research in stirred tank reactors and gas-lift systems addresses crucial industrial applications in chemical processing, biotechnology, and environmental engineering.

Impact and Influence

Her influence is visible both through her scholarly output and her engagement with the broader scientific community. Dr. Zedníková has authored 30 original research papers, the majority of which appear in peer-reviewed, high-impact journals. She has also contributed a chapter to a scientific monograph and holds a registered utility model. Her active presence at international conferences with over 90 contributions demonstrates her role in advancing and disseminating knowledge in her field. Furthermore, her involvement in national and international research projects as both leader and team member has positioned her as a respected figure in collaborative scientific networks.

Academic Citations and Recognition

With an H-index of 14 and nearly 700 citations most of which are from independent researchers Dr. Zedníková has established a significant academic footprint. Her research is regularly cited by peers, which confirms the value and relevance of her work in the scientific community. The Best Poster Award from the European Federation of Chemical Engineering and her active membership in professional societies and scientific committees further highlight her recognition and contributions on both national and European platforms.

Technical Skills

Dr. Zedníková possesses extensive technical expertise in experimental design, fluid flow diagnostics, multiphase reactor modeling, and mass transfer analysis. Her work includes advanced techniques for measuring bubble deformation, analyzing flow regimes, and modeling surfactant behavior in dynamic fluid systems. Her ability to integrate theoretical modeling with experimental validation distinguishes her technical acumen in the chemical engineering domain.

Teaching Experience

As an educator, Dr. Zedníková has taken a leading role in a wide range of chemical engineering subjects. She has conducted lectures and seminars on fluid mechanics, chemical technologies, process projects, and laboratory courses. Her engagement in mentoring includes the supervision of over 20 master’s, bachelor’s, and internship students. This dedication to teaching complements her research activities and ensures knowledge transfer to the next generation of engineers and scientists.

Legacy and Future Contributions

Dr. Zedníková’s career reflects a consistent drive for scientific innovation, education, and leadership. Her multidisciplinary collaborations, international exposure, and applied research make her a role model in the engineering sciences. Looking ahead, her ongoing research on bubble dynamics, reactor hydrodynamics, and surfactant behavior is expected to contribute significantly to chemical process optimization and sustainability. Her involvement in international committees and editorial boards also sets the stage for continued influence in shaping research agendas and policy in chemical engineering.

Notable Publications

  • Dynamic regimes in granular mixing: Effect of sliding friction and stirrer rotational frequency
    Authors: Martin Kozakovic, David Kramolis, Maria Zednikova, Stanislav Parez, Jaromir Havlica
    Journal: Powder Technology
    Year: 2025

  • Size distribution of daughter bubbles or drops resulting from binary breakup due to random initial deformation conditions
    Authors: Maria Zednikova, Petr Stanovsky, Sandra Orvalho
    Journal: Separation and Purification Technology
    Year: 2025

  • Gas phase behaviour in environment of fermentation processes
    Authors: Adrián Žák, Lukáš Valenz, Tomáš Moucha, Maria Zednikova
    Journal: Chemical Engineering Research and Design
    Year: 2025

  • Viscosity influence on hydrodynamics behaviour in a stirred tank reactor
    Authors: Adrián Žák, Mária Zedníková, Tomáš Moucha
    Journal: Chemical Engineering Research and Design
    Year: 2025

  • Surfactant effect on bubble deformation and breakup after interaction with vortex structure
    Authors: Maria Zednikova, Tereza Semlerová, Sandra Orvalho, Jaromir Havlica, Jaroslav Tihon
    Journal: Chemical Engineering Science
    Year: 2025

Conclusion

Dr. Mária Zedníková is a highly accomplished chemical engineering researcher with deep expertise in multiphase flow systems and hydrodynamics. Her balanced portfolio of research, teaching, leadership, and international collaboration reflects a dynamic and impactful career. Her academic and professional journey illustrates a strong commitment to advancing both fundamental science and its practical applications. She stands out as a leading figure in her field, with a legacy that is poised to grow in the coming years.

Dilip Kumar Meena | Materials Chemistry | Best Researcher Award

Dr. Dilip Kumar Meena | Materials Chemistry | Best Researcher Award

Hemwati Nandan Bahuguna Garhwal University (A Central University) | India

Profiles

Scopus
Google scholar

Early Academic Pursuits

Dr. Dilip Kumar Meena began his academic journey with a strong foundation in Physics, completing his undergraduate studies from Rajasthan University, followed by postgraduate education from one of India’s premier institutes, the Indian Institute of Technology, Ropar. His early inclination towards solid-state physics and materials science laid the groundwork for advanced research, which he pursued rigorously during his doctoral studies at the Indian Institute of Science, Bangalore. These formative academic experiences nurtured his scientific rigor and critical thinking, equipping him with a comprehensive understanding of physical sciences and experimental research methodologies.

Professional Endeavors

Dr. Meena currently serves as an Assistant Professor at HNB Garhwal University, where he combines academic instruction with active research. His transition from a research fellow to a faculty member reflects his progressive academic trajectory and dedication to both research and teaching. During his academic career, he earned prestigious fellowships including Junior and Senior Research Fellowships, demonstrating his competence in securing competitive research opportunities and contributing to high-impact scientific work.

Contributions and Research Focus

Dr. Meena’s research primarily revolves around thermoelectric materials, nanostructured composites, and solid-state physics. He has extensively studied materials such as Sb₂Te₃, Bi₂Te₃, and ZnTe for their thermoelectric applications, focusing on improving their electrical and thermal conductivity through material processing techniques like melt solidification and top-down synthesis. His work on conduction reversal and thermal conductivity suppression in nanocomposites showcases a clear understanding of electron and phonon transport mechanisms in advanced materials. Additionally, his research on crystal growth and characterization of Weyl semimetals indicates a deep engagement with topological materials and quantum phenomena.

Impact and Influence

Dr. Meena’s publications in reputed international journals such as Journal of Alloys and Compounds, Applied Physics A, and Material Research Express reflect the global relevance of his research. His contributions have helped expand knowledge in energy-efficient thermoelectric devices, a field critical to sustainable energy technologies. Furthermore, his involvement in organizing academic seminars and delivering conference presentations illustrates his role in promoting scientific dialogue and interdisciplinary collaboration.

Academic Citations

Dr. Meena’s work has been cited in the scientific community for its novelty and technical strength. His research outputs provide critical insights into thermoelectric material design, structural transformation through solid-state reactions, and enhanced understanding of composite behavior at nanoscale. His growing citation record indicates a rising academic footprint in the domain of energy materials and applied physics.

Technical Skills

Dr. Meena possesses robust technical expertise in material synthesis, thermal conductivity measurements, X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermoelectric property characterization. He has hands-on experience with melt growth techniques, solid-state calcination kinetics, and compositional engineering of nanomaterials. His interdisciplinary skills also extend to experimental data analysis, scientific writing, and collaborative research project development.

Teaching Experience

As an Assistant Professor, Dr. Meena is actively involved in undergraduate and postgraduate teaching. His pedagogy emphasizes conceptual clarity, experimental validation, and research-oriented learning. He mentors students on academic projects, guiding them through laboratory work, literature review, and research dissemination. His participation in workshops such as scientific paper writing and his leadership in organizing university-level seminars underscore his commitment to holistic student development.

Legacy and Future Contributions

Dr. Meena is poised to contribute significantly to the advancement of materials science, particularly in the development of next-generation thermoelectric materials for energy conversion technologies. His future research aims to explore eco-friendly synthesis routes, functional composites, and device-level integration of energy materials. By nurturing a research-oriented academic culture and engaging in international collaborations, he is set to influence both academia and industry in the domain of sustainable energy.

Notable Publications

Structural transformation of MnTiO₃ with manganese dioxide and titanium dioxide influenced by solid-state calcination kinetics
Authors: Ritushree Shaily, Abhishek Parsad, Kuldeep Kumar, Dilip Kumar Meena
Journal: Next Materials
Year: 2025

Polymer-mixed Sb₂Te₃/Te nanocomposites exhibiting p-type to n-type conduction reversal and thermal conductivity reduction
Authors: Dilip Kumar Meena, Rapaka S. C. Bose, A. M. Umarji, D. Arvindha Babu
Journal: Materials Research Express
Year: 2023

Melt Solidification Rate-Dependent Structural and Thermoelectric Properties of Sb₂Te₃/Te Nanocomposites
Authors: Dilip Kumar Meena, Rapaka S. C. Bose, K. Ramesh
Journal: Journal of Alloys and Compounds
Year: 2022

Impact of Melt Solidification Rate on Structural and Thermoelectric Properties of n-type Bi₂Te₃ Alloy
Authors: Dilip Kumar Meena, Rapaka S. C. Bose, S. Vinoth, K. Annapurna, K. Ramesh
Journal: Applied Physics A
Year: 2022

Role of grain alignment and oxide impurity in thermoelectric properties of textured n-type Bi–Te–Se alloy
Authors: Rapaka S. C. Bose, Dilip Kumar Meena, Paolo Mele, K. Ramesh
Journal: Journal of Physics D: Applied Physics
Year: 2021

Conclusion

Dr. Dilip Kumar Meena exemplifies the qualities of a forward-thinking academic and dedicated researcher. With a strong foundation in experimental physics, impactful publications, and an active teaching role, he is steadily building a legacy of scientific contribution and academic leadership. His trajectory indicates not only a commitment to research excellence but also a vision to shape the future of applied sciences through innovation and education.

Zhenzhao Pei | Chemical Engineering | Best Researcher Award

Prof. Zhenzhao Pei | Chemical Engineering | Best Researcher Award

Hebei University of Engineering, China 

Profiles

Scopus Profile

Early Academic Pursuits

Dr. Zhenzhao Pei embarked on his academic journey with an exceptional foundation in chemical engineering. He earned his Ph.D. from the Chinese Academy of Sciences, where his outstanding performance earned him the Outstanding Graduate Award—a prestigious accolade that foreshadowed a distinguished career. Following this, he broadened his research horizons as a Postdoctoral Fellow in Chemistry at Tsinghua University, working under the mentorship of renowned chemist Prof. Wang Xun. His global academic exposure expanded further with a visiting scholar position at California State University, Long Beach School, USA, enriching his perspective on international scientific practices.

Professional Endeavors

Dr. Pei currently serves as a Professor and Director of Chemical Engineering at Hebei University of Engineering, where he has assumed numerous leadership roles. He is the Director of the Chemical Engineering Research Institute, and leads the Chemical Process Safety Research Team. In addition, he plays a pivotal role as the Discipline Leader of the Chemical Engineering Program, shaping the academic and strategic direction of the department.

Contributions and Research Focus

Dr. Pei’s research portfolio spans key domains such as Novel Chemical Process Design, Industrial Catalysis and Reaction Engineering, Advanced Separation Technologies, and Environmental Chemical Engineering. His innovative work bridges the gap between fundamental chemical theory and real-world industrial applications, making his research highly relevant to both academia and the chemical industry. His contribution to chemical process safety, in particular, has established him as a thought leader in developing safer and more sustainable engineering solutions.

Impact and Influence

With over 40 research papers published, including more than 30 indexed in SCI journals, Dr. Pei has made a notable mark in leading publications like Fuel and Applied Surface Science. His research has supported more than 20 national and provincial-level grants, including funding from the National Natural Science Foundation of China (NSFC) and the Hebei Provincial Fund. Beyond academia, he has also collaborated extensively with industry, contributing to a number of high-impact R&D projects, showcasing the practical value of his work.

Academic Cites and Recognition

Dr. Pei’s scholarly output has been well-received by the academic community. While citation metrics are not listed, his publication in prestigious journals and sustained funding indicate a significant scholarly presence. His expertise has been further recognized by his appointment as a member of the Hebei Provincial Patent Expert Committee, and his leadership as the former Chair of the Postdoctoral Association of Chemistry at Tsinghua University.

Technical Skills and Expertise

His technical expertise encompasses chemical process engineering, catalysis, environmental technology, and separation science. His research is often characterized by the integration of theoretical modeling with experimental validation, ensuring high precision and practical relevance. Dr. Pei is also adept at leading multidisciplinary teams, managing large-scale research initiatives, and mentoring young scientists in advanced chemical methodologies.

Teaching Experience and Mentorship

As a professor and academic leader, Dr. Pei is deeply committed to education and mentorship. He is responsible for curriculum design, program coordination, and the supervision of undergraduate, master’s, and Ph.D. students. Through his teaching, he instills a strong foundation in chemical engineering principles, while also fostering innovation and critical thinking among students.

Legacy and Future Contributions

With an already distinguished track record, Dr. Zhenzhao Pei continues to expand his influence in the fields of chemical process safety and sustainable industrial chemistry. His leadership in integrating environmental concerns into chemical engineering design positions him as a catalyst for future green innovations. Looking ahead, his continued collaboration with industry and academia promises further advancements in clean technology, process optimization, and environmental sustainability.

Notable Publications

Synthesis of low-temperature NH₃-SCR catalysts for MnOx with high SO₂ resistance using redox-precipitation method with mixed manganese sources
Authors: Zhenzhao Pei, Haiyang Zhao, Haipeng Wang, Guangxi Yu, Hao Wu
Journal: Applied Surface Science
Year: 2025

Influences of glycerol-assisted ultrasonic modification on the ultra-low temperature NH₃-SCR MnFeOx catalysts
Authors: Zhenzhao Pei, Zhuyue Fu, Haipeng Wang, Haoran Ni, Tao Guo
Journal: Fuel
Year: 2025

Investigation on denitrification performance of microwave synthesized high-efficiency MnOx catalysts for low-temperature NH₃-SCR
Authors: Zhenzhao Pei, Haipeng Wang, Haiyang Zhao, Chengye He, Zhuo Ji
Journal: Journal of Alloys and Compounds
Year: 2024

 

Nasarul Islam | Computational Chemistry | Best Researcher Award

Assist. Prof. Dr. Nasarul Islam | Computational Chemistry | Best Researcher Award

HKM Degree College Bandipora, India

👨‍🎓Profiles

🏫 Early Academic Pursuits

He embarked on his academic journey with a passion for Theoretical Inorganic and Organic Chemistry. His research during his Ph.D. focused on developing OLED and nonlinear device materials using computational methods. He delved into the electronic structure and spectral properties of chiro-optic systems and explored structure-property relationships for materials with applications in optical, magnetic, and electrical domains. These foundational experiences shaped his expertise in theoretical chemistry and material design.

💼 Professional Endeavors

He serves as an Assistant Professor in the Department of Chemistry at HKM-Govt. Degree College, Bandipora, J&K, India, since April 11, 2017. Alongside his teaching duties, he is an Academic Counsellor for Indira Gandhi National Open University (IGNOU). His collaborative work extends to notable institutions, including the National Institute of Technology, Jalandhar, where he investigates reaction mechanisms and molecular dynamics of ionic liquids in collaboration with Dr. Vikramjeet Singh.  Previously, Dr. Islam contributed significantly to research under the mentorship of Prof. (Dr.) S. S. Chimni at Guru Nanak Dev University, Amritsar. His work focused on enantioselective product formation from organocatalyzed processes and transition-state mechanisms.

🔬 Contributions and Research Focus

His research interests are rooted in computational chemistry. He employs quantum mechanical methods to design and investigate materials for energy storage and conversion, OLED devices, and transport systems. His work bridges theoretical models and practical applications, synthesizing theoretically designed charge transport materials for experimental validation. His focus spans: The electronic and optical properties of chiro-optic systems, Energy storage and conversion materials, Quantum mechanical studies on molecular dynamics and ionic liquids.

🌟 Impact and Influence

His contributions have earned him international recognition. He is an MRSC fellow of the Royal Society of Chemistry, UK, and has been acknowledged with numerous awards, including: The DSK Postdoctoral Fellowship (UGC-India), Recognition for outstanding contributions in reviewing from Spectrochimica Acta Part A, Multiple awards for oral and poster presentations at conferences. He also serves on the editorial boards of Frontiers in Applied Chemistry and the Journal of Computational Chemistry & Molecular Modelling, influencing research dissemination in his field.

📚 Academic Citations and Publications

He has an extensive portfolio of research publications cited globally. His work on OLED materials and ionic liquids is highly regarded, reflecting his impact in theoretical and applied chemistry.

🛠️ Technical Skills

He is proficient in a variety of computational and analytical techniques, including: Quantum mechanical modeling, Molecular dynamics simulations, Spectral analysis and transport property evaluation.

👩‍🏫 Teaching and Mentorship

As an educator, He is committed to advancing chemical education. His teaching philosophy integrates research with pedagogy, inspiring students to explore complex chemical systems. His guidance extends to research projects and academic counseling, fostering a culture of scientific curiosity.

🌍 Legacy and Future Contributions

His legacy lies in bridging computational insights with real-world applications, particularly in energy systems and material design. Moving forward, he aims to expand his research on sustainable materials and enhance collaborations to address global challenges in energy and materials science.

🌟 Key Highlights

His work stands as a testament to his dedication to advancing computational chemistry, fostering innovation, and mentoring the next generation of scientists. His endeavors reflect a balanced blend of theoretical exploration, practical synthesis, and impactful teaching.

📖Notable Publications

Advancements in ionic liquid-based corrosion inhibitors for sustainable protection strategies: from experimental to computational insights

Authors: Kumar, P.; Holmberg, K.; Soni, I.; Sillanpää, M.; Chauhan, V.
Journal: Advances in Colloid and Interface Science
Year: 2024

Quantitative structure-activity relationship and ADME prediction studies on series of spirooxindoles derivatives for anti-cancer activity against colon cancer cell line HCT-116

Authors: Kaur, S.; Kaur, J.; Zarger, B.A.; Islam, N.; Mir, N.
Journal: Heliyon
Year: 2024

Unveiling the potential of NiFe layered double hydroxide (LDH)/CuWO4 S-scheme heterojunction for sulfamethoxazole photodegradation and nitrobenzene photoreduction to aniline

Authors: Sharma, R.; Sambyal, S.; Mandyal, P.; Chauhan, V.; Shandilya, P.
Journal: Journal of Environmental Chemical Engineering
Year: 2024

Fabrication of dual S-scheme based CuWO4/NiFe/WO3 heterojunction for visible-light-induced degradation and reduction applications

Authors: Sharma, R.; Islam, N.; Priye, A.; Chauhan, V.; Shandilya, P.
Journal: Journal of Environmental Chemical Engineering
Year: 2024

Cu2O/WO3: A promising S-scheme heterojunction for photocatalyzed degradation of carbamazepine and reduction of nitrobenzene

Authors: Mandyal, P.; Sharma, R.; Sambyal, S.; Chauhan, V.; Shandilya, P.
Journal: Journal of Water Process Engineering
Year: 2024

An Updated Overview on the Synthesis and Anticancer Evaluation of Quinazoline Derivatives

Authors: Kaur, J.; Kaur, S.; Anand, A.; Singh, S.; Singh, A.
Journal: ChemistrySelect
Year: 2023