Zhiqaing Yang | Thermodynamics | Best Researcher Award

Prof. Dr. Zhiqaing Yang | Thermodynamics | Best Researcher Award

Xi’an Modern Chemistry Research Institute, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Yang’s academic journey began with a Bachelor’s degree in Chemistry and Chemical Engineering from Dalian University, where he developed a strong foundation in chemical sciences. He further pursued a Master’s degree in Applied Chemistry at MCRI, under the supervision of Prof. Lu Jian, focusing on catalysis and chemical processes related to fluorine-based compounds. Seeking to expand his expertise, he completed a Ph.D. in Power Engineering and Engineering Thermodynamics from Xi’an Jiaotong University, where he worked under Prof. Jiangtao Wu, specializing in thermodynamic properties and fluid behavior in industrial applications.

🏢 Professional Endeavors

Dr. Yang has been actively involved in research and development at MCRI, holding various positions. As an Engineer in the Department of Catalysis and Chemical Process, he focused on HFO synthesis and chemical separation techniques. Later, as an Associate Researcher, he played a crucial role in the development of thermodynamic equipment and the study of HFO properties. Expanding his research internationally, he served as a Visiting Scholar at Mines ParisTech-PSL, CTP, under the supervision of Prof. Christophe Coquelet, where he conducted experimental studies on phase equilibrium for high-temperature heat pump working fluids. Currently, as a Researcher at the State Key Laboratory of Fluorine & Nitrogen Chemicals, he leads projects focused on experimental measurement and thermodynamic predictions for insulating gases and their environmental impact.

🔬 Contributions and Research Focus

Dr. Yang’s research spans across various domains, including hydrofluoroolefin (HFO) synthesis and separation, thermodynamic property analysis, high-temperature heat pump working fluids, and environmentally friendly insulating gases. His work has significantly contributed to industrial refrigerants and insulation technologies, enhancing sustainability in chemical engineering and reducing the environmental footprint of industrial processes. His efforts in process simulation and modeling of multisystem thermodynamics during HFO preparation have improved efficiency and reliability in industrial applications.

💰 Funded Research Projects

Dr. Yang has secured multiple research grants, highlighting his leadership in high-impact projects. He is the Program Director of R&D and Application of New Environmentally Friendly Insulating Gases, funded by China Southern Power Grid Co. Ltd, with a funding of 5.5 million RMB. Additionally, he led the Technical Research on the Physical and Chemical Properties of Insulating Gases, supported by Sinochem Group Co. Ltd, with a funding of 194,000 RMB. His long-term project, Thermodynamic Properties and Process Simulation of Multisystem During Hydrofluoroolefin Preparation, received another 5.5 million RMB in funding from Sinochem Group Co. Ltd. Earlier in his career, he directed research on Thermophysical Properties of Low-GWP HFO and HFC Mixtures and Their Solubility in Lubricant, funded by the Industrial Ministry of Shaanxi Province for 200,000 RMB. He has also served as a key researcher in several national projects funded by the Industry and Ministry of Science and Technology of China.

📊 Impact and Influence

Dr. Yang’s research has had a profound impact on both academic and industrial sectors. His studies on low-GWP refrigerants and insulating gases contribute directly to global environmental efforts to reduce greenhouse gas emissions. By developing sustainable alternatives to traditional high-GWP chemicals, his work aligns with international climate policies and promotes energy-efficient chemical processes. His advancements in thermodynamic modeling and experimental research have improved industrial operations and enhanced the efficiency of chemical processes in refrigeration, insulation, and heat transfer applications.

📚 Academic Citations and Publications

Dr. Yang’s research findings have been published in renowned scientific journals and presented at leading international conferences. His work is frequently cited in chemical engineering, thermodynamics, and industrial chemistry, reinforcing his reputation as a thought leader in the field.

🛠️ Technical Skills

With extensive expertise in chemical process engineering, Dr. Yang specializes in HFO synthesis, separation techniques, and thermodynamic modeling. His skill set includes experimental measurements, phase equilibrium modeling, and high-temperature heat pump fluid analysis. He is proficient in advanced analytical techniques such as chromatography, spectroscopy, and calorimetry, which are essential for his research in chemical thermodynamics and process optimization.

🎓 Teaching and Mentorship

Dr. Yang has been actively involved in mentoring graduate students and early-career researchers, sharing his expertise in fluorine-based chemistry and thermodynamics. His collaborations with international institutions and industry partners have facilitated knowledge exchange and technological advancements, fostering the next generation of chemists and engineers.

🔮 Legacy and Future Contributions

As a pioneer in green chemistry solutions, Dr. Yang aims to continue his research in environmentally friendly gases and sustainable industrial applications. His work on thermodynamic modeling and heat transfer technologies will contribute to energy-efficient, eco-friendly industrial processes. With a passion for innovation, he remains dedicated to training future experts in chemistry and chemical engineering, ensuring that his contributions leave a lasting impact on scientific progress and environmental sustainability.

📖Notable Publications

  • Investigation of vapor liquid equilibria for HFO-1336mzz(E) + HFC-1234ze(E) binary system by a novel developed cyclic-analytical apparatus

    • Authors: Zhiqiang Yang, Yuanhao Liao, Hong Yuan, Xiaobo Tang, Christophe Coquelet, Jijun Zeng, Sheng Han, Wei Zhang, Jian Lu

    • Journal: Fluid Phase Equilibria

    • Year: 2025

  • Discovery of a novel binary azeotrope with positive synergistic insulation strength as eco-friendly SF6-alternative

    • Authors: Yuyang Yao, Zhiqiang Yang, Boya Zhang, Xingwen Li, Mai Hao, Nian Tang, Dongwei Sun, Jian Lu

    • Journal: Journal of Physics D: Applied Physics

    • Year: 2025

  • Experimental measurements and correlation of vapor–liquid equilibrium data for the difluoromethane (R32) + 1,3,3,3-tetrafluoropropene (R1234ze(E)) binary system from 254 to 348 K

    • Authors: Pierre Six, Alain Valtz, Yulong Zhou, Zhiqiang Yang, Christophe Coquelet

    • Journal: Fluid Phase Equilibria

    • Year: 2024

  • Synthesis, Characterization, and Physicochemical Properties of New [Emim][BF₃X] Complex Anion Ionic Liquids

    • Authors: Jijun, Bo Zhao, Yu An, Xiao-Bo Tang, Sheng Han, Zhi-Qiang Yang, Wei Zhang, Jian Lu

    • Journal: ACS Omega

    • Year: 2024

  • Synthesis of Perfluoro Alkyl/Alkenyl Aryl Sulfide: C−S Coupling Reaction Using Hexafluoropropylene Dimer (HFPD) as a Building Block

    • Authors: Yu An, Ji‐Jun Zeng, Xiao‐Bo Tang, Bo Zhao, Sheng Han, Zhi‐Qiang Yang, Wei Zhang, Jian Lu

    • Journal: European Journal of Organic Chemistry

    • Year: 2024

  • Isothermal Vapor–Liquid Equilibrium for the Binary System of Trans-1,3,3,3-tetrafluoropropene and 1,1,1,3,3-Pentafluoropropane

    • Authors: Nian Tang, Wenguo Gu, Dongwei Sun, Xiaobo Tang, Zhiqiang Yang, Jian Lu

    • Journal: International Journal of Thermophysics

    • Year: 2023

  • Critical properties and vapor-liquid equilibrium of two near-azeotropic mixtures containing HFOs

    • Authors: Zhiqiang Yang, Alain Valtz, Christophe Coquelet, Jiangtao Wu, Jian Lu

    • Journal: International Journal of Refrigeration

    • Year: 2022

 

Ram Mohan Pathak | Plasma Chemistry | Best Researcher Award

Mr. Ram Mohan Pathak | Plasma Chemistry | Best Researcher Award

Indian Institute of Science, Bangalore, India

👨‍🎓Profiles

🎓 Early Academic Pursuits

Ram Mohan Pathak's academic journey began with a B.Tech. (Hons) in Chemical Engineering from Dr. K.N. Modi Institute of Engineering and Technology, affiliated with Dr. A.P.J Abdul Kalam Technical University, where he graduated with honors. He further pursued an M.Tech. in Chemical Engineering at the Indian Institute of Technology (IIT) Dhanbad, achieving an impressive 8.7/10 CGPA. His master's minor project was conducted at the prestigious Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu, India, reflecting his early inclination toward cutting-edge research.

🏆 Professional Endeavors

Currently, a Ph.D. Scholar at the Centre for Sustainable Technologies, Indian Institute of Science (IISc) Bangalore, Ram has been deeply engaged in experimental, engineering, and simulation research. His work explores advanced plasma technologies with applications in energy sustainability and combustion systems. Additionally, he has served as a Teaching Assistant and Senior Research Fellow, contributing to laboratory setup and student mentorship at both IIT Dhanbad and IISc Bangalore.

🔬 Contributions and Research Focus

Ram’s Ph.D. dissertation, set for colloquium in November 2024, focuses on:

Enhanced rotation effects on electrical, optical, and chemical properties of rotating gliding arc nitrogen plasma.

Plasma-assisted combustion for biogas applications in engines.

Influence of transitional and turbulent flow regimes on plasma characteristics.

Impact of carrier gases and flow regimes on hydrocarbon (methane & toluene) reformation/destruction.

His research is highly interdisciplinary, blending chemical engineering, plasma physics, and combustion science for sustainable energy solutions.

🌍 Impact and Influence

Ram’s research in plasma-assisted combustion and sustainable technologies has the potential to revolutionize clean energy production and pollution control strategies. His investigations into plasma flow regimes and hydrocarbon breakdown mechanisms contribute to advancements in alternative energy systems and environment-friendly combustion techniques.

📚 Academic Citations & Recognition

Ram has received the MHRD GATE Scholarship for both his M.Tech. (2017-2019) and Ph.D. (2019-2024) studies, awarded by the Ministry of Human Resource Development, Government of India. His academic excellence and research contributions are recognized nationally through this prestigious funding.

🛠️ Technical Skills

Ram is proficient in:
✅ Plasma Engineering & Diagnostics
✅ Computational Fluid Dynamics (CFD) & Simulation
✅ Design of Experiments & Factorial Analysis
✅ Chemical Kinetics & Reaction Engineering
✅ Instrumentation for Plasma and Combustion Systems

🎓 Teaching Experience

As a Teaching Assistant, Ram has:

  • Conducted laboratory training for B.Tech. students at IIT Dhanbad.
  • Trained project assistants at IISc Bangalore in experimental techniques and plasma technology applications.
  • Taught Factorial Design of Experiments, enhancing student proficiency in research methodology and data analysis.

🔥 Legacy and Future Contributions

Ram Mohan Pathak’s research legacy lies in developing sustainable plasma-based solutions for energy generation and pollutant mitigation. Moving forward, he aims to:

  • Enhance the application of plasma-assisted combustion for renewable energy integration.
  • Advance hydrocarbon destruction techniques for environmental sustainability.
  • Contribute to industrial applications of plasma technologies in energy and chemical sectors.

📖Notable Publications

Tar Formation in Gasification Systems: A Holistic Review of Remediation Approaches and Removal Methods

Authors: A. Jayanarasimhan, R. M. Pathak, A. M. Shivapuji, L. Rao

Journal: ACS Omega

Year: 2024

Chemical Kinetics Simulation of Hydrogen Generation in Rotating Gliding Arc Plasma

Authors: R. M. Pathak, J. Ananthanarasimhan, L. Rao

Journal: IEEE Transactions on Plasma Science

Year: 2022

A Novel Lumped Parameter Approach Toward Understanding Rotating Gliding Arc

Authors: R. M. Pathak, S. Nandi, L. Rao

Journal: IEEE Transactions on Plasma Science

Year: 2024

Enhanced Hydrogen Production Through Enhanced Rotation in Bi-Reforming of Methane Using Rotating Gliding Arc Plasma Under Different Operating Conditions: Experimental and …

Authors: R. M. Pathak, L. Rao

Journal: 2024 IEEE International Conference on Plasma Science (ICOPS)

Year: 2024

The Influence of Vortex Formation on the Electrical Characteristics of Argon Plasma in a Rotating Gliding Arc Discharge

Authors: R. M. Pathak, L. Rao

Journal: Journal of Physics: Conference Series

Year: 2024

Investigating Flow-Induced Changes in Coaxial Cylindrical Dielectric Barrier Discharge Using Equivalent Circuit Modelling and Chemical Workbench Simulations

Authors: R. M. Pathak, J. Ananthanarasimhan, S. Nandi, C. R. Das, L. Rao

Journal: Plasma Chemistry and Plasma Processing

Year: 2025