Tianjie Qiu | Electrochemistry | Best Researcher Award

Dr. Tianjie Qiu | Electrochemistry | Best Researcher Award

Peking University, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Tianjie Qiu began his academic journey at Nankai University, where he pursued a Bachelor’s degree in Chemistry of Materials (2013-2017). During his undergraduate studies, he developed a strong foundation in materials science and chemistry, setting the stage for his research in advanced materials. Recognized for his academic excellence, he continued his studies at Peking University, one of China’s premier institutions. From 2017 to 2022, he completed his Ph.D. in Materials Science and Engineering, securing the top rank in his class in annual comprehensive quality evaluations. His early education laid the groundwork for his significant contributions to electrocatalysis and energy materials.

🏆 Professional Endeavors

Dr. Qiu has been an active researcher in the field of materials science and electrochemistry since 2017. His expertise spans multiple areas, including the design of ruthenium-based nanocatalysts, heterostructure engineering, and electrochemical energy storage. His work focuses on developing hierarchically porous materials and MOF-derived catalysts for various applications, such as water electrolysis and potassium-ion batteries. Through innovative material synthesis and characterization techniques, he has pioneered multiple breakthroughs in electrocatalysis and energy storage.

🔬 Contributions and Research Focus

Dr. Qiu’s research primarily focuses on the rational design of nanocomposites for electrochemical applications, contributing significantly to the fields of energy conversion and storage. One of his notable achievements includes the development of hierarchically porous ruthenium-carbon nanocatalysts through a bimetallic MOF-derived method, which enhances hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performance by employing precise pore-formation strategies. Additionally, he optimized the heterostructure of Ru@RuOx to improve alkaline HER activity. His work on boron/nitrogen codoped carbon nanotubes for water electrolysis led to a universal method for synthesizing RuM (M = Ir, Co, Fe, Pt, Ag) nanoalloys while systematically analyzing the structure-performance relationship of these electrocatalysts. Furthermore, in the field of potassium-ion batteries, Dr. Qiu designed superstructured nitrogen-doped microporous carbon nanorods derived from MOFs and investigated the potassium-ion adsorption mechanism using first-principles calculations. His development of multi-element doped carbon superstructures has further enhanced potassium-ion storage performance. Through these innovations, Dr. Qiu has paved the way for next-generation catalysts and battery materials, advancing electrochemical energy technologies.

📊 Impact and Influence

Dr. Qiu’s work has gained widespread recognition in the scientific community: 26 SCI-indexed publications, h-index: 17, Total Citations: 2,390, 3 ESI Highly Cited Papers, 1 Invention Patent, 2 Co-authored Books. These achievements reflect the depth and influence of his research in the fields of electrocatalysis, energy storage, and materials science. His work has been referenced extensively, contributing to the development of high-performance catalysts and battery technologies.

🛠️ Technical Skills

Dr. Qiu possesses a diverse skill set in materials synthesis, characterization, and electrochemical analysis:

  • Nanomaterials Design: MOF-derived synthesis, porous structure engineering, heteroatom doping.
  • Electrocatalysis: Hydrogen Evolution Reaction (HER), Oxygen Evolution Reaction (OER), water electrolysis.
  • Battery Materials: Potassium-ion batteries, microporous carbon anodes, phosphorus confinement.
  • Computational Analysis: First-principles calculations, energy band analysis, adsorption studies.
  • Advanced Characterization: XRD, SEM, TEM, Raman Spectroscopy, XPS, BET surface analysis.

His expertise bridges the gap between experimental materials science and computational modeling, allowing for a deep understanding of structure-property relationships in nanomaterials.

🎓 Teaching and Mentorship

Beyond research, Dr. Qiu has been actively involved in mentoring and guiding students in materials science. As a top-ranking Ph.D. scholar, he played a crucial role in training junior researchers in advanced material synthesis and electrochemical characterization. His contributions to academia extend beyond publications, fostering a new generation of scientists in nanomaterials and sustainable energy.

🌍 Legacy and Future Contributions

Dr. Qiu’s groundbreaking work in rational catalyst design and battery materials will continue to shape the future of renewable energy and sustainable technologies. His research holds immense potential for:

  • Developing next-generation hydrogen production catalysts for clean energy.
  • Enhancing potassium-ion battery technologies as an alternative to lithium-ion storage.
  • Pushing the boundaries of nanomaterial engineering for energy applications.

With his strong publication record and innovative research, Dr. Qiu is poised to become a leading figure in materials science and energy storage, driving technological advancements in sustainable energy solutions.

📖Notable Publications

  • Metal-organic framework-derived materials for electrochemical energy applications

    • Authors: Z Liang, R Zhao, T Qiu, R Zou, Q Xu
    • Journal: EnergyChem
    • Year: 2019
  • Metal–organic framework-based materials for energy conversion and storage

    • Authors: T Qiu, Z Liang, W Guo, H Tabassum, S Gao, R Zou
    • Journal: ACS Energy Letters
    • Year: 2020
  • Covalent organic framework-based materials for energy applications

    • Authors: DG Wang, T Qiu, W Guo, Z Liang, H Tabassum, D Xia, R Zou
    • Journal: Energy & Environmental Science
    • Year: 2021
  • Highly exposed ruthenium-based electrocatalysts from bimetallic metal-organic frameworks for overall water splitting

    • Authors: T Qiu, Z Liang, W Guo, S Gao, C Qu, H Tabassum, H Zhang, B Zhu, R Zou
    • Journal: Nano Energy
    • Year: 2019
  • Pristine hollow metal–organic frameworks: design, synthesis and application

    • Authors: T Qiu, S Gao, Z Liang, DG Wang, H Tabassum, R Zhong, R Zou
    • Journal: Angewandte Chemie International Edition
    • Year: 2021

Bunyamin Cicek | Materials Chemistry | Material Chemistry Award

Assoc. Prof. Dr. Bunyamin Cicek | Materials Chemistry | Material Chemistry Award

Hitit University, Turkey

👨‍🎓Profiles

🎓 Academic Background and Current Affiliation

Assoc. Prof. Dr. Bunyamin Cicek is a distinguished researcher in Materials Chemistry and Biomaterials, currently affiliated with Hitit University, Turkey. With extensive experience in material science, his contributions have significantly impacted the field of biomaterials and chemical engineering.

📊 Research Contributions and Focus

Dr. Cicek's research primarily revolves around materials chemistry and biomaterials, with a strong emphasis on developing advanced materials for biomedical and industrial applications. His work integrates chemical synthesis, material characterization, and application-based research, contributing to innovations in biomaterial development and material surface modifications.

🔬 Publication Metrics and Research Impact

Dr. Cicek’s research has been well recognized within the scientific community, as reflected in his publication metrics:

H-index: 8

Total Citations: 193

Total Publications: 34

Web of Science Core Collection Publications: 24

His scholarly output demonstrates his contributions to materials chemistry and the growing significance of his research in advancing biomaterial technologies.

🏆 Recognitions and Researcher Profiles

Dr. Cicek maintains an active presence in the global research community through platforms such as: Web of Science ResearcherID, ORCiD. These profiles showcase his scientific contributions, collaborations, and ongoing research endeavors, solidifying his reputation as a leading expert in materials chemistry and biomaterials.

🌍 Future Contributions and Research Vision

Dr. Cicek continues to expand the frontiers of materials science, focusing on the development of sustainable and high-performance biomaterials. His future research aims to enhance material functionalities for medical, environmental, and industrial applications, ensuring a lasting impact on the field. His dedication to scientific advancement positions him as a key contributor to cutting-edge materials research and innovation. 🚀

📖Notable Publications

  • Production of 316L stainless steel implant materials by powder metallurgy and investigation of their wear properties

    • Authors: N. Kurgan, Y. Sun, B. Cicek, H. Ahlatci
    • Journal: Chinese Science Bulletin
    • Year: 2012
  • Wear behaviours of Pb added Mg–Al–Si composites reinforced with in situ Mg₂Si particles

    • Authors: B. Çiçek, H. Ahlatçı, Y. Sun
    • Journal: Materials & Design
    • Year: 2013
  • A study on the mechanical and corrosion properties of lead added magnesium alloys

    • Authors: B. Çiçek, Y. Sun
    • Journal: Materials & Design
    • Year: 2012
  • Kinetic investigation of AISI 304 stainless steel boronized in indirect heated fluidized bed furnace

    • Authors: P. Topuz, B. Çiçek, O. Akar
    • Journal: Journal of Mining and Metallurgy, Section B: Metallurgy
    • Year: 2016
  • Effects of alloying element and cooling rate on properties of AM60 Mg alloy

    • Authors: L. Elen, B. Cicek, E. Koc, Y. Turen, Y. Sun, H. Ahlatci
    • Journal: Materials Research Express
    • Year: 2019

 

Wei Lv | Materials Chemistry | Best Researcher Award

Dr. Wei Lv | Materials Chemistry | Best Researcher Award

North China Electric Power University, China

👨‍🎓Profiles

🎓 Academic Background

Dr. Wei Lv obtained his Ph.D. in Materials Chemistry from Central Iron & Steel Research Institute in 2018, specializing in the development of advanced materials for energy storage applications. His strong academic foundation has fueled his contributions to the field of energy storage and biomedicine.

🏛️ Professional Endeavors

Currently, Dr. Wei Lv serves as an Associate Professor at North China Electric Power University, China. His work bridges the gap between materials chemistry and practical energy storage solutions, making significant strides in both academic research and industrial applications.

🔬 Research Focus & Contributions

Dr. Wei Lv’s research primarily revolves around:
✔️ Aqueous Batteries & Key Materials 🔋 – Developing next-generation sustainable and high-performance energy storage solutions.
✔️ Energy Storage Materials ⚡ – Exploring novel materials for improving battery efficiency, capacity, and stability.
✔️ Biomedical Applications 🏥 – Investigating the role of energy storage materials in medical and healthcare technologies.

Through innovative research, he has made substantial contributions to the understanding and advancement of energy storage materials and their applications in sustainable technologies.

📚 Publications & Academic Impact

Dr. Lv has authored multiple SCI-indexed papers, significantly contributing to materials chemistry and energy storage research. His work has been widely cited, demonstrating its influence in the scientific community.

🛠️ Technical Expertise

Dr. Wei Lv possesses expertise in various cutting-edge research methodologies, including:
✔️ Battery Electrode Material Design & Synthesis
✔️ Electrochemical Performance Evaluation
✔️ Advanced Materials Characterization Techniques
✔️ Biocompatibility Testing for Biomedical Applications
✔️ Sustainable Energy Storage Technologies

🎓 Teaching & Mentorship

As an Associate Professor, Dr. Wei Lv actively mentors undergraduate and postgraduate students, providing them with guidance on research methodologies, experimental techniques, and scientific writing. His mentorship plays a crucial role in shaping the next generation of researchers in materials science and energy storage.

🌍 Future Contributions & Research Vision

Dr. Lv is committed to advancing sustainable energy storage solutions and biomedical applications. His future research aims to:
🔹 Develop eco-friendly and high-performance battery materials for renewable energy applications.
🔹 Explore novel materials for biomedical energy storage technologies.
🔹 Bridge materials chemistry with real-world applications in energy and medicine..

📖Notable Publications

In situ synthetic C encapsulated δ-MnO₂ with O vacancies: a versatile programming in bio-engineering

Authors: W. Lv, Z. Shen, J. Liu, J. Meng, C. Xu

Journal: Science Bulletin

Year: 2025

Discovering Cathodic Biocompatibility for Aqueous Zn–MnO₂ Battery: An Integrating Biomass Carbon Strategy

Authors: W. Lv, Z. Shen, X. Li, Y. Tian, C. Xu

Journal: Nano-Micro Letters

Year: 2024

Niobium fluoride-modified hydrogen evolution reaction of magnesium borohydride diammoniate

Authors: Y. Lv, B. Zhang, H. Huang, D. Sun, Y. Wu

Journal: Journal of Materials Science and Technology

Year: 2023

Bindu Antil | Materials Chemistry | Best Researcher Award

Dr. Bindu Antil | Materials Chemistry | Best Researcher Award

Pennsylvania State University, United States

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Bindu Antil began her academic journey at the University of Delhi, India, where she completed her Bachelor of Science (Hons.) in Chemistry in 2014. She further pursued a Master of Science in Chemistry in 2016, which strengthened her foundation in material science and nanotechnology. Her academic excellence led her to complete a Ph.D. in Chemistry (July 2022) under the supervision of Prof. Sasanka Deka, focusing on advanced nanomaterials for energy applications.

🏛️ Professional Endeavors

Dr. Antil is currently a Distinguished Postdoctoral Fellow at The Pennsylvania State University, USA, in the Department of Energy and Mineral Engineering. Working under Prof. Randy Lee Vander Wal, she is engaged in advanced research in energy materials, electrocatalysis, and hydrogen production. Previously, she participated in an internship under the DBT Star College Project (2012-2013) at the University of Delhi, where she explored carbon materials derived from renewable bio-precursors for Li-ion batteries and supercapacitors.

🔬 Research Focus and Contributions

Dr. Antil’s research revolves around multifunctional nanomaterials for energy storage and conversion. Some key areas of her work include:

Her expertise in colloidal and hydrothermal chemistry allows precise control over material properties, optimizing their efficiency for clean energy applications.

🌍 Impact and Influence

Dr. Antil’s work contributes to the advancement of renewable energy solutions. Her innovations in electrocatalysis and hydrogen generation have the potential to revolutionize energy storage and conversion technologies. Her research supports the global transition toward green energy, enhancing sustainability in battery technology, supercapacitors, and solar-driven hydrogen production.

📚 Teaching & Mentorship

Dr. Antil is actively involved in mentoring young researchers in energy storage, catalysis, and nanomaterials development. Her hands-on expertise with advanced analytical and fabrication techniques makes her a valuable mentor for students and researchers in the field.

🌟 Legacy and Future Contributions

Dr. Bindu Antil is shaping the future of renewable energy and nanomaterials research. With her expertise in hydrogen production, electrocatalysis, and advanced battery materials, she aims to drive breakthroughs in clean energy storage and conversion.

Her ongoing work as a Distinguished Postdoctoral Fellow at Penn State University will further enhance sustainable energy solutions, making her a key contributor to the global pursuit of green and efficient energy technologies.

📖Notable Publications

Development of graphitic and non-graphitic carbons using different grade biopitch sources
Authors: Bindu Antil, Yaseen Elkasabi, Gary D. Strahan, Randy L. Vander Wal
Journal: Carbon
Year: 2025

N-doped graphene modulated N-rich carbon nitride realizing a promising all-solid-state flexible supercapacitor
Author: Bindu Antil
Journal: Journal of Energy Storage
Year: 2022

A Superior and Stable Electrocatalytic Oxygen Evolution Reaction by One-Dimensional FeCoP Colloidal Nanostructures
Author: Bindu Antil
Journal: ACS Applied Materials & Interfaces
Year: 2022

One-Dimensional Multichannel g-C₃N₄.₇ Nanostructure Realizing an Efficient Photocatalytic Hydrogen Evolution Reaction and Its Theoretical Investigations
Author: Bindu Antil
Journal: ACS Applied Energy Materials
Year: 2021

Directed holey and ordered g-C₃N₄.₅ nanosheets by a hard template nanocasting approach for sustainable visible-light hydrogen evolution with prominent quantum efficiency
Author: Bindu Antil
Journal: Journal of Materials Chemistry A
Year: 2020

Direct Thermal Polymerization Approach to N-Rich Holey Carbon Nitride Nanosheets and Their Promising Photocatalytic H₂ Evolution and Charge-Storage Activities
Author: Bindu Antil
Journal: ACS Sustainable Chemistry & Engineering
Year: 2019