Cuijun Deng | Bioinorganic Chemistry | Best Researcher Award

Prof. Cuijun Deng | Bioinorganic Chemistry | Best Researcher Award

Tongji University, China

👨‍🎓Profiles

Early Academic Pursuits

Prof. Cuijun Deng’s academic journey began with a foundational education in Pharmaceutical Engineering, pursued at a leading university for Chinese medicine. This laid the groundwork for a multidisciplinary approach to science. Her passion for biomedical innovation led her to advance into the field of Biomedical Engineering at Tongji University, where she honed her expertise in biomaterials and tissue interfaces. Her academic pursuit culminated in doctoral studies in Physical Chemistry at the Shanghai Institute of Ceramics, fostering a strong command over material science principles essential for biomedical applications.

Professional Endeavors

Prof. Deng has developed a steadily ascending academic career at Tongji University, transitioning from an assistant research position to her current role as Associate Professor. Her professional tenure has been marked by steady growth in responsibility and scholarly output, contributing significantly to the fields of regenerative medicine and material science. Her current position enables her to lead multidisciplinary research projects and mentor students while contributing to academic development at the institutional level.

Contributions and Research Focus

Prof. Deng’s research has been instrumental in advancing the development of biological functional materials tailored for bone and cartilage repair. Her focus lies in designing biomimetic scaffolds and stimuli-responsive materials that interact seamlessly with living tissues. In particular, her work explores how magnetic forces can be harnessed to regulate the repair and regeneration of skeletal tissues, pushing the frontier of non-invasive and targeted regenerative therapies. Her approach integrates materials science, biomedical engineering, and mechanobiology, offering novel insights into the interface between synthetic systems and biological tissues.

Impact and Influence

Prof. Deng’s research has contributed significantly to the interdisciplinary domain of biomaterials and regenerative medicine. Through innovative design of biofunctional scaffolds and the application of external physical stimuli, her work addresses pressing challenges in orthopedic repair and rehabilitation. Her influence is reflected in collaborations across medical, engineering, and scientific disciplines, promoting translational research that bridges lab innovation with clinical relevance. Her studies are cited and respected for offering practical solutions to complex medical conditions affecting the musculoskeletal system.

Academic Recognition and Editorial Contributions

Prof. Deng is actively engaged in academic publishing and peer review. She has reviewed manuscripts for several high-impact journals, including Applied Materials Today, Advanced Fiber Materials, and the Journal of Controlled Release. Her role on the young editorial board of Interdisciplinary Medicine further reflects her academic leadership and recognition by the broader scientific community. These responsibilities underscore her commitment to maintaining scientific rigor and nurturing the growth of emerging research fields.

Technical Expertise

Prof. Deng possesses a broad and deep technical repertoire across material characterization, scaffold fabrication, and biological assessment techniques. Her expertise includes the synthesis of polymeric and ceramic biomaterials, functionalization of composite scaffolds, and application of external stimuli such as magnetic fields to enhance regenerative processes. She employs both in vitro and in vivo models to evaluate material performance and biological outcomes, ensuring comprehensive insight into biomaterial function and therapeutic potential.

Teaching Experience and Mentorship

As part of her academic duties, Prof. Deng is actively involved in educating the next generation of biomedical engineers and researchers. She mentors undergraduate, graduate, and doctoral students, integrating research training with classroom instruction. Her mentorship style emphasizes critical thinking, interdisciplinary collaboration, and hands-on experimentation, cultivating well-rounded scholars equipped for research and industry.

Legacy and Future Contributions

Prof. Deng continues to build a legacy rooted in innovation, interdisciplinary collaboration, and impactful research. She aims to further explore the interface between mechanical stimuli and biological responses in tissue engineering, particularly in skeletal systems. Her future work will likely deepen our understanding of smart biomaterials and accelerate their application in personalized regenerative therapies. By combining engineering precision with biological sensitivity, she aspires to advance medical technologies that restore function and improve patient outcomes.

📖Notable Publications

Inorganic ions for cartilage regeneration
Authors: Chaoqin Shu, Yongzheng Yu, Weitao Yang*, Cuijun Deng*
Journal: Coordination Chemistry Reviews
Year: 2025

Diatomite-incorporated hierarchical scaffolds for osteochondral regeneration
Authors: Cuijun Deng, Chen Qin, Zhenguang Li, Laiya Lu, Yifan Tong, Jiaqi Yuan, Feng Yin*, Yu Cheng*, Chengtie Wu*
Journal: Bioactive Materials
Year: 2024

Sophisticated Magneto-Mechanical Actuation Promotes in Situ Stem Cell Assembly and Chondrogenesis for Treating Osteoarthritis
Authors: Cuijun Deng, Zhenguang Li, Laiya Lu, Huina Zhang, Runzhi Chen, Yali Liu, Yifan Tong, Orion R. Fan, Wanxin Huang, Yi Eve Sun*, Feng Yin*, Yu Cheng*
Journal: ACS Nano
Year: 2023

Structural and Molecular Fusion MRI Nanoprobe for Differential Diagnosis of Malignant Tumors and Follow-Up Chemodynamic Therapy
Authors: Weitao Yang#, Cuijun Deng#, Xiudong Shi#, Yan Xu, Chenyu Dai, Hui Wang, Kexin Bian, Tianming Cui, Bingbo Zhang*
Journal: ACS Nano
Year: 2023

Bioceramic Scaffolds with Antioxidative Functions for ROS Scavenging and Osteochondral Regeneration
Authors: Deng Cuijun, Zhou Quan, Zhang Meng, Li Tian, Chen Haotian, Xu Chang, Feng Qishuai, Wang Xin, Yin Feng, Cheng Yu, Wu Chengtie
Journal: Advanced Science
Year: 2022

Jungpil Noh | Electrochemistry | Best Researcher Award

Prof. Jungpil Noh | Electrochemistry | Best Researcher Award

Gyeongsang National University, South Korea

👨‍🎓Profiles

🎓 Early Academic Pursuits

Prof. Jungpil Noh began his academic journey with a strong foundation in materials science and engineering. He earned his bachelor’s and master’s degrees in Metallurgical and Materials Engineering from Gyeongsang National University, South Korea, under the supervision of Prof. Tae-Hyun Nam. Demonstrating a keen interest in advancing materials research, he pursued a Ph.D. in Material Science at the Japan Advanced Institute of Science and Technology, under the guidance of Prof. Nobuo Otsuka. During this time, he immersed himself in physical materials science, which laid the groundwork for his future research in energy-related materials.

💼 Professional Endeavors

Prof. Noh has steadily advanced through various academic positions in both Japan and South Korea. He served as an assistant professor at JAIST before returning to Gyeongsang National University, where he contributed as an academic research professor and later rose through the ranks as assistant professor, associate professor, and currently, full professor. He is presently based in the Department of Energy & Mechanical Engineering, College of Marine Science, at Gyeongsang National University in Tongyeong. His academic career reflects commitment, international experience, and a consistent record of professional growth.

🔬 Contributions and Research Focus

Prof. Noh’s research spans several key areas within materials science. His expertise in lithium-ion batteries has led to innovations in energy storage technologies. He also focuses on thin film deposition techniques, contributing to the development of functional coatings for energy and electronic applications. In addition, his work on TiNi-based shape memory alloys is notable for its relevance to smart materials and actuating systems. Across all his research, Prof. Noh emphasizes both fundamental understanding and practical applications, making his work valuable to both academic and industrial stakeholders.

🌍 Impact and Influence

Prof. Noh’s research has had a meaningful impact in the fields of energy materials and functional alloys. His experience in both South Korea and Japan allows him to bridge international academic practices, bringing a global perspective to his work. Through his contributions, he supports the development of sustainable technologies and positions Gyeongsang National University as a hub for advanced materials research. His collaborations and influence extend to students, peers, and interdisciplinary teams working on energy and mechanical systems.

📚 Academic Citations and Recognition

Prof. Noh is widely acknowledged within the academic community for his scientific contributions. His publications are frequently cited in research related to batteries, thin films, and shape memory alloys. While specific citation metrics are not detailed here, his longstanding roles in academia and research leadership are a testament to his recognition and authority in his field.

🧰 Technical Skills

Prof. Noh possesses robust technical competencies across multiple domains. His skill set includes advanced techniques for thin film fabrication such as sputtering and evaporation, along with materials characterization tools like SEM, TEM, XRD, and DSC. He also excels in electrochemical analysis methods relevant to battery performance, such as cyclic voltammetry and impedance spectroscopy. His work with TiNi-based shape memory alloys demonstrates his deep understanding of thermomechanical behavior and functional performance.

👨‍🏫 Teaching Experience

Prof. Noh has played a pivotal role in teaching and mentoring students at Gyeongsang National University. He delivers lectures in materials science, energy systems, electrochemistry, and smart materials, integrating theoretical instruction with hands-on laboratory experiences. His guidance has supported numerous graduate and undergraduate research projects, helping to develop the next generation of engineers and materials scientists.

🏆 Legacy and Future Contributions

Prof. Noh continues to make substantial contributions to materials science and energy engineering. His legacy lies in advancing practical technologies such as high-performance batteries and intelligent material systems. Looking ahead, his work is expected to shape the future of clean energy, smart devices, and sustainable material solutions. Through academic leadership, international collaboration, and impactful research, he is paving the way for meaningful scientific and societal advancements.

📖Notable Publications

Aluminum Co-Deposition via DC Magnetron Sputtering for Enhanced Pitting Resistance of Copper–Nickel Alloys
Authors: Sang-Du Yun, Yeonwon Kim, Jun-Seok Lee, Jungpil Noh, Beomsoo Kim, Jae-Sung Kwon, Sung-Woong Choi, Jeong Hyeon Yang
Journal: Coatings
Year: 2024

Unraveling the Mechanism and Practical Implications of the Sol-Gel Synthesis of Spinel LiMn₂O₄ as a Cathode Material for Li-Ion Batteries: Critical Effects of Cation Distribution at the Matrix Level
Authors: Oyunbayar Nyamaa, Gyeong-Ho Kang, Sun-Chul Huh, Jeong-Hyeon Yang, Tae-Hyun Nam, Jungpil Noh
Journal: Molecules
Year: 2023

Free-Standing Li₄Ti₅O₁₂/Carbon Nanotube Electrodes for Flexible Lithium-Ion Batteries
Authors: Jun-Seok Lee, Sang-Du Yun, Oyunbayar Nyamaa, Jeong Hyeon Yang, Sun-Chul Huh, Hyo-Min Jeong, Tae-Hyun Nam, Yeon-Ju Ryu, Jungpil Noh
Journal: Energies
Year: 2022

Electrochemical Properties of Multilayered Sn/TiNi Shape-Memory-Alloy Thin-Film Electrodes for High-Performance Anodes in Li-Ion Batteries
Authors: Duck-Hyeon Seo, Jun-Seok Lee, Sang-Du Yun, Jeong Hyeon Yang, Sun-Chul Huh, Yonmo Sung, Hyo-Min Jeong, Jungpil Noh
Journal: Materials
Year: 2022

High Electrochemical Performance Silicon Thin-Film Free-Standing Electrodes Based on Buckypaper for Flexible Lithium-Ion Batteries
Authors: Oyunbayar Nyamaa, Duck-Hyeon Seo, Jun-Seok Lee, Hyo-Min Jeong, Sun-Chul Huh, Jeong Hyeon Yang, Erdenechimeg Dolgor, Jungpil Noh
Journal: Materials
Year: 2021

Grain Size and Phase Transformation Behavior of TiNi Shape-Memory-Alloy Thin Film under Different Deposition Conditions
Authors: Joohyeon Bae, Hyunsuk Lee, Duckhyeon Seo, Sangdu Yun
Journal: Materials
Year: 2020

Mehejbin Mujawar | Materials Chemistry | Best Researcher Award

Ms. Mehejbin Mujawar | Materials Chemistry | Best Researcher Award

Shivaji University, Kolhapur, India

👨‍🎓Profiles

🎓 Early Academic Pursuits

Ms. Mehejbin Mujawar began her academic journey with a strong foundation in science. She completed her S.S.C. (Semi-English) with First Class with Distinction and her H.S.C. (Science) with First Class from Kolhapur. With a deep interest in chemistry, she pursued a B.Sc. in Chemistry from Shivaji University, Kolhapur, achieving First Class with Distinction. She further pursued an M.Sc. in Organic Chemistry from the same university, securing an A+ Grade. Additionally, she holds a D.T.Ed. (Marathi) with an A+ Grade and completed MS-CIT, showcasing her strong digital and educational skills.

💼 Professional Endeavors

Ms. Mujawar serves as a dedicated educator at Raje Ramrao Mahavidyalaya, Jath, Sangli, working as a Lecturer in Analytical Chemistry at the postgraduate level and an Assistant Professor in Chemistry at the undergraduate level. She actively supervises M.Sc. and B.Sc. research projects, including work on “An Efficient Synthesis of O-Propargylated Salicylaldehydes.” Her role as a university examiner, evaluator, and expert adds significant value to academic assessment and quality assurance.

🧪 Contributions and Research Focus

Her research focuses on Material Science, Nanomaterials, and Superhydrophobic Surfaces. Her Ph.D. thesis, submitted to Shivaji University, is titled: “Studies on the Fabrication of Candle Soot Based Porous Superhydrophobic Surfaces for Oil-Water Separation.” This work explores the development of sustainable nanomaterials for environmental cleanup applications.

🌍 Impact and Influence

Ms. Mujawar has authored numerous research publications, including 13 international and 4 national papers, and has delivered presentations at 11 international, 6 national, and 1 state-level events. She holds an Indian Design Patent for a “Fluorescence Spectroscopy-Based Nanoparticle Interaction Device.” Her academic excellence has been recognized through a Merit Scholarship from Shivaji University.

📚 Academic Engagement and Leadership

She plays an active role in academic and institutional leadership. Her contributions include coordination in NAAC Criterion-II, serving as NSS Programme Officer, and participation in several committees such as admission, examination, women empowerment, student feedback, and research development. She has also organized and coordinated seminars, workshops, study tours, and training courses, bridging theory with applied learning.

📖 Academic Citations and Presentations

Her research contributions are well recognized across the fields of nanoscience, materials chemistry, and environmental technology. Her papers and presentations at prestigious platforms reflect the relevance and reach of her scholarly work.

🧠 Technical & Analytical Skills

Ms. Mujawar is proficient in nanoparticle synthesis, surface analysis, fluorescence spectroscopy, and related analytical techniques. She is also skilled in computer applications and digital tools, making her research and teaching approaches technologically adept.

👩‍🏫 Teaching Experience

A passionate educator, she has consistently delivered high-quality instruction at both undergraduate and postgraduate levels. She has mentored numerous students in their academic research and is committed to inspiring a deep-rooted interest in chemistry and innovation among learners. Her teaching philosophy focuses on empowering students to discover their passions and reach their full potential.

🌟 Legacy and Future Contributions

Looking ahead, Ms. Mujawar aims to expand her research in sustainable and functional nanomaterials and contribute to green chemistry innovations. With a strong record in teaching, research, and institutional development, she is poised to make lasting contributions to both the scientific community and future generations of scholars.

📖Notable Publications

Nanomaterials and Superhydrophobic Surfaces: An Overview
Authors: M Mujawar, S Kulal
Journal: Asian Journal of Chemical Sciences, Volume 15 (3), Pages 55–67
Year: 2025

Fluorescence Spectroscopy-Based Nanoparticle Interaction Device
Authors: S Chougale, M Mehejbin, P Sanadi, S Kumbhar, V More, A Chougale
Journal/Patent: Indian Patent IN 200,828
Year: 2025

SUPERHYDROPHOBIC SURFACES AND NANOTECHNOLOGY: A BRIEF REVIEW
Author: MR Mujawar
Journal: International Journal of Engineering Technology Research & Management, Volume 9 (5)
Year: 2025

Nature-Inspired Modified Superhydrophobic Stainless Steel Mesh of Candle Soot-Wax Nanocomposite for Oil-Water Separation
Authors: M Mujawar, D Kumbhar, A Sargar, S Kulal
Journal: Next Research, Volume 2 (3), Pages 1–7
Year: 2025

Development of a Cost-Effective Candle Soot-Polymer Composite Mesh for Efficient Oil-Water Separation
Authors: M Mujawar, D Malavekar, P Sanadi, D Kumbhar, R Sawant, JH Kim, and others
Journal: Physica Scripta, Volume 100 (6)
Year: 2025

Xianhe Huang | Analytical Chemistry | Best Researcher Award

Prof. Xianhe Huang | Analytical Chemistry | Best Researcher Award

School of Automation Engineering China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Prof. Xianhe Huang began his academic journey with a Bachelor of Science in Physics from Sichuan University, completed in July 1985. Demonstrating a strong aptitude for the physical sciences, he pursued further education and earned a Master of Engineering from the University of Electronic Science and Technology of China (UESTC) in March 1988. His educational background laid a robust foundation for his future research in frequency control technologies and precision instrumentation.

🧑‍🔬 Professional Endeavors

After completing his master’s degree, Prof. Huang commenced his professional career at the Southwest Institute of Electronics Technology, where he held key roles for over a decade. From 1988 to 1991, he served as an Engineer, followed by a tenure as Senior Engineer until 2001, and later as a Researcher until April 2002. In April 2002, he joined the University of Electronic Science and Technology of China as a Professor in the School of Automation Engineering, a position he has held ever since. His transition into academia marked a significant phase in combining research with higher education.

🔬 Contributions and Research Focus

Prof. Huang’s research has led to impactful advancements in frequency stability of quartz crystal devices, quartz crystal microbalance (QCM) sensors, and atomic clock systems. His work on the thermal and aging behavior of quartz oscillators has been critical for improving precision in timing circuits. He has also significantly contributed to the development of QCM sensors for ultra-sensitive detection in chemical and biological contexts. Additionally, his expertise in atomic clock technologies supports innovations in ultra-precise timekeeping systems, essential for satellite communications and navigation technologies.

🌍 Impact and Influence

Prof. Huang is recognized internationally for his leadership in the frequency control community. As an IEEE Senior Member affiliated with the Ultrasonics, Ferroelectrics, and Frequency Control (UFFC) Society, and a Technical Program Committee Member of the IEEE International Frequency Control Symposium (IFCS), he plays a vital role in guiding global discourse on time-frequency technologies. His collaborations and contributions continue to shape strategic advancements in automation, metrology, and sensor systems.

📚 Academic Citations

While specific citation metrics are not listed here, Prof. Huang’s scholarly work is well-respected and cited in the academic literature surrounding quartz-based oscillators, atomic precision timing systems, and microbalance sensor technologies. His contributions have informed both foundational studies and real-world applications in timekeeping and detection.

🛠️ Technical Skills

Prof. Huang brings to the field a wealth of technical proficiency, including:

  • Design and optimization of quartz crystal resonators

  • QCM sensor development and calibration

  • Atomic clock integration and performance analysis

  • High-frequency signal stability assessment

  • Electronic circuit design for frequency-sensitive applications
    These skills are instrumental in both his research and mentoring of postgraduate students.

👨‍🏫 Teaching Experience

At UESTC, Prof. Huang is not only a researcher but also a dedicated educator. He has supervised numerous graduate theses and student research projects, bridging the gap between theoretical knowledge and industrial application. His teaching emphasizes a solid understanding of physical principles, electronics, and measurement science, with a strong focus on innovation and critical thinking.

🧭 Legacy and Future Contributions

Prof. Xianhe Huang has established a respected legacy as a pioneer in precision frequency control and sensing technologies. His influence extends from research labs to classrooms, contributing to China’s development in electronic systems and precision engineering. Looking ahead, his research continues to evolve toward next-generation atomic clocks, nano-sensor networks, and AI-assisted time-frequency analysis, promising to contribute to cutting-edge advancements in global communication and measurement technologies.

📖Notable Publications

1. Investigating the Mass Sensitivity of Quartz Crystal Microbalances with Circularly Symmetric Electrodes in the Third Overtone Mode
Authors: M. Wang, Minghao; X. Huang, Xianhe; Q. Huang, Qirui
Journal: Analytical Chemistry
Year: 2024

2. Nanodiamond/Ti₃C₂ MXene-coated Quartz Crystal Microbalance Humidity Sensor with High Sensitivity and High Quality Factor
Authors: Y. Yao, Yao; Q. Chen, Qiao; Y. Li, Yanqi; J. Wang, Jiaqi; C. Chen, Changming
Journal: Rare Metals
Year: 2024

3. Nanochitin/MXene Composite Coated on Quartz Crystal Microbalance for Humidity Sensing
Authors: Y. Li, Yanqi; X. Huang, Xianhe; Q. Chen, Qiao; Y. Yao, Yao; W. Pan, Wei
Journal: Nanomaterials
Year: 2023

4. High-Sensitivity Chitin Nanofiber-Coated Series Piezoelectric Quartz Crystal Humidity Sensors
Authors: Q. Chen, Qiao; K. Tan, Ke; X. Huang, Xianhe; G. Yang, Gang; D. Liu, Dong
Journal: IEEE Sensors Journal
Year: 2023

5. Study of Force-Frequency Characteristics in AT-Cut Strip Quartz Crystal Resonators with Different Rotation Angles
Authors: G. Yang, Gang; X. Huang, Xianhe; K. Tan, Ke; Q. Chen, Qiao; W. Pan, Wei
Journal: Sensors (Switzerland)
Year: 2023

Yong Jyun Wang | Materials Chemistry | Best Researcher Award

Mr. Yong Jyun Wang | Materials Chemistry | Best Researcher Award

National Tsing Hua University, Taiwan

👨‍🎓Profiles

🎓 Early Academic Pursuits

Mr. Yong Jyun Wang embarked on his academic journey in the field of Materials Science, and he is currently a Ph.D. candidate at the Department of Materials Science and Engineering, National Tsing Hua University, Taiwan, expecting to graduate in 2025. His early academic foundation laid the groundwork for his deep engagement in the synthesis and property analysis of advanced functional materials, particularly focusing on oxide thin films.

💼 Professional Endeavors

Throughout his doctoral studies, Mr. Wang has actively participated in significant national research projects, including the MOST-113-2639-M-007-001–ASP, which centers on the development and future application of high-entropy epitaxial films. He has gained valuable experience in cutting-edge material fabrication techniques, with an emphasis on physical vapor deposition (PVD). His professional training is complemented by collaborative efforts within interdisciplinary research teams aiming to push the boundaries of electronic material design.

🔬 Contributions and Research Focus

Mr. Wang’s primary research has revolved around two-dimensional bismuth oxychalcogenides, particularly Bi₂O₂Se, targeting its integration into next-generation electronic and memory devices. Through compositional engineering and non-volatile modulation techniques, he has pioneered the development of p-type Bi₂O₂Se with high mobility, making it feasible for integration with its native n-type counterpart. This paves the way for complementary circuits, enhancing the material’s potential in versatile electronic systems. Furthermore, his innovative approach to non-volatile control enables memory functionalities, expanding the application horizon of Bi₂O₂Se in advanced backend electronics.

🌍 Impact and Influence

Despite being at an early stage in his career, Mr. Wang has already made notable contributions to the materials science community. His work has been featured in prestigious journals such as Nature Communications and Advanced Materials, indicating strong recognition from the academic community. His insights into high-mobility semiconducting materials have opened new research avenues for low-power electronics and neuromorphic computing.

🛠️ Technical Skills

Mr. Wang is proficient in advanced thin-film fabrication methods, especially physical vapor deposition, and skilled in material characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and electrical transport measurements. His technical versatility allows for comprehensive investigations into both structural and electronic properties of novel materials.

👨‍🏫 Teaching Experience

While pursuing his Ph.D., Mr. Wang has actively mentored undergraduate and junior graduate students, assisting them in lab training and project supervision. His role as a peer mentor has not only contributed to the academic growth of his colleagues but also strengthened his capabilities in scientific communication and leadership.

🌱 Legacy and Future Contributions

Mr. Wang’s work on Bi₂O₂Se has established a strong foundation for complementary logic and memory device platforms, essential for the advancement of low-dimensional nanoelectronics. Looking ahead, he aspires to continue his research into functional oxide materials, explore heterogeneous integration, and contribute to the development of energy-efficient and intelligent device systems. His vision includes bridging fundamental material science with practical applications in flexible electronics, smart sensors, and neuromorphic systems.

📖Notable Publications

ZrO₂-HfO₂ Superlattice Ferroelectric Capacitors With Optimized Annealing to Achieve Extremely High Polarization Stability
Authors: Y.K. Liang, W.L. Li, Y.J. Wang, L.C. Peng, C.C. Lu, H.Y. Huang, S.H. Yeong, …
Journal: IEEE Electron Device Letters
Year: 2022

Electric-field control of the nucleation and motion of isolated three-fold polar vertices
Authors: M. Li, T. Yang, P. Chen, Y. Wang, R. Zhu, X. Li, R. Shi, H.J. Liu, Y.L. Huang, …
Journal: Nature Communications
Year: 2022

High entropy nonlinear dielectrics with superior thermally stable performance
Authors: Y.J. Wang, H.C. Lai, Y.A. Chen, R. Huang, T. Hsin, H.J. Liu, R. Zhu, P. Gao, C. Li, …
Journal: Advanced Materials
Year: 2023

Flexible magnetoelectric complex oxide heterostructures on muscovite for proximity sensor
Authors: Y.J. Wang, J.W. Chen, Y.H. Lai, P.W. Shao, Y. Bitla, Y.C. Chen, Y.H. Chu
Journal: npj Flexible Electronics
Year: 2023

Quasi-static modulation of multiferroic properties in flexible magnetoelectric Cr₂O₃/muscovite heteroepitaxy
Authors: Y.H. Lai, P.W. Shao, C.Y. Kuo, C.E. Liu, Z. Hu, C. Luo, K. Chen, F. Radu, …
Journal: Acta Materialia
Year: 2023