Krittiya Sreebunpeng | Physical Chemistry | Best Researcher Award

Assist. Prof. Dr. Krittiya Sreebunpeng | Physical Chemistry | Best Researcher Award

Chandrakasem Rajabhat University Thailand

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Krittiya Sreebunpeng laid a solid foundation in physics through her studies at King Mongkut’s University of Technology Thonburi (KMUTT). She earned her B.S. in Physics in 2009 with a project on the calibration of radiating-time digital machines for radiation diagnosis. She went on to complete her M.S. in Physics in 2011 with a stellar GPA of 3.66, investigating the optical and scintillation properties of Pr³⁺-doped Lu₃Al₅O₁₂ crystals. Her passion for materials science culminated in a Ph.D. in Physics (2015), where her thesis focused on the luminescence and scintillation behavior of Pr³⁺-doped Lu₃Al₅O₁₂ and Y₃Al₅O₁₂ single crystal scintillators.

🔬 Research Focus and Contributions

Dr. Sreebunpeng’s core research revolves around scintillation materials, radiation detectors, crystal growth, and transparent ceramics, with extensions into nuclear safety and physics education. Her contributions to scintillator development have significantly advanced materials used in radiation detection. Two of her key completed research projects include:

  1. Photoluminescence and scintillation properties of K⁺, Pr- and Mg²⁺, Pr-doped garnet crystals (2019, funded by the National Research Council of Thailand).

  2. Fabrication of Mg²⁺ co-doped Ce:(Lu₂Y)(Al₅₋ₓGaₓ)O₁₂ ceramic scintillators for fast timing applications, supported by the Ministry of Higher Education, Science, Research, and Innovation.

🌏 Global Exposure and Training

Dr. Sreebunpeng’s academic journey includes international research stints and specialized technical training. She conducted summer research at the Shanghai Institute of Optics and Fine Mechanics (SIOM), China in 2018–2019. In 2015, she enhanced her expertise with research training at the National Centre for Nuclear Research in Poland and the Institute of Physics in Prague, Czech Republic. Her participation in radiation safety and research communication workshops reflects her commitment to well-rounded scientific practice.

👩‍🏫 Teaching Experience and Academic Roles

Dr. Sreebunpeng currently serves as a lecturer in Physics at the Faculty of Science, Chandrakasem Rajabhat University since 2016. Prior to that, she was a teaching assistant at KMUTT (2009–2015) and briefly taught general physics at Muban Chombueng Rajabhat University. Her dedication to pedagogy is reflected in her continual engagement with training programs on science teaching methods, research writing techniques, and technology tools such as EndNote and XRD analysis.

🛠️ Technical Skills and Experimental Expertise

She possesses robust technical expertise in scintillator material synthesis, optical characterization, and radiation detector analysis. Her hands-on skills cover crystal growth, transparent ceramics, photoluminescence spectroscopy, X-ray diffraction (XRD), and radiation protection protocols. These proficiencies are complemented by her training in mind-mapping techniques, scientific writing, and academic communication.

🏅 Impact, Recognition, and Influence

Dr. Sreebunpeng’s research has contributed to the development of advanced scintillation materials essential in medical imaging and nuclear safety. She was selected for Thailand’s “New Generation Researcher” program and has also played a crucial role as a local trainer for the Institute for the Promotion of Teaching Science and Technology (IPST). Her involvement in the academic and research communities demonstrates her growing influence in both applied and educational physics.

🌱 Legacy and Future Directions

Looking ahead, Dr. Sreebunpeng is poised to deepen her impact in nuclear materials science and radiation detection technologies, while continuing her dedication to science education and public awareness. Her multidisciplinary approach—spanning research, teaching, and training—places her as a vital contributor to Thailand’s scientific advancement, especially in the realms of radiation safety and detector innovation.

📖Notable Publications

Temperature-dependent characteristics, light yield nonproportionality, and intrinsic energy resolution of Ce,Mg:Lu₂Y(Al,Ga)₅O₁₂ garnet ceramics
Authors: K. Sreebunpeng, Wa. Chewpraditkul, N. Pattanaboonmee, W. Chewpraditkul, R. Kucerkova, V. Babin, Y. Wang, D. Zhu, C. Hu, M. Nikl, J. Li
Journal: Radiation Physics and Chemistry
Year: 2025

Effect of Ga³⁺ content on the luminous properties of Ce³⁺-doped Lu₂YGaxAl₅₋ₓO₁₂ phosphor ceramics for potential lighting application
Authors: Y. Wang, Z. Cheng, J. Ye, D. Zhu, C. Hu, Z. Zhou, T. Li, Wa. Chewpraditkul, K. Sreebunpeng, W. Chewpraditkul, J. Li
Journal: Journal of Luminescence
Year: 2025

Luminescence and scintillation properties of fast Ce,Mg:Lu₂YGaxAl₅₋ₓO₁₂ ceramic scintillators fabricated from co-precipitated powders
Authors: K. Sreebunpeng, Wa. Chewpraditkul, W. Chewpraditkul, R. Kucerkova, A. Beitlerova, M. Nikl, T. Szczesniak, M. Grodzixja-Kobylka, D. Zhu, C. Hu, J. Li
Journal: Optical Materials
Year: 2024

Luminescence and light yield of Ce³⁺-doped (60−x)SiO₂–xBaF₂–20Al₂O₃–20Gd₂O₃ scintillation glasses: The effect of BaF₂ admixture
Authors: P. Lertloypanyachai, Wa. Chewpraditkul, N. Pattanaboonmee, N. Yawai, K. Sreebunpeng, T. Nimphaya, A. Beitlerova, M. Nikl, W. Chewpraditkul
Journal: Optik
Year: 2023

Optical, luminescence and scintillation properties of Mg²⁺-codoped (Lu,Y)₃Al₂Ga₃O₁₂:Pr garnet crystals: The effect of Y
Authors: K. Sreebunpeng, Wa. Chewpraditkul, W. Chewpraditkul, A. Yoshikawa, M.E. Witkowski, W. Drozdowski, M. Nikl
Journal: [Journal name incomplete]
Year: 2022

Sajad Ahmad | Inorganic Chemistry | Best Researcher Award

Mr. Sajad Ahmad | Inorganic Chemistry | Best Researcher Award

National Institute of Technology, Srinagar, India

Profile👨‍🎓

📘 Early Academic Pursuits

Sajad Ahmad completed his foundational education through the Jammu and Kashmir Board of School Education, achieving a strong academic standing from high school to intermediate level. Progressing to higher education, he earned a Bachelor of Science in 2016 and a Master’s in Inorganic Chemistry in 2019 from the University of Kashmir, where he maintained first-division scores.

🧑‍🔬 Professional Endeavors

He holds a Junior Research Fellowship, awarded by the University Grants Commission in New Delhi, starting in September 2022. This fellowship has facilitated his research in material science, specifically in environmental remediation and antibacterial applications using carbon-based and chitosan-modified materials.

🔬 Contributions and Research Focus

Her research centers around environmental remediation, photocatalysis, and antibacterial activities. His studies include advanced materials such as oxygen-doped porous carbon adsorbents, chitosan-modified ferrite, and graphitized 3D carbon. His notable publications address topics like the remediation of hexavalent chromium, fenitrothion pesticide, and heavy metal ions in aquatic environments. Currently, he has both published and communicated several high-impact research articles, demonstrating his commitment to solving pressing environmental issues through innovative materials science.

🌍 Impact and Influence

By publishing in high-impact journals such as International Journal of Biological Macromolecules and Inorganic Chemistry Communications, He has contributed significant insights into sustainable environmental practices. His work is particularly influential in the fields of inorganic and environmental chemistry, providing practical and effective solutions for pollution control.

🛠️ Technical Skills

His technical expertise includes synthesis and characterization of adsorbent and photocatalytic materials, environmental chemistry techniques, and antimicrobial assays. His research demands a comprehensive understanding of material properties, adsorption mechanisms, and photocatalytic efficiency, which he effectively applies to his work.

🧑‍🏫 Teaching Experience

While His resume does not explicitly mention teaching experience, his active research collaborations suggest skills in mentorship and knowledge transfer, particularly in guiding others through complex experimental processes and results analysis.

🌟 Legacy and Future Contributions

He is poised to make a significant impact in sustainable materials science, aiming to develop more advanced and eco-friendly materials for pollution control. His commitment to innovation and publication in impactful journals lays the foundation for a future marked by meaningful contributions to environmental remediation and applied chemistry.

Notable Publications📖