Binbin Li | Physical Chemistry | Best Researcher Award

Dr. Binbin Li | Physical Chemistry | Best Researcher Award

Central South University, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Binbin Li embarked on his academic journey in mineral processing engineering, developing a strong foundation in the fundamentals of extractive metallurgy and flotation chemistry. His formative education cultivated a keen interest in the intricate mechanisms governing flotation interface chemistry. His academic excellence laid the groundwork for his future research into the molecular design of flotation pharmaceuticals and the environmentally conscious separation of complex ores.

👨‍🔬 Professional Endeavors

Dr. Li is currently affiliated with the School of Minerals Processing and Bioengineering at Central South University, a national leader in resource engineering. He operates within key national disciplines and provincial key laboratories, actively engaging in the practical and theoretical challenges of the mining industry. His work is directly aligned with China’s “Double Carbon” strategy, emphasizing green development and sustainable resource utilization.

🔬 Contributions and Research Focus

Dr. Binbin Li’s research bridges flotation interface chemistry, high-efficiency reagent design, and the comprehensive utilization of strategic minerals like Cu-Ni-Mo ores, phosphate, and fluorite. He adopts an interdisciplinary approach, integrating bioengineering, materials science, and environmental engineering to advance cleaner and more effective mineral separation techniques. His projects tackle both fundamental surface interactions and applied process optimizations, demonstrating a rare blend of theoretical insight and industrial relevance.

🌍 Impact and Influence

Dr. Li’s scholarly output has been published in prestigious international journals such as the Journal of Cleaner Production, Energy & Fuels, Minerals Engineering, Process Safety and Environmental Protection, and Journal of Molecular Liquids. His research not only enhances the efficiency of mineral separation but also reduces the ecological footprint of mining operations—contributing significantly to global efforts in green and sustainable mining.

📈 Academic Citations

Dr. Li has accrued numerous citations from both domestic and international scholars, signaling his rising impact within the fields of nonferrous metals processing and flotation reagent chemistry. His works are frequently referenced for their novel mechanistic insights and practical applications in cleaner production and mineral beneficiation.

🛠️ Technical Skills

Dr. Li is proficient in advanced interface analysis techniques, molecular modeling, reagent synthesis, and bioflotation process design. His expertise extends to the use of spectroscopy, surface tension analysis, and computational chemistry to design reagents that interact optimally with mineral surfaces under varying pH and ionic conditions.

🧑‍🏫 Teaching Experience

In addition to his research, Dr. Li contributes to the academic community through teaching and mentorship at Central South University. He guides undergraduate and postgraduate students in projects focusing on mineral processing technologies and sustainable chemical engineering, fostering the next generation of innovative engineers and researchers.

📚 Publications and Patents

He has contributed to a wide range of publications indexed in SCI and Scopus, and is actively involved in patent development related to novel reagent formulations and flotation process innovations. While specific ISBNs or patent numbers are pending release, his intellectual contributions continue to fuel technological progress in resource engineering.

🌟 Legacy and Future Contributions

As a young yet impactful scholar, Dr. Binbin Li’s legacy is being built on innovation, sustainability, and practical engineering solutions. Moving forward, he aims to deepen the integration of molecular-level flotation mechanisms with scalable industrial technologies. His commitment to supporting China’s ecological goals through cleaner mining practices ensures that his research will remain both timely and transformative.

📖Notable Publications

IMU-Based quantitative assessment of stroke from gait
Journal: Scientific Reports
Year: 2025
Citations: 2

Enhancing Li-storage ability of FeC₂O₄ anode enabled by oxygen-vacancy-enriched amorphous carbon microspheres compositing via hydrogen bonding interactions
Journal: Electrochimica Acta
Year: 2025

Application of graphitic carbon nitride (g-C₃N₄) in solid polymer electrolytes: A mini review
Journal: (Journal name not specified)
Year: 2025

Teng Liu | Organic Chemistry | Best Researcher Award

Prof. Teng Liu | Organic Chemistry | Best Researcher Award

Qujing Normal University, China

👨‍🎓Profiles

🎓 Academic Background and Early Career

Prof. Teng Liu has a strong foundation in chemistry, beginning with a Bachelor’s degree in Chemistry Education from Jiangxi Normal University (2006-2010). His academic journey continued at Yunnan University, where he obtained a Ph.D. in Organic Chemistry (2010-2016), specializing in asymmetric catalytic synthesis under the supervision of Prof. Zhihui Shao. His doctoral research focused on catalytic asymmetric isatin ketimines 1,2-addition reactions and nitrodienyne 1,4-addition reactions, contributing significantly to the field of stereoselective organic synthesis.

🔬 Professional Endeavors and Research Contributions

Prof. Teng Liu began his professional career as a Lecturer at Qujing Normal University (2017-2020) and was later promoted to Associate Professor in 2021. His research expertise lies in asymmetric catalytic synthesis and green chemistry, where he focuses on the development of efficient and sustainable synthetic methodologies for complex organic molecules. His work integrates chiral catalysis, selective cross-coupling reactions, and environmentally friendly organic transformations.

📑 Recent Research Achievements and Publications

In the last five years, Prof. Liu has published several high-impact SCI-indexed papers in renowned journals such as Organic Letters, Advanced Synthesis & Catalysis, and Green Chemistry. His notable publications include:

  • Base-Catalyzed Chalcogenative Annulation (Org. Lett., 2025): A novel approach for synthesizing 1,4-sulfa-/selena-zepanes using elemental sulfur/selenium.

  • Stepwise Synthesis of Pyrroloquinoline Diones (Adv. Synth. Catal., 2023): A one-pot method for constructing complex heterocyclic frameworks.

  • Cu(I)-Catalyzed Cascade Cyclization Reaction (Org. Lett., 2022): A groundbreaking method to construct pyrimido[5,4-b]indole derivatives, widely cited in the field.

  • Highly Selective C-P Cross-Coupling Reaction (Green Chem., 2019): A sustainable approach for the synthesis of ortho-amino triarylphosphine derivatives, advancing green chemistry methodologies.

His research has been highly cited and recognized in the field of organic chemistry, particularly in the areas of catalytic asymmetric synthesis and environmentally friendly chemical transformations.

🏆 Awards and Recognitions

Prof. Liu’s academic excellence has been acknowledged through several prestigious awards, including:

  • 2020: Excellent Doctoral Dissertation in Yunnan Province – Recognizing the significance of his Ph.D. research in asymmetric catalysis.

  • 2024: The Revitalize Yunnan Talent Support Program – Young Talents – A competitive award aimed at fostering outstanding young researchers in Yunnan Province.

🛠️ Research Focus and Impact

His current research interests center on asymmetric catalytic synthesis and green chemistry, aiming to develop highly efficient, selective, and eco-friendly synthetic methods. His work significantly impacts pharmaceutical synthesis, material science, and sustainable organic transformations. By integrating chiral catalysts and novel reaction mechanisms, he contributes to advancing both fundamental organic chemistry and practical applications in industrial synthesis.

🌱 Future Contributions and Academic Legacy

Looking ahead, Prof. Liu is committed to pushing the boundaries of green chemistry and asymmetric catalysis by exploring new catalytic systems, reaction pathways, and environmentally sustainable synthetic methodologies. His contributions to chemical education, research innovation, and sustainable chemical synthesis will continue to shape the next generation of scientists and drive progress in the field of organic chemistry.

📖Notable Publications

Base-Catalyzed Chalcogenative Annulation of N-Maleimido O-Aminobenzyl Alcohol with Elemental Sulfur/Selenium: Access to 1,4-Sulfa-/Selena-zepanes

Authors: Y. Wen, Yuanmin; T. Liu, Teng; S. Huang, Shuntao; Y. Ye, Yanqing; C. Huang, Chao

Journal: Organic Letters

Year: 2025

Brønsted-Acid Catalyzed Aldehyde Insertion to Construct C−X Bond: High Regio- and Chemoselectivity Synthesis of Dihydrobenzo[1,5]oxazocines and Pyrrolo[3,4-d]tetrahydropyrimidines

Authors: Y. Wen, Yuanmin; T. Liu, Teng; G. Zeng, Guiyun; C. He, Chixian; C. Huang, Chao

Journal: European Journal of Organic Chemistry

Year: 2025

Cs₂CO₃-Catalyzed Multi-Component One-Pot Stepwise Route for the Synthesis of Polysubstituted 2-Pyridones

Authors: S. Liu, Shitao; C. He, Chixian; G. Li, Guijun; X. Shen, Xianfu; T. Liu, Teng

Journal: ChemistrySelect

Year: 2024

Recent Advances in Total Synthesis of Prenylated Indole Alkaloids by Transition Metal-Catalyzed Reactions as the Key Step

Authors: T. Peng, Tianfeng; Y. Zhao, Yuxiang; S. Pu, Shaojian; Y. Miao, Yingchun; X. Shen, Xianfu

Journal: [No source information available]

Year: Not specified

Chemodivergence in Fluorine Source-Controlled Cascade Reaction of Aryne Precursors to Synthesize Pyrrolo[3,4-b]indoles and 3-Arylated Maleimides

Authors: Z. Wang, Zhuoyu; S. Huang, Shuntao; L. Yin, Lu; T. Liu, Teng; C. Huang, Chao

Journal: Journal of Organic Chemistry

Year: 2024