Shizhen Zhao | Organic Chemistry | Best Researcher Award

Dr. Shizhen Zhao | Organic Chemistry | Best Researcher Award

Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, China

👨‍🎓Profiles

👨‍🎓 Early Academic and Research Foundations

Dr. Shizhen Zhao has pursued a career deeply rooted in environmental geochemistry and pollutant dynamics. From the early stages of his academic training, he has been engaged in the study of organic pollutants, combining field-based investigations with advanced numerical simulations to understand their transport, transformation, and long-term impact on ecosystems.

🧪 Professional Endeavors and Research Projects

Currently serving at the Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Dr. Zhao leads multiple high-impact environmental research initiatives. A central focus of his current work is the International Science and Technology Cooperation Project titled:
“Historical evolution of the aquatic environment in the CKDu region of Sri Lanka: Sedimentation of an ancient impoundment lake.”
This project addresses the agricultural water environment in Sri Lanka, specifically examining its links with the chronic kidney disease of unknown cause (CKDu)—a significant public health crisis. The project is conducted through China-Sri Lanka bilateral cooperation and aims to reconstruct historical water environment changes using sediment geochemistry and assess their spatiotemporal correlation with CKDu.

🌱 Contributions and Research Focus

Dr. Zhao’s research stands out in its integration of geochemical tools (e.g., ICP-MS, GC-MS, LC-MS/MS, HPLC) with epidemiological data and historical sediment analysis from ancient water tanks (AWTs). His team applies external observation methods, soil and air pollutant analysis, and field sampling techniques, aiming to uncover the origins, behavior, and human health risks of organic contaminants in vulnerable regions. This work represents a pioneering fusion of environmental forensics, historical ecology, and public health research.

🌍 International Cooperation and Collaboration

With over three years of active collaboration with Sri Lankan institutions and nearly 20 academic exchange visits, Dr. Zhao has built strong international ties. His research team also works closely with scholars from Hong Kong, sharing a decade-long history of cooperative projects and joint publications. These collaborations ensure multidisciplinary expertise, complementary methodologies, and smooth project execution.

🧾 Recognitions and Achievements

Dr. Zhao’s excellence has been recognized by several prestigious awards and talent programs, including:

  • Youth Innovation Promotion Association Award, Chinese Academy of Sciences

  • Tu Guangchi Young Scholar B Talent Program

  • Pearl River Talent—Overseas Young Talent Introduction Plan, Guangdong Province

He has also published 5 papers as first/corresponding author in the top-tier journal Environmental Science & Technology, with 2 selected as supplementary cover features—a rare distinction.

📊 Academic Output and Impact

Dr. Zhao has published over 22 SCI-indexed papers, many in high-impact journals. His research contributes significantly to understanding pollutant source attribution, environmental risks, and geochemical reconstruction of aquatic systems in Southeast Asia. His field investigations, especially in CKDu-endemic zones, are backed by rich epidemiological datasets and extensive regional insights.

🛠️ Technical and Field Capabilities

Equipped with advanced instruments and field tools, Dr. Zhao’s laboratory supports:

  • Sediment coring and borehole sampling

  • Chemical characterization of soils and surface sediments

  • Pollutant analysis using ICP-MS, GC-MS, LC-MS/MS
    These resources, combined with strong logistical coordination, enable comprehensive field-to-lab research pipelines.

🔮 Legacy and Future Contributions

Dr. Shizhen Zhao is a rising leader in the fields of environmental geochemistry, sedimentology, and transboundary water health research. Through cutting-edge science and sustained international cooperation, he is paving the way for new understandings of how environmental degradation intersects with human disease. His work not only deepens the knowledge of CKDu but also lays a robust scientific foundation for future environmental health policies and remediation strategies in affected regions.

📖Notable Publications

Aqueous secondary formation substantially contributes to hydrophilic organophosphate esters in aerosols
Journal: Nature Communications
Year: 2025
Citations: 1

Polycyclic aromatics in the Chang’E 5 lunar soils
Journal: Nature Communications
Year: 2025
Citations: 0

Legacy and currently-used pesticides in sedimentary archives: Anthropogenic footprint in the Pearl River Estuary
Journal: Science of the Total Environment
Year: 2025
Citations: 0

Quantification of micro- and nano-plastics in atmospheric fine particles by pyrolysis-gas chromatography-mass spectrometry with chromatographic peak reconstruction
Journal: Journal of Hazardous Materials
Year: 2025
Citations: 0

Heavy metals in atmospheric fine particulate matter (PM2.5) in Dhaka, Bangladesh: Source apportionment and associated health risks
Journal: Environmental Research
Year: 2025
Citations: 0

The Intrinsic Link between Optical Properties and Toxicity of Extractable Organic Matter in Combustion Particles: Mediated by Polycyclic Aromatic Compounds
Journal: Environment and Health
Year: 2025
Citations: 0

Wanhee Im | Biochemistry | Best Researcher Award

Assist. Prof. Dr. Wanhee Im | Biochemistry | Best Researcher Award

Chungbuk National University, South Korea

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Wanhee Im began her academic journey deeply rooted in the study of lignocellulosic materials, which would go on to define her research direction. She earned her Ph.D. from the Department of Forest Sciences, College of Agriculture and Life Sciences at Seoul National University, one of South Korea’s premier institutions. Her doctoral thesis, titled “Preparation and characterization of carboxymethylated cellulose nanofibrils”, laid a strong foundation in cellulose chemistry, focusing on optimizing carboxymethylation processes, improving environmental sustainability through isopropanol recycling, and analyzing the physicochemical characteristics of CM-CNF (carboxymethylated cellulose nanofibrils). Under the mentorship of Prof. Hak Lae Lee, she honed critical analytical and technical research skills that would shape her future endeavors.

🧑‍🔬 Professional Endeavors

Dr. Im has built an impressive professional trajectory, working across academia, industry, and research institutes. Currently serving as an Assistant Professor in the Department of Wood & Paper Science at Chungbuk National University, she leads projects focused on the functionalization of cellulose materials. Her career path includes pivotal roles such as Senior Researcher at Moorim P&P (2020–2024), where she developed high aspect ratio cellulose nanofibril powders. She also gained international research experience as a Postdoctoral Fellow at the University of British Columbia and a Visiting Researcher at FPInnovations in Canada, contributing to the development of high-strength paper for construction membrane applications. Her early career included R&D roles at Huvis Corp. and Seoul National University, where she contributed to polymer fiber development and chemical fiber modification.

🔬 Contributions and Research Focus

Dr. Im’s research has consistently revolved around sustainable and functional cellulose-based materials. Her core expertise includes the chemical modification and characterization of cellulose nanofibrils (CNFs) and the development of cellulose composites for advanced material applications. Notable contributions include innovations in eco-friendly carboxymethylation processes, recyclable solvent systems, and structural analysis of nanocellulose to tailor performance in fiber-based materials. At Moorim P&P and FPInnovations, she contributed to the commercial translation of nanocellulose technology, reinforcing her role as a bridge between research and industrial application.

🌍 Impact and Influence

Dr. Im’s work has significant implications in both academic and industrial domains, especially within sustainable material science and green polymer research. Her efforts in developing renewable, biodegradable alternatives to synthetic polymers resonate with global environmental initiatives. Her cross-continental collaborations in South Korea and Canada highlight her international research presence and technical leadership in cellulose science. Through her R&D leadership in industry, she influenced the commercialization of nanocellulose, proving her ability to translate laboratory innovation into market-ready technologies.

📚 Academic Citations and Recognition

While specific citation metrics are not listed in the CV, Dr. Im’s ongoing academic role, international postdoctoral experiences, and leadership in cellulose research suggest a growing academic footprint. Her contributions are recognized through collaborations with top institutions like Seoul National University and the University of British Columbia, and partnerships with research organizations like FPInnovations, underscoring her visibility and recognition in the cellulose and materials science communities.

🛠️ Technical Skills

Dr. Im is equipped with a broad array of technical proficiencies essential for advanced materials research: chemical modification techniques (carboxymethylation, CNF derivatization), polymer synthesis and analysis, fiber characterization (aspect ratio, strength properties), sustainable solvent systems and recycling methodologies, wet-laid fiber systems, and mechanical performance testing. These skills are integral to her success in both academic research and industrial product development.

👩‍🏫 Teaching and Mentorship

As an Assistant Professor at Chungbuk National University, Dr. Im actively engages in teaching and guiding undergraduate and graduate students. Her deep industrial experience provides students with practical, applied knowledge, while her research-led approach ensures students remain at the forefront of cellulose science. Her mentorship is shaped by global exposure, interdisciplinary understanding, and a commitment to sustainability.

🌱 Legacy and Future Contributions

Dr. Wanhee Im is poised to make lasting contributions to sustainable material science, with a continued focus on the development of functional, biodegradable, and high-performance cellulose-based materials. She envisions expanding the application of cellulose nanofibrils in energy, packaging, and construction sectors, aligning scientific innovation with environmental stewardship. As a rising academic leader, she is expected to influence curricula development, international collaboration, and next-generation eco-material research in South Korea and beyond.

📖Notable Publications

Effect of quaternization on the re-dispersion properties of cellulose nanofibrils after drying
Authors: Yoon-hyuck Choi, Soo-jeong Shin, Wanhee Im
Journal: Industrial Crops and Products
Year: 2025

Evaluation of print mottle of double coated paper by octave band filtering technique
Authors: Wanhee Im, Hye Jung Youn, Hak Lae Lee
Journal: BioResources
Year: 2024

Characteristics of polypropylene biocomposites: Effect of chemical treatment to produce cellulose microparticle
Authors: Jaegwan Moon, Jong Hoon Lee, Kiseob Gwak, Wanhee Im
Journal: Cellulose
Year: 2022

Wet strength improvement of nanofibrillated cellulose film using polyamideamine-epichlorohydrin (PAE) resin: The role of carboxyl contents
Authors: Wanhee Im, Shin Young Park, Jegon Lee, Simyub Yook, Hak Lae Lee, Hye Jung Youn
Journal: BioResources
Year: 2022

Dynamic water penetration behavior of top coating color and its effects on structure properties of double-coated layer
Authors: Wanhee Im, Hye Jung Youn, Hak Lae Lee
Journal: BioResources
Year: 2022

Nini Wen | Catalysis | Best Researcher Award

Dr. Nini Wen | Catalysis | Best Researcher Award

Zhejiang Sci-Tech University, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Nini Wen began her academic journey with a strong foundation in chemical engineering and materials science, culminating in the award of her Ph.D. in 2023. Shortly thereafter, she joined Zhejiang Sci-Tech University as a lecturer, where she continues to advance research at the intersection of environmental catalysis and materials chemistry.

💼 Professional Endeavors

Since her appointment, Dr. Wen has dedicated her academic career to the study and development of Selective Catalytic Reduction-Hydrocarbon (SCR-HC) catalysts, particularly focusing on novel catalytic systems like metal oxides, pillared interlayered clays (PILC), layered double hydroxides (LDHs), and atomic clusters. Her methodical approach integrates catalyst design with advanced characterization techniques to uncover fundamental catalytic properties and reaction mechanisms. She has completed one foundational research project and currently leads two additional national-level foundation projects, underscoring her growing research independence and leadership.

🧪 Contributions and Research Focus

Dr. Wen’s cutting-edge research lies in environmental pollution control and catalytic materials, particularly LDH-based catalysts for SCR-HC reactions. LDHs, known as emerging 2D layered materials, have seldom been utilized in this field. Her innovative work includes designing binary and ternary LDH catalysts, which leverage the synergistic effects of multi-metal components to enhance catalytic activity. She has thoroughly explored the impact of synergy on both the intrinsic physicochemical properties and catalytic mechanisms. Furthermore, her studies address real-world challenges by investigating how poisoning species such as H₂O, SO₂, and alkali metals influence catalyst performance and structural stability, making her contributions highly relevant for industrial applications.

🌍 Impact and Influence

Dr. Wen has made a significant mark in the catalysis community with over 20 peer-reviewed publications in high-impact journals including the Chemical Engineering Journal, Fuel, Journal of Environmental Chemical Engineering, and Molecular Catalysis. Her work continues to inspire new approaches in designing resilient and efficient environmental catalysts, positioning her as a promising young scholar in the field of applied catalysis.

📈 Academic Citations

Although early in her independent career, Dr. Wen’s publications are gaining recognition in the academic world, with citations steadily increasing. Her focus on mechanistic insight and application-driven research makes her work valuable for both academic studies and industrial implementations in pollution mitigation technologies.

🛠️ Technical Skills

Dr. Wen possesses a broad suite of experimental and analytical techniques essential to modern catalysis research. These include X-ray diffraction (XRD), BET surface area analysis, Fourier-transform infrared spectroscopy (FTIR), temperature-programmed desorption/reduction (TPD/TPR), and X-ray photoelectron spectroscopy (XPS), among others. These tools support her rigorous examination of structure-performance relationships in catalytic systems.

👩‍🏫 Teaching and Mentorship

As a lecturer, Dr. Wen is actively involved in undergraduate and graduate instruction. She integrates her research findings into the classroom to foster scientific curiosity and train students in environmental engineering and materials chemistry, laying the groundwork for future researchers.

🤝 Professional Memberships

Dr. Wen is a member of the Chemical Industry and Engineering Society of China, through which she engages in professional development and collaborative opportunities, staying current with trends in catalysis and environmental remediation technologies.

🌱 Legacy and Future Contributions

Dr. Wen’s pioneering work in LDH-based SCR-HC catalysis and pollution control positions her at the forefront of sustainable environmental technologies. Her future plans include exploring atomically dispersed catalysts, enhancing low-temperature catalytic activity, and developing next-generation catalyst systems with improved tolerance to industrial poisons. Her work is expected to play a vital role in the global effort to reduce industrial emissions and transition toward greener technologies.

📖Notable Publications

Preparation and de-NOₓ performance of C₃H₆-SCR over Cu-SAPO-44 catalyst
Authors: Zhou, H.; Zhang, H.; Wen, N.; Wang, X.; Xu, L.; Li, W.; Su, Y.
Journal: Chemical Industry and Engineering Progress
Year: 2023

Research on resistance of CuxNiyFez-LDHs derived catalysts to poisoning components and insight into the complex role of SO₂ on C₃H₆-SCR performance
Authors: Wen, N.; Zhou, H.; Ning, S.; Hu, M.; Deng, W.; Zhao, B.; Su, Y.
Journal: Journal of Environmental Chemical Engineering
Year: 2023

Research progress on supported Cu-based zeolite catalysts for the selective catalytic reduction of NOₓ with hydrocarbons
Authors: Ning, S.; Su, Y.; Yang, H.; Wen, N.
Journal: Chemical Industry and Engineering Progress
Year: 2023

Selective catalytic reduction of nitric oxide with propylene over one-step synthesized Cu-SAPO-44 catalysts
Authors: Zhang, H.; Zhou, H.; Wen, N.-N.; Wang, X.-R.; Xu, L.; Su, Y.-X.
Journal: Journal of Fuel Chemistry and Technology
Year: 2022

Study on CH₄-SCR performance by Ga-Fe catalysts supported on Ti-pillared interlayered clays (Ti-PILC)
Authors: Xu, G.-Q.; Su, Y.-X.; Wen, N.-N.; Zhang, H.; Liu, Q.; Deng, W.-Y.; Zhou, H.
Journal: Journal of Molecular Catalysis
Year: 2022

Synergy of CuNiFe-LDH based catalysts for enhancing low-temperature SCR-C₃H₆ performance: Surface properties and reaction mechanism
Authors: Wen, N.; Su, Y.; Deng, W.; Zhou, H.; Hu, M.; Zhao, B.
Journal: Chemical Engineering Journal
Year: 2022

 

Yuriko Ono | Endocrinology and Metabolism | Best Researcher Award

Dr. Yuriko Ono | Endocrinology and Metabolism | Best Researcher Award

Kyoto Prefectural University of Medicine, Japan

👨‍🎓Profiles

🌱 Early Academic Pursuits

Yuriko Ono began her academic journey in the field of endocrinology and metabolism, driven by a strong passion for understanding hormonal regulation and metabolic processes. She is currently pursuing graduate studies at the Graduate School of Medical Science, Kyoto Prefectural University of Medicine. Yuriko's early commitment to medical education laid the foundation for her future contributions to clinical and research excellence.

🩺 Professional Endeavors

Yuriko has gained substantial clinical experience, having served as a resident physician at the Department of Endocrinology and Metabolism at the University Hospital, Kyoto Prefectural University of Medicine, and the Department of Diabetes and Endocrinology at the Japanese Red Cross Society Kyoto Daiichi Hospital. Since April 2022, she has been a graduate student conducting cutting-edge research, combining her medical expertise with academic rigor to address critical challenges in diabetes management.

💡 Contributions and Research Focus

Yuriko's research primarily explores the impact of Personal Health Records (PHR) on diabetes management. In a retrospective cohort study involving patients using FreeStyle Libre® for continuous glucose monitoring, her work demonstrated that PHR systems significantly improve glycemic control and self-management practices. Additionally, Yuriko contributes to the KAMOGAWA cohort study, investigating conditions and treatments for endocrine and metabolic diseases while focusing on preventing complications. Her ongoing animal experiments delve into the effects of PM2.5 exposure on glucose tolerance, broadening her research scope.

🌍 Impact and Influence

Through her innovative studies, Yuriko has highlighted the potential of technology-driven solutions like PHR in improving diabetes care. Her findings underline the necessity of integrating digital tools in healthcare for enhanced patient outcomes, offering valuable insights for clinicians and policymakers alike. Her work continues to inspire advancements in endocrinology and metabolism.

📚 Academic Citations

Yuriko has contributed to several high-impact publications in her field. Her citation-worthy research on PHR systems and diabetes management has been well-received by the scientific community, providing evidence-based solutions to real-world healthcare challenges.

🛠️ Technical Skills

Yuriko possesses expertise in the use of modern medical technologies such as continuous glucose monitoring systems, data analysis for clinical trials, and research methodologies for cohort studies. Her skills in utilizing advanced tools and conducting translational research make her a valuable asset to the academic and medical communities.

👩‍🏫 Teaching Experience

As a graduate student, Yuriko has contributed to the education of medical students and residents through mentorship and participation in academic discussions. Her teaching fosters an understanding of endocrinology and metabolic disorders among future healthcare professionals.

🌟 Legacy and Future Contributions

Yuriko’s work sets the stage for a future where digital health tools like PHR become integral to diabetes management. Her dedication to improving clinical practices and patient outcomes positions her as a leader in the field. She aims to expand her research to diverse populations, ensuring equitable healthcare solutions worldwide.

📖Notable Publications

Oral exposure to high concentrations of polystyrene microplastics alters the intestinal environment and metabolic outcomes in mice
  • Authors: Hasegawa, Y., Okamura, T., Ono, Y., Takano, H., Fukui, M.
  • Journal: Frontiers in Immunology
  • Year: 2024

 

Randomized controlled trial of simple salt reduction instructions by physician for patients with type 2 diabetes consuming excessive salt
  • Authors: Oyabu, C., Ushigome, E., Ono, Y., Tanaka, T., Fukui, M.
  • Journal: International Journal of Environmental Research and Public Health
  • Year: 2021