Chengming Wang | Analytical Chemistry | Best Researcher Award

Prof. Dr. Chengming Wang | Analytical Chemistry | Best Researcher Award

Huazhong Agricultural University, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Prof. Dr. Chengming Wang began his academic journey with a Bachelor of Science  and a Master of Science in Analytical Chemistry from Wuhan University, one of China’s top institutions. He later earned his Ph.D. in Material Engineering from Fukui University in Japan, where he specialized in material science. His postdoctoral fellowship in Food Science and Engineering at Huazhong Agricultural University marked a turning point, integrating chemical principles with food processing technologies.

🧑‍🔬 Professional Endeavors

Prof. Wang serves at Huazhong Agricultural University, where he specializes in oils and fats processing and the comprehensive utilization of by-products. He has made significant contributions as a first or corresponding author of over 100 academic papers, authored 2 monographs, and holds 16 invention patents. His interdisciplinary approach combines fundamental research with real-world industrial applications, impacting both academic progress and national agricultural development.

🔬 Contributions and Research Focus

Prof. Wang’s work extends to the bioconversion and detoxification of agricultural by-products from rapeseed, peanut, cottonseed, tea seed, Pistacia seed, and jatropha. His research highlights include the development of non-toxic, probiotic rapeseed meal and the extraction and application of valuable bioactive compounds from rapeseed, such as proteins, polysaccharides, polyphenols, and peptides. He has also pioneered the creation of functional peanut-based products, including beverages and nutrient solutions, and developed advanced methods for gossypol detoxification and protein enrichment in cottonseed. In addition, he has worked on the green processing and modification of tea saponins and the biochemical degradation of rapeseed peels for tannin extraction. His exploration of using straw as a raw material for liquid fuel production further demonstrates his commitment to sustainable and innovative bioprocessing technologies.

🌏 Impact and Influence

Prof. Wang’s work has directly influenced food safety, waste minimization, and green energy. Many of his technologies, especially those for biodiesel production from waste oils and rapeseed by-product utilization, have transitioned from lab-scale innovations to industrial applications. His research supports sustainable agricultural practices, contributes to rural economic development, and provides solutions for environmental preservation.

📚 Academic Citations

With over 100 academic publications, Prof. Wang has made lasting contributions to journals and conferences across disciplines. His research is widely cited in areas such as oil processing chemistry, natural product utilization, and bioenergy production, positioning him as a leading authority in the field.

🧪 Technical Skills

Prof. Wang’s diverse technical expertise includes:

  • Analytical chemistry techniques for quality and contaminant analysis in oils.

  • Material science applications in catalysis and adsorption.

  • Extraction technologies for phytochemicals and bioactives.

  • Biodiesel synthesis using novel catalytic methods.

  • Pilot-scale equipment operation and product scale-up.

👨‍🏫 Teaching Experience

Prof. Wang is also a passionate educator, mentoring graduate and doctoral students in food chemistry, natural products, and oil processing technologies. He emphasizes a research-integrated teaching approach, ensuring students gain practical skills and scientific insight aligned with industry needs.

🌟 Legacy and Future Contributions

Prof. Dr. Chengming Wang’s legacy lies in his role as a bridge between science and industry, combining academic excellence with meaningful societal impact. His efforts in food safety, green processing, and renewable energy offer solutions to some of today’s most pressing global challenges. Moving forward, he aims to expand industrial-scale applications, explore health-enhancing properties of plant-derived compounds, and continue mentoring the next generation of scientists and engineers.

📖Notable Publications

Bleaching of Idesia polycarpa Maxim. Oil Using a Metal-Organic Framework-Based Adsorbent: Kinetics and Adsorption Isotherms
Authors: Dong, Y.; Wang, C.; Gao, Y.; Xu, J.; Ping, H.; Liu, F.; Niu, A.
Journal: Foods
Year: 2025

Mesophilic Argonaute-Based Single Polystyrene Sphere Aptamer Fluorescence Platform for the Multiplexed and Ultrasensitive Detection of Non-Nucleic Acid Targets
Authors: Lu, Y.; Wen, J.; Wang, C.; Wang, M.; Jiang, F.; Miao, L.; Xu, M.; Li, Y.; Chen, X.; Chen, Y.
Journal: Small
Year: 2024

Procyanidin A1 and its digestive products alleviate acrylamide-induced IPEC-J2 cell damage through regulating Keap1/Nrf2 pathway
Authors: Yan, F.; Lu, Q.; Wang, C.; Liu, R.
Journal: Food Science and Human Wellness
Year: 2024

Acrylamide in food: Occurrence, metabolism, molecular toxicity mechanism and detoxification by phytochemicals
Authors: Yan, F.; Wang, L.; Zhao, L.; Wang, C.; Lu, Q.; Liu, R.
Journal: Food and Chemical Toxicology
Year: 2023

Autocatalytic formed bamboo-like N-doped carbon nanotubes encapsulated with Co nanoparticles as highly efficient catalyst for activation of peroxymonosulfate toward degradation of tetracycline
Authors: Lu, Y.; Li, Y.-K.; Huang, C.; Chen, R.; Chen, Y.; Wang, C.
Journal: Reactive and Functional Polymers
Year: 2023

Aadarsh Parashar | Analytical Chemistry | Best Researcher Award

Mr. Aadarsh Parashar | Analytical Chemistry | Best Researcher Award

Colorado School of Mines, United States

👨‍🎓Profiles

🎓 Early Academic Pursuits

Aadarsh Parashar began his academic journey at the Indian Institute of Technology Bombay, where he pursued a Bachelor and Master of Technology in Energy Science and Engineering. With a commendable GPA of 8.69/10.00, he built a strong foundation in energy systems, computational modeling, and experimental research. His academic excellence led him to further his studies at the Colorado School of Mines, where he is currently a Ph.D. candidate in Mechanical Engineering with a perfect GPA of 4.0/4.0. Expected to graduate in August 2025, he has focused his research on reversible fuel cell technology and hydrogen systems, striving to innovate clean energy solutions.

🏭 Professional Endeavors

Aadarsh has a rich professional background, having worked with esteemed institutions and companies. During his time as a Research Associate at IIT Bombay, he transitioned complex algorithms from C++ to Python for electrode optimization, improving computational efficiency. He also conducted numerical studies on microstructure characterization for better material design. As a Summer Intern at Cummins India Limited, he contributed to sustainable mobility by performing life cycle analysis of Li-ion batteries and integrating MATLAB Simulink models to optimize fuel cell-battery hybrid vehicles. Currently, as a Graduate Researcher at Colorado School of Mines, he has led groundbreaking projects in reversible solid oxide fuel cells (rSOFCs), developing high-temperature, high-pressure systems and collaborating on DOE-funded projects to validate system performance.

🔬 Contributions and Research Focus

Aadarsh’s research is centered around hydrogen production and reversible fuel cell technology. He successfully designed and constructed a $125,000 test facility for kW-scale reversible fuel cell experiments, pushing operational limits up to 800°C and 6.5 bar. His work has led to a breakthrough in reducing hydrogen production costs below $2/kg, a significant milestone in making hydrogen energy more commercially viable. Collaborating with industry leaders like Nexceris and Northwestern University, he has played a key role in scaling up hydrogen-based energy solutions.

🌍 Impact and Influence

His research holds great promise for the future of clean energy and grid-scale storage solutions. By improving the efficiency and economic feasibility of reversible solid oxide cell (rSOC) systems, Aadarsh’s contributions could accelerate the global transition toward sustainable hydrogen-based energy systems. His innovations in techno-economic modeling and high-fidelity validation of energy systems are critical in making renewable energy more scalable and cost-effective.

📚 Academic Citations and Publications

Aadarsh’s impactful research has been documented in renowned journals and conferences, including:

  • "Performance analysis of a 1 MW reversible solid oxide system for flexible hydrogen and electricity production" (International Journal of Hydrogen Energy, 2025).
  • "Scenarios for Hydrogen Production from a Full-Scale Reversible Solid Oxide System with Electrolyte-Supported Stacks" (Electrochemical Society Meeting Abstracts, 2023).
  • "Assessing reversible solid oxide cell systems for grid-energy storage based on H2/H2O and CH4/H2O-CO2 chemistries" (European Fuel Cell Forum, 2022).

These contributions serve as key references in the field of hydrogen energy, solidifying his standing as a thought leader in reversible fuel cell systems.

💻 Technical Skills

Aadarsh is proficient in a diverse range of software and programming tools essential for energy system modeling and simulation:

  • Programming: Python, MATLAB, C++, Bash
  • Energy System Simulation: COMSOL, gPROMS Process, LabVIEW
  • Data Analysis & Modeling: High-fidelity system validation, techno-economic analysis
  • Experimental Techniques: High-temperature and high-pressure system design, safety protocol development

His multidisciplinary expertise allows him to bridge the gap between computational modeling and real-world experimental validation, enhancing the reliability of clean energy technologies.

👨‍🏫 Teaching and Mentorship

Beyond research, Aadarsh has contributed to academic mentorship and knowledge dissemination. He has actively guided junior researchers and students, helping them develop experimental techniques and computational modeling skills. His commitment to education and research collaboration strengthens the pipeline of future engineers and scientists in the hydrogen and clean energy domain.

🚀 Legacy and Future Contributions

Aadarsh’s work is paving the way for next-generation hydrogen technologies that are both economically viable and scalable. His research has already contributed to a significant cost reduction in hydrogen production, and his future work is expected to further optimize fuel cell efficiency, durability, and grid-scale deployment. By integrating high-fidelity modeling, experimental validation, and industry collaboration, he aims to revolutionize renewable energy storage and hydrogen economy applications.

📖Notable Publications

"Performance analysis of a 1 MW reversible solid oxide system for flexible hydrogen and electricity production"

Authors: A Parashar, A Vaeth, OB Rizvandi, SL Swartz, RJ Braun

Journal: International Journal of Hydrogen Energy

Year: 2025

"Scenarios for Hydrogen Production from a Full-Scale Reversible Solid Oxide System with Electrolyte-Supported Stacks"

Authors: A Parashar, RJ Braun

Journal: Electrochemical Society Meeting Abstracts

Year: 2023

"Assessing reversible solid oxide cell systems for grid-energy storage based on H2/H2O and CH4/H2O-CO2 chemistries"

Authors: A Parashar, J Hosseinpour, E Reznicek, RJ Braun

Journal: European Fuel Cell Forum

Year: 2022

Samreen Ghulam Rasool | Chromatography | Best Researcher Award

Dr. Samreen Ghulam Rasool | Chromatography | Best Researcher Award

East China Normal University, Pakistan

👨‍🎓Profiles

🌱 Early Academic Pursuits

Samreen Ghulam Rasool began her academic journey with a strong foundation in agricultural sciences, focusing on plant-plant interactions. Her M.Sc. (Hons.) research explored the dynamics of foliar-applied mepiquat chloride in cotton under different sowing techniques, providing insights into growth regulation and optimization in cotton farming. This early academic work laid the foundation for her future research in plant ecology and sustainable agriculture.

🏛️ Professional Endeavors

Currently affiliated with East China Normal University, China, Dr. Rasool has dedicated her career to studying ecological responses in plant communities. Her doctoral research examined the chemical and ecological responses of herbaceous plant species interacting with diverse neighbors under heterogeneous conditions, addressing critical challenges in biodiversity conservation and sustainable crop production. She is actively engaged in international collaborations and research projects, contributing to ecological sustainability on a global scale.

🔬 Contributions and Research Focus

Dr. Rasool’s research primarily revolves around plant-plant interactions and their role in mitigating the risks associated with monoculture plantations. Her focus areas include:
✅ Integrated Weed Management Strategies – Developing innovative approaches to control weed infestations in crops.
✅ Enhancement in Crop Productivity – Implementing advanced techniques to maximize agricultural yield.
✅ Sustainable Crop Production – Promoting eco-friendly practices to ensure long-term agricultural sustainability.

Her research projects have received funding from prestigious institutions, including:
📌 Young Scientist Exchange for One Belt and One Road Strategy – Shanghai Science and Technology Commission.
📌 Technology Innovation Center for Land Spatial Eco-Restoration in Metropolitan Areas – Ministry of Natural Resources.
📌 National Key R&D Program of China – Grant Numbers: 2017 YFC 0506002, 2016 YFC 0503102.
📌 State Key Program of the National Natural Science Foundation of China – Grant Number: 32030068.

🌍 Impact and Influence

Dr. Rasool’s work has contributed significantly to understanding ecological interactions among plants, particularly in the context of sustainable agriculture. Her studies help reduce environmental degradation caused by monoculture farming, advocating for diverse cropping systems to enhance biodiversity. Her research plays a pivotal role in shaping policies and best practices for sustainable land use and crop management.

📖 Academic Citations and Publications

Dr. Rasool has made valuable contributions to scientific literature, with:
📚 4 SCI/Scopus-indexed journal publications, showcasing her expertise in plant ecology.
🔬 2 patents, reflecting her innovative approach to sustainable crop production.

🛠️ Technical Skills

Dr. Rasool possesses advanced expertise in:
🔹 Ecological Data Analysis – Assessing plant interactions and their effects on productivity.
🔹 Crop Physiology Techniques – Enhancing plant growth through chemical applications.
🔹 Sustainable Agriculture Practices – Implementing eco-friendly farming techniques.

🎓 Teaching Experience

Dr. Rasool actively engages in academia by mentoring young researchers and guiding them in the field of crop science, ecological restoration, and plant interactions. Her contributions to integrated weed management strategies and sustainable crop production have influenced students and fellow researchers alike.

🌟 Legacy and Future Contributions

With an unwavering commitment to plant ecology and sustainable agriculture, Dr. Rasool envisions a future where scientific advancements contribute to ecological balance and food security. Her research aims to develop innovative strategies for sustainable farming, biodiversity conservation, and climate-resilient agriculture. Through her ongoing research collaborations, publications, and patents, she continues to be a driving force in ecological innovation and plant science.

📖Notable Publications

Herbaceous competition does not affect positive tree diversity effects on seedling crown complementarity

Authors: Samreen Ghulam Rasool

Journal: Forest Ecology and Management

Year: 2025

Do proportions of rooting ramets in the clone affect the overall growth of the stoloniferous clonal plant Zoysia japonica?

Authors: Samreen Ghulam Rasool

Journal: Plant Species Biology

Year: 2024

Relationship between secondary metabolites and insect loads in cabbage with different leaf shapes and positions

Authors: Samreen Ghulam Rasool

Journal: Phytochemicals Analysis

Year: 2024

Pattern of soil extracellular enzyme activities along a tidal wetland with mosaic vegetation distributions in Chongming Island, China

Authors: Samreen Ghulam Rasool

Journal: Journal of Cleaner Production

Year: 2021