Nini Wen | Catalysis | Best Researcher Award

Dr. Nini Wen | Catalysis | Best Researcher Award

Zhejiang Sci-Tech University, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Nini Wen began her academic journey with a strong foundation in chemical engineering and materials science, culminating in the award of her Ph.D. in 2023. Shortly thereafter, she joined Zhejiang Sci-Tech University as a lecturer, where she continues to advance research at the intersection of environmental catalysis and materials chemistry.

💼 Professional Endeavors

Since her appointment, Dr. Wen has dedicated her academic career to the study and development of Selective Catalytic Reduction-Hydrocarbon (SCR-HC) catalysts, particularly focusing on novel catalytic systems like metal oxides, pillared interlayered clays (PILC), layered double hydroxides (LDHs), and atomic clusters. Her methodical approach integrates catalyst design with advanced characterization techniques to uncover fundamental catalytic properties and reaction mechanisms. She has completed one foundational research project and currently leads two additional national-level foundation projects, underscoring her growing research independence and leadership.

🧪 Contributions and Research Focus

Dr. Wen’s cutting-edge research lies in environmental pollution control and catalytic materials, particularly LDH-based catalysts for SCR-HC reactions. LDHs, known as emerging 2D layered materials, have seldom been utilized in this field. Her innovative work includes designing binary and ternary LDH catalysts, which leverage the synergistic effects of multi-metal components to enhance catalytic activity. She has thoroughly explored the impact of synergy on both the intrinsic physicochemical properties and catalytic mechanisms. Furthermore, her studies address real-world challenges by investigating how poisoning species such as H₂O, SO₂, and alkali metals influence catalyst performance and structural stability, making her contributions highly relevant for industrial applications.

🌍 Impact and Influence

Dr. Wen has made a significant mark in the catalysis community with over 20 peer-reviewed publications in high-impact journals including the Chemical Engineering Journal, Fuel, Journal of Environmental Chemical Engineering, and Molecular Catalysis. Her work continues to inspire new approaches in designing resilient and efficient environmental catalysts, positioning her as a promising young scholar in the field of applied catalysis.

📈 Academic Citations

Although early in her independent career, Dr. Wen’s publications are gaining recognition in the academic world, with citations steadily increasing. Her focus on mechanistic insight and application-driven research makes her work valuable for both academic studies and industrial implementations in pollution mitigation technologies.

🛠️ Technical Skills

Dr. Wen possesses a broad suite of experimental and analytical techniques essential to modern catalysis research. These include X-ray diffraction (XRD), BET surface area analysis, Fourier-transform infrared spectroscopy (FTIR), temperature-programmed desorption/reduction (TPD/TPR), and X-ray photoelectron spectroscopy (XPS), among others. These tools support her rigorous examination of structure-performance relationships in catalytic systems.

👩‍🏫 Teaching and Mentorship

As a lecturer, Dr. Wen is actively involved in undergraduate and graduate instruction. She integrates her research findings into the classroom to foster scientific curiosity and train students in environmental engineering and materials chemistry, laying the groundwork for future researchers.

🤝 Professional Memberships

Dr. Wen is a member of the Chemical Industry and Engineering Society of China, through which she engages in professional development and collaborative opportunities, staying current with trends in catalysis and environmental remediation technologies.

🌱 Legacy and Future Contributions

Dr. Wen’s pioneering work in LDH-based SCR-HC catalysis and pollution control positions her at the forefront of sustainable environmental technologies. Her future plans include exploring atomically dispersed catalysts, enhancing low-temperature catalytic activity, and developing next-generation catalyst systems with improved tolerance to industrial poisons. Her work is expected to play a vital role in the global effort to reduce industrial emissions and transition toward greener technologies.

📖Notable Publications

Preparation and de-NOₓ performance of C₃H₆-SCR over Cu-SAPO-44 catalyst
Authors: Zhou, H.; Zhang, H.; Wen, N.; Wang, X.; Xu, L.; Li, W.; Su, Y.
Journal: Chemical Industry and Engineering Progress
Year: 2023

Research on resistance of CuxNiyFez-LDHs derived catalysts to poisoning components and insight into the complex role of SO₂ on C₃H₆-SCR performance
Authors: Wen, N.; Zhou, H.; Ning, S.; Hu, M.; Deng, W.; Zhao, B.; Su, Y.
Journal: Journal of Environmental Chemical Engineering
Year: 2023

Research progress on supported Cu-based zeolite catalysts for the selective catalytic reduction of NOₓ with hydrocarbons
Authors: Ning, S.; Su, Y.; Yang, H.; Wen, N.
Journal: Chemical Industry and Engineering Progress
Year: 2023

Selective catalytic reduction of nitric oxide with propylene over one-step synthesized Cu-SAPO-44 catalysts
Authors: Zhang, H.; Zhou, H.; Wen, N.-N.; Wang, X.-R.; Xu, L.; Su, Y.-X.
Journal: Journal of Fuel Chemistry and Technology
Year: 2022

Study on CH₄-SCR performance by Ga-Fe catalysts supported on Ti-pillared interlayered clays (Ti-PILC)
Authors: Xu, G.-Q.; Su, Y.-X.; Wen, N.-N.; Zhang, H.; Liu, Q.; Deng, W.-Y.; Zhou, H.
Journal: Journal of Molecular Catalysis
Year: 2022

Synergy of CuNiFe-LDH based catalysts for enhancing low-temperature SCR-C₃H₆ performance: Surface properties and reaction mechanism
Authors: Wen, N.; Su, Y.; Deng, W.; Zhou, H.; Hu, M.; Zhao, B.
Journal: Chemical Engineering Journal
Year: 2022

 

Nuchnapa Tangboriboon | Materials Chemistry | Best Researcher Award -1921

Assoc. Prof. Dr. Nuchnapa Tangboriboon | Materials Chemistry | Best Researcher Award

Kasetsart University, Thailand

👨‍🎓Profiles

🎓 Early Academic Pursuits

Assoc. Prof. Dr. Nuchnapa Tangboriboon, currently a distinguished faculty member at Kasetsart University, Thailand, has dedicated her academic journey to advancing material sciences, particularly focusing on inorganic, ceramic, and bio-nanomaterials. From her formative years as a researcher to her current role, Dr. Tangboriboon has consistently shown a passion for integrating natural and synthetic materials for industrial and biomedical applications. Her foundational studies laid the groundwork for her contributions to sustainable materials science and engineering.

🏢 Professional Endeavors

Dr. Tangboriboon serves as the head of the Applications of Inorganic, Ceramic, and Natural Bio-Nanomaterials Research Unit at Kasetsart University. Under her supervision, the research unit operates at the intersection of traditional material processing and innovative nanotechnology. The lab has developed expertise in ceramic, glass, and gypsum processing for advanced applications and building construction, alongside pioneering research in bio-nanomaterials and their applications in healthcare and industrial sectors.

🔬 Contributions and Research Focus

Dr. Tangboriboon’s research contributions have significantly advanced the understanding and application of bio-nanomaterials for industrial and medical applications. Her lab specializes in:

  • The development of bio-nanomaterials for innovative medical solutions.
  • 3D printing, sol-gel, and slip casting techniques for ceramics and glasses.
  • Designing and producing synthetic and natural rubber films for medical products, including gloves, patches, and tissue-engineering materials using gypsum and ceramic hand molds.
  • Crafting bio-composite materials and eco-friendly bio-catalysts aimed at promoting alternative and sustainable energy solutions.

🌍 Impact and Influence

Dr. Tangboriboon’s work holds considerable influence in both academic and industrial spheres, bridging the gap between fundamental research and real-world applications. Her advancements in natural rubber latex applications and bio-composites have been instrumental in Thailand’s growing emphasis on sustainable material production, healthcare innovations, and green technology.

📚 Academic Citations and Recognition

With numerous publications in peer-reviewed journals, Dr. Tangboriboon’s research has garnered significant academic recognition, contributing to her standing as a respected expert in her field. Her work is frequently cited by researchers focusing on bio-nanomaterials, ceramic sciences, and green energy technologies, affirming her contributions to cutting-edge scientific development.

🛠️ Technical Skills

Dr. Tangboriboon has mastered a variety of advanced material processing techniques, including:

  • 3D printing of ceramics and glasses.
  • Sol-gel synthesis and slip casting methods.
  • Fabrication of rubber-based biomedical devices.
  • Bio-catalyst development for renewable energy applications.

Her proficiency extends to interdisciplinary fields combining materials science, biomedical engineering, and sustainable technology.

👩‍🏫 Teaching Experience

In addition to her research, Dr. Tangboriboon is an enthusiastic educator. At Kasetsart University, she mentors undergraduate and graduate students, fostering a learning environment that emphasizes research-based education. She has supervised numerous thesis projects and research initiatives, equipping students with practical skills in ceramic processing, bio-nanomaterial fabrication, and medical device prototyping.

🌱 Legacy and Future Contributions

Dr. Tangboriboon envisions a future where bio-based materials and nanotechnology will play pivotal roles in addressing global challenges such as environmental sustainability and public health. Her ongoing commitment to green resources and alternative energies ensures that her lab will continue to contribute impactful solutions to both academia and industry. She is dedicated to nurturing the next generation of researchers while pushing the boundaries of material science innovation.

📖Notable Publications

Multifunctional role of calcium chloride in improving the chemical, mechanical, and physical properties of natural and synthetic rubber latex for gloves and transdermal patch films
Authors: P. Kantasa, A. Obormkul, N. Tangboriboon
Journal: Industrial Crops and Products
Year: 2025

Bio composite of porous hydroxyapatite and collagen extracted from eggshell membrane and Oreochromis niloticus fish skin for bone tissue applications
Authors: N. Ingwattanapok, Y. Sakunrak, N. Tangboriboon
Journal: Journal of Applied Polymer Science
Year: 2023

Enhancement of water and salt penetration resistance into mortar cement composited with vulcanized natural rubber compound
Authors: I. Jitkarune, P. Manantapong, N. Tangboriboon
Journal: Journal of Applied Polymer Science
Year: 2023

Conductive and self-cleaning composite membranes from corn husk nanofiber embedded with inorganic fillers (TiO2, CaO, and eggshell) by sol-gel and casting processes for smart membrane applications
Authors: S. Posri, N. Tangboriboon
Journal: Reviews on Advanced Materials Science
Year: 2023

Modified thermal- and sound-absorption properties of plaster sandwich panels with natural rubber-latex compounds for building construction
Authors: S. Pianklang, S. Muntongkaw, N. Tangboriboon
Journal: Journal of Applied Polymer Science
Year: 2022

Effects of physical and chemical properties of ceramic hand moulds on natural rubber latex glove film formation
Authors: N. Tangboriboon, S. Changkhamchom, A. Sirivat
Journal: International Journal of Materials and Product Technology
Year: 2022