Reza Ahmadi | Nanotechnology | Material Chemistry Award

Mr. Reza Ahmadi | Nanotechnology | Material Chemistry Award

Universitat Politècnica de Catalunya, Spain

👨‍🎓Profiles

🎓 Early Academic Pursuits

Mr. Reza Ahmadi’s academic journey began with a High School Diploma in Mathematics and Physics from Nabi Akram High School in Iran, where he laid a strong foundation in analytical and scientific thinking. He pursued a Bachelor’s degree in Materials Engineering at Malayer University (2013–2017), achieving a commendable GPA of 16.8/20 in his final year. Demonstrating a deep interest in materials science, he secured a top 30 national rank among over 50,000 candidates in the highly competitive Iranian Nationwide Matriculation Exam (Konkoor) in 2017. This exceptional performance led him to the Sharif University of Technology, one of Iran’s top institutions, where he completed his Master’s in Materials Engineering with a specialization in Corrosion and Materials Protection (GPA: 15.34/20). His academic excellence and persistent curiosity paved the way for his current pursuit of a PhD in Chemical Engineering at the Universitat Politècnica de Catalunya (UPC), Spain, starting in 2024, under the Molecular and Industrial Biotechnology (GBMI) Group.

🧪 Professional Endeavors

Reza’s academic and research journey reflects a seamless blend of theory and application. His Master’s research focused on advanced corrosion protection, while his doctoral studies at UPC emphasize biomaterials innovation, integrating molecular biology, nanotechnology, and chemical engineering. Throughout his academic career, Reza has engaged in hands-on lab work, interdisciplinary collaborations, and advanced materials characterization—preparing him to tackle challenges at the interface of materials science, healthcare, and biotechnology.

🔬 Contributions and Research Focus

Mr. Ahmadi’s research is centered around the design, synthesis, and characterization of biomaterials with potential applications in antibacterial surfaces, chronic wound treatment, drug delivery, and bone regeneration implants. He has delved into the development of nanomaterials for antibacterial applications and explored the intricate interactions between cells and biomaterials through in vitro studies and cell culture. His comprehensive approach spans from fundamental material design to biological evaluation, making his contributions highly relevant to biomedical engineering and translational medicine.

🌍 Impact and Influence

Reza’s interdisciplinary work bridges the gap between engineering and medicine. His innovative strategies in hydrogel-based wound dressings, cancer-targeted drug delivery systems, and biocompatible implants not only contribute to academic advancements but also have promising societal impact. His technical understanding and lab experience allow him to contribute to real-world healthcare solutions, emphasizing safety, efficiency, and biocompatibility.

📚 Academic Citations and Recognition

While currently in the early stages of his PhD, Reza’s past academic accomplishments—such as ranking 30th nationally in the Iranian engineering entrance exam—demonstrate his consistent excellence and potential for significant contributions. As his doctoral research progresses, his work is expected to result in high-quality journal publications, conference presentations, and international collaborations, increasing his academic visibility and citation record.

🛠️ Technical Expertise

Reza has developed strong laboratory and instrumentation skills essential to his research. He is proficient in X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), FTIR spectroscopy, Electrochemical Impedance Spectroscopy (EIS), Polarization testing using Autolab, pull-off adhesion testing for bio-coatings, and basic AAS/ICP techniques. His software proficiency includes Xpert HighScore for XRD analysis, Nova for EIS and corrosion data, OriginPro for data visualization, Clemex for microscope image analysis, SolidWorks for CAD design, and standard Microsoft Office tools for documentation and presentation.

👨‍🏫 Teaching and Mentoring Experience

While primarily focused on research, Mr. Ahmadi has contributed to academic settings through peer mentoring, lab support, and collaborative student-led projects during his Master’s and early PhD years. His clear communication skills, combined with a passion for applied science, equip him well for future roles in higher education teaching, seminar delivery, and student research supervision.

🚀 Legacy and Future Contributions

Looking ahead, Mr. Reza Ahmadi is committed to advancing the field of biomedical materials and nanotechnology. His long-term vision includes contributing to biomedical device innovation, sustainable material development, and interdisciplinary scientific collaboration. Through research, mentorship, and applied engineering, he aspires to bridge scientific knowledge with patient care, leaving a lasting impact on both academic and healthcare landscapes.

📖Notable Publications

In vitro study: Bond strength, electrochemical and biocompatibility evaluations of TiO₂/Al₂O₃ reinforced hydroxyapatite sol–gel coatings on 316L SS
Authors: R. Ahmadi, A. Afshar
Journal: Surface and Coatings Technology, Vol. 405, Article 126594
Year: 2021

In vitro study: Synthesis and evaluation of Fe₃O₄/CQD magnetic/fluorescent nanocomposites for targeted drug delivery, MRI, and cancer cell labeling
Authors: R. Fattahi Nafchi, R. Ahmadi, M. Heydari, M.R. Rahimipour, M.J. Molaei, et al.
Journal: Langmuir, Vol. 38(12), pp. 3804–3816
Year: 2022

In vitro study: Evaluation of mechanical behavior, corrosion resistance, antibacterial properties and biocompatibility of HAp/TiO₂/Ag coating on Ti6Al4V/TiO₂ substrate
Authors: R. Ahmadi, N. Asadpourchallou, B.K. Kaleji
Journal: Surfaces and Interfaces, Vol. 24, Article 101072
Year: 2021

Development of HAp/GO/Ag coating on 316 LVM implant for medical applications
Authors: R. Ahmadi, S. Izanloo
Journal: Journal of the Mechanical Behavior of Biomedical Materials, Vol. 126, Article 105075
Year: 2022

Yeshui Zhang | Chemical Engineering | Best Researcher Award

Dr. Yeshui Zhang | Chemical Engineering | Best Researcher Award

University of Aberdeen, United Kingdom

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Yeshui Zhang began her academic journey with a BSc in Environmental Management from the University of Birmingham, where she established a strong foundation for her multidisciplinary approach to energy and environmental engineering. She then pursued an MSc in Environmental & Energy Engineering at the University of Sheffield, working under the guidance of Prof. Agba Salman. Her academic path culminated in a PhD in Chemical & Process Engineering at the University of Leeds (2014–2017), where her thesis focused on hydrogen and carbon nanotube materials derived from the pyrolysis-catalysis of waste, supervised by Prof. Paul Williams and Dr. Chunfei Wu.

💼 Professional Endeavors

Dr. Zhang currently serves as a Lecturer in Chemical Engineering at the University of Aberdeen, a position she has held since December 2021. She contributes to both research and teaching within the School of Engineering. Prior to this, she held several research-intensive roles at University College London (UCL), including a prestigious Faraday Institution Research Fellowship (2019–2021) on the NEXTRODE project, which aimed to enhance operando metrology in Li-ion battery electrode manufacturing. From 2018 to 2019, she worked as a Postdoctoral Research Associate, developing quartz crystal microbalance techniques for high-temperature applications—an initiative funded by the Qatar National Research Fund. Dr. Zhang also provided consultancy to Alchemy TT Corporation in the U.S., focusing on carbon nanomaterials from waste plastics, and previously served as Overseas Outreach Manager for Nangyang Weiter Chemical in China.

🔬 Research Focus and Contributions

Dr. Zhang’s research lies at the intersection of sustainable energy, waste valorization, and advanced materials. Her areas of expertise include energy storage materials, lithium-ion battery manufacturing, hydrogen production, plastic waste pyrolysis-catalysis, and the synthesis of carbon nanotubes. She is pioneering new approaches in in-situ acoustic diagnostics and high-temperature quartz crystal microbalance (QCM) systems, advancing real-time analysis in energy materials research. Her work is firmly rooted in circular economy principles, particularly with respect to converting plastic waste into valuable energy resources.

🌱 Impact and Influence

Dr. Zhang’s work is making a significant impact on green technology development and sustainability. She offers scalable, practical solutions for transforming plastic waste into high-value materials such as hydrogen and carbon nanostructures. Her role in the NEXTRODE project is helping to reshape Li-ion battery manufacturing through improved metrological precision and efficiency, contributing meaningfully to the global transition toward low-carbon energy systems.

📈 Academic Citations and Recognition

While specific citation metrics are not provided, Dr. Zhang’s continuous involvement in high-profile research projects—such as those funded by the Faraday Institution and the Qatar National Research Fund—reflects her growing academic stature and the broad relevance of her work in chemical engineering, energy technology, and materials science.

🛠️ Technical Skills

Dr. Zhang possesses a diverse and advanced technical skill set, including expertise in pyrolysis-catalysis systems, high-temperature QCM analysis, operando measurement technologies, battery metrology, and the synthesis of nanomaterials from recycled waste. She is also developing innovative acoustic monitoring systems for in-situ diagnostics in complex energy environments.

👩‍🏫 Teaching Experience

As a Lecturer at the University of Aberdeen, Dr. Zhang is actively involved in teaching and mentoring students in chemical and process engineering. She brings her cutting-edge research into the classroom, inspiring innovation and real-world application among her students. Her interdisciplinary background allows her to teach across a range of topics, including energy systems, environmental remediation, and advanced materials.

🌍 Legacy and Future Contributions

Dr. Zhang is positioned to become a leading figure in circular energy systems and sustainable battery technology development. Her future research will continue to integrate waste management with the creation of high-performance materials, particularly in the areas of green hydrogen and carbon-negative technologies. Through her academic and industrial partnerships, she is driving innovations that align with global sustainability goals and a cleaner, more efficient energy future.

📖Notable Publications

Catalysis and absorption behaviors of the shelled-hollow CaO-MgO microspheres on product distributions and desulfurization during waste tire fast pyrolysis
Authors: Qu, B.; Zhang, Y.; Wang, T.; Li, A.; Ji, G.
Journal: Fuel
Year: 2025

Effect of reduction temperatures of Ni-modified zeolites on the product distribution, catalyst deactivation, and reaction mechanism during polypropylene pyrolysis
Authors: Qu, B.; Wang, T.; Ji, X.; Zhang, Y.; Ji, G.
Journal: Fuel
Year: 2025

Pyrolysis-catalytic gasification of plastic waste for hydrogen-rich syngas production with hybrid-functional Ni-CaO–Ca₂SiO₄ catalyst
Authors: Qin, T.; Ji, G.; Qu, B.; Derksen, J.J.; Zhang, Y.
Journal: Carbon Capture Science and Technology
Year: 2025

Ni transformation and hydrochar properties during hydrothermal carbonization of cellulose
Authors: Zhao, P.; Yu, S.; Zhang, Y.; Zhang, Y.; Zhou, H.
Journal: Fuel
Year: 2025

Pyrolysis-catalysis of waste tire to enhance the aromatics selectivity via metal-modified ZSM-5 catalysts
Authors: Qu, B.; Zhang, Y.; Wang, T.; Li, A.; Ji, G.
Journal: Process Safety and Environmental Protection
Year: 2024