Syed Kashif Ali | Analytical Chemistry | Analytical Chemistry Award

Assoc. Prof. Dr. Syed Kashif Ali | Analytical Chemistry | Analytical Chemistry Award

Jazan University | Saudi Arabia

Dr. Syed Kashif Ali, Associate Professor of Analytical Chemistry at Jazan University, KSA, is a distinguished researcher with over 15 years of experience in analytical, green, and pharmaceutical chemistry. His work focuses on nanomaterials synthesis, electrochemical analysis, environmental remediation, and the application of medicinal plants, combining fundamental research with practical solutions for societal challenges. He has successfully led multiple funded projects, including the development of transition metal-based nanocomposites for supercapacitors and batteries, novel green potentiometric sensors, and electrochemical detection of wastewater pollutants. His research encompasses the photocatalytic degradation of organic contaminants, CO2 photoreduction, water purification, and design of hybrid supercapacitors, integrating advanced analytical techniques such as chromatographic, spectroscopic, and electrochemical methods. Dr. Ali’s work bridges experimental and computational approaches, employing molecular modeling, machine learning, and structure-based design to advance environmental and pharmaceutical applications. He has an extensive publication record in high-impact journals, reflecting his contributions to both fundamental science and applied chemistry. Additionally, he has mentored numerous undergraduate and postgraduate students, fostering the next generation of analytical chemists. His research exemplifies innovation, sustainability, and excellence in analytical methodologies, making him a leading figure in advancing green chemistry, nanotechnology, and environmental monitoring.

Profiles : Scopus | ORCID 

Featured Publications

  1. Syed Kashif Ali, et al. (2025). Bifunctional schiff base copper complex catalyst for environmental remediation and antibacterial mechanism via docking studies. Journal of Molecular Structure.

  2. Syed Kashif Ali, et al. (2025). Eco-friendly synthesis of benzoxazole substituted chromene containing benzene sulfonamide derivatives: Antibacterial activity and molecular docking. Journal of Molecular Structure.

  3. Syed Kashif Ali, et al. (2025). Biosynthesis of zinc oxide nanostructures using leaf extract of Azadirachta indica: Characterizations and in silico and nematicidal potentials. Catalysts, 15(7), 693.

  4. Syed Kashif Ali, et al. (2025). Enhanced photo-Fenton degradation of ciprofloxacin using novel CuO/gC3N4/MXene ternary nanocomposite: Synthesis, characterization and mechanistic insights. Ceramics International.

  5. Syed Kashif Ali, et al. (2025). Unleashing the potential of bifunctional electrocatalyst: Designing efficient Ni@MnS/SGCN nanocomposite for clean energy conversion. Journal of Industrial and Chemical Sciences.

 

Wenkai Huang | Environmental Chemistry | Best Researcher Award

Dr. Wenkai Huang | Environmental Chemistry | Best Researcher Award

University of Barcelona | Spain

Dr. Wenkai Huang is a dynamic early-career researcher in materials science and environmental chemistry, specializing in the design, synthesis, and application of advanced nanomaterials for sustainable energy and environmental remediation. His research focuses on carbon nanomaterials, transition-metal nanoparticles, and single-atom catalysts, with applications spanning hydrogen energy, catalytic conversion, and wastewater treatment. Wenkai has made significant contributions to the development of high-performance catalysts for controlled hydrogen generation, including innovative “on-off” switch catalytic systems for hydrazine, formic acid, ammonia borane, and related hydrogen-storage materials. His work has been published in leading journals such as International Journal of Hydrogen Energy, Fuel, ACS Applied Nano Materials, Carbon Energy, and Green Chemical Engineering, demonstrating both scientific rigor and originality. He has also advanced environmental catalysis through the synthesis of Co₃O₄ nanocubes and lignin-derived carbon materials for the degradation of emerging contaminants in wastewater, contributing to more efficient pollutant removal technologies. In addition to his journal publications, Wenkai is co-inventor on patents related to graphene quantum dots and porous carbon nanospheres, reflecting his strength in translating research into practical innovations. His academic journey from top-performing undergraduate at Lanzhou University of Technology, to postgraduate excellence at China Three Gorges University, to his current research at the University of Barcelona demonstrates consistent achievement supported by multiple competitive scholarships, including the China Scholarship Council award. Combined with earlier engineering experience in advanced aluminum materials, Wenkai brings strong interdisciplinary expertise to the advancement of clean energy catalysis and environmental nanotechnology.

Profiles : Scopus | ORCID

Featured Publications

Huang, W., Llopart-Roca, P., Nieto-Sandoval, J., Bayarri, B., & Sans, C. (2025). Enhanced peroxymonosulfate activation by oxalic acid–activated lignin-derived carbon to degrade sulfamethoxazole: Performance and mechanism. Green Chemical Engineering.

Xu, F., Wang, Y., Wang, C., Huang, W., & Liu, X. (2023). Dehydrogenation of hydrous hydrazine over carbon nanosphere-supported PtNi nanoparticles for on-demand H₂ release. Fuel, 332, 126116.

Huang, W., Xu, F., Li, D., Astruc, D., & Liu, X. (2023). “On–off” switch for H₂ and O₂ generation from HCOOH and H₂O₂. Carbon Energy, 5(3), e269.

Huang, W., Xu, F., Tian, S., Wang, C., & Liu, X. (2022). Bimetallic PtNi nanoclusters supported on carbon nanospheres as catalysts for H₂ production from dimethylamineborane hydrolysis. ACS Applied Nano Materials.

Huang, W., Jin, X., Li, Q., et al. (2023). Co₃O₄ nanocubes for degradation of oxytetracycline in wastewater via peroxymonosulfate activation. ACS Applied Nano Materials, 6(13), 12497–12506.

Jinxiao Li | Inorganic Chemistry | Best Researcher Award

Dr. Jinxiao Li | Inorganic Chemistry | Best Researcher Award

Dalian University | China

Dr. Jinxiao Li, currently affiliated with the College of Environmental and Chemical Engineering, Dalian University, is an accomplished researcher specializing in biomass-derived energy materials and sustainable energy conversion technologies. He earned his Ph.D. in Power Engineering and Engineering Thermophysics from Shandong University, where his doctoral research focused on the preparation of hierarchical porous carbon from plant-based materials and its application in supercapacitors. Over the past decade, Dr. Li has developed a robust research profile that bridges materials chemistry, renewable energy, and catalysis. Dr. Li’s research centers on biomass conversion, porous carbon fabrication, catalyst design, and hydrogen production. His innovative work on nitrogen-doped hierarchical porous carbons and activation techniques for improved electrochemical performance has significantly contributed to the development of high-efficiency supercapacitors and electrocatalytic systems. By integrating green synthesis methods and advanced characterization techniques such as BET, SEM-EDS, TEM, XRD, XPS, ICP, and FTIR, Dr. Li has advanced understanding of the structural-performance relationships in energy materials. With 21 publications, an impressive 1,291 citations, and an h-index of 14 (Scopus), Dr. Li’s scholarly output reflects both quality and influence in the field of energy materials and environmental chemistry. His work not only addresses fundamental scientific challenges but also offers practical implications for clean energy generation and carbon neutrality initiatives. In recognition of his research excellence, Dr. Li has been honored with the Dalian City Young Talents Award and the Outstanding College Graduates of Shandong Province Award. As an active expert member of the Dalian Energy Conservation Association, he continues to promote sustainable development through research and academic service. Dr. Li’s ongoing projects focus on next-generation biomass-based catalysts and hydrogen energy systems, positioning him as a leading figure in the pursuit of sustainable, high-performance energy materials.

Profiles : Scopus | ORCID

Featured Publications

  • Lian, M., Han, X., Li, J., Song, R., Yang, C., Zhang, J., Zhong, H., & Pan, L. (2025). Hierarchical porous carbon supports: Construction, mechanism, and catalytic performance as efficient microreactors for methanol steam reforming. Inorganic Chemistry Communications, 182(Part 2), 115561.

  • Zhao, Y.-e., Li, J., Xu, A., Liu, Y., Lian, M., Zhang, J., Zhong, H., Yang, C., Song, R., & Pan, L. (2025). Hierarchical porous carbon-supported bimetallic catalyst for enhanced low-temperature steam methane reforming. Catalysis Science & Technology.

  • Lv, S., Lian, S., Li, J., Wang, Y., Wei, J., Zhong, H., & Pan, L. (2025). Mechanochemical construction of stable Cu/MCM-41 with efficient hydrogen production via methanol steam reforming. International Journal of Hydrogen Energy, 164, 150818.

  • Li, J., Han, K., & Li, S. (2018). Porous carbons from Sargassum muticum prepared by H3PO4 and KOH activation for supercapacitors. Journal of Materials Science: Materials in Electronics.

Xolile Fuku | Analytical Chemistry | Best Researcher Award

Prof. Xolile Fuku | Analytical Chemistry | Best Researcher Award

University of South Africa | South Africa

Prof. Xolile Godfrey Fuku is an Associate Professor at the Institute for Nanotechnology and Water Sustainability (iNanoWS) at the University of South Africa (UNISA). With a distinguished academic and research background in electrochemistry, nanotechnology, and sustainable energy systems, Prof. Fuku has positioned himself as a leading figure in green energy and environmental technologies. His work focuses on electrochemical sensors, hydrogen fuel cells, battery materials, CO₂ conversion, and integrated water monitoring systems aligning closely with global sustainability and climate change goals. Prof. Fuku holds a PhD in Chemistry from the University of the Western Cape, where his doctoral research developed a quantum dots genosensor for breast cancer biomarkers under the supervision of Prof. Emmanuel Iwuoha. He also holds an MSc in Chemistry and has expanded his expertise through business qualifications, including a Postgraduate Diploma in Business Administration and an ongoing MBA from Wits Business School. Over the years, Prof. Fuku has demonstrated excellence in research leadership and capacity development. He manages a multidisciplinary research team at iNanoWS and has supervised several MSc and PhD students in the fields of renewable energy, nanotechnology, and material science. His research outputs include over 60 peer-reviewed publications, multiple international book chapters, and numerous conference presentations. As of 2025, his work has garnered 2,532 citations with an H-index of 19, according to Google Scholar. His efforts have been supported by prestigious grants from organizations such as the National Research Foundation (NRF), CSIR, Water Research Commission (WRC), and international bodies including the Chinese Foreign Talent Program. He is also affiliated with prominent scientific societies such as SACNASP, the Royal Society of Chemistry, and the African Academy of Sciences. Prof. Fuku continues to contribute significantly to advancing Africa’s leadership in clean and sustainable technologies through research, mentorship, and innovation.

Profiles : Scopus | Orcid | Google Scholar

Featured Publications

  • Nompetsheni, I., Hlongwa, N. W., Palaniyandy, N., & Fuku, X. (2025). CQD–TiO₂ composite as a potential crypto-electrode modifier for high-performance aptasensing with ultra-low detection limits. Journal of Applied Electrochemistry, 1–22.

  • Zia Ul Haq, M., Singh, B., Fuku, X., Barhoum, A., & Tian, F. (2025). A systematic review of the use of electronic nose and tongue technologies for detecting food contaminants. Chemosensors, 13, 262.

  • Phosha, N. N., Fuku, X. G., Tijing, L., & Motsa, M. M. (2025). Exploring the application of solar irradiation in driving a standalone membrane distillation unit. Applied Thermal Engineering, 127169.

  • Gazu, N. T., Morrin, A., Fuku, X., Mamba, B. B., & Feleni, U. (2025). Recent technologies for the determination of SARS‐CoV‐2 in wastewater. ChemistrySelect, 10.

  • Palaniyandy, N., Sekhosana, K., Lakshmi, D., Fuku, X., & Sundar, D. K. S. (2025). Advancement of Pt and Pd-based catalysis for green, sustainable energy and biomedical applications. Current Research in Green and Sustainable Chemistry, 100446.

  • Karuga, J., Fuku, X., Nkambule, T., Mamba, B., & Kebede, M. A. (2024). Advances in mitigating oxygen evolution, phase transformation, and voltage fading in Li/Mn-rich cathode materials via cationic doping and surface modification. Journal of Energy Storage, 98, 113144.

  • Norvivor, F. A., Azizi, S., Fuku, X., Atibu, E. K., Idris, A. O., Sibali, L., & Maaza, M. (2024). Ecological and human health risk of heavy metals in Nubui River: A case of rural remote communities. Frontiers in Water, 6, 1397853.

 

Tao Yang | Electrochemistry | Best Researcher Award

Prof. Tao Yang | Electrochemistry | Best Researcher Award

University of Science and Technology Beijing, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Prof. Tao Yang embarked on his academic journey at the University of Science and Technology Beijing (USTB), where he pursued a doctoral degree at the State Key Laboratory of Advanced Metallurgy from 2012 to 2018. His early research laid a strong foundation in materials science and electrochemistry, setting the stage for his future contributions to sustainable energy and carbon neutrality.

👨‍🏫 Professional Endeavors

After completing his doctorate, Prof. Yang continued at USTB as a postdoctoral researcher in the School of Materials Science and Engineering (2018-2021). During this period, he expanded his expertise in electrocatalysis and nanogenerator technologies. He then advanced to an associate professor role at the Collaborative Innovation Center of Steel Technology (2018-2021), further enhancing his research impact. Since July 2021, he has served as a full professor at the Institute of Carbon Neutrality at USTB, leading groundbreaking research initiatives in sustainable energy solutions.

🔬 Contributions and Research Focus

Prof. Yang's research spans multiple critical areas in electrochemistry and energy science, including:

Electrocatalysis & Hydrogen Production: Developing advanced materials for water splitting to generate hydrogen efficiently.

Carbon Dioxide Reduction & Utilization: Innovating techniques to convert CO₂ into valuable chemical fuels, addressing climate change challenges.

Piezoelectricity & Nanogenerators: Exploring self-powered energy harvesting technologies for renewable energy applications.

Electromagnetic Wave Absorption: Investigating materials that mitigate electromagnetic interference, contributing to advanced communication and defense technologies.

📊 Impact and Influence

With over 60 SCI/EI-indexed papers as the first or corresponding author, Prof. Yang has established himself as a prolific researcher. His work has amassed 3,500 citations on Google Scholar, achieving an h-index of 36. Notably, 8 of his papers have been featured as journal covers, and 7 have been recognized as ESI Highly Cited Papers, underscoring the significance of his research in the scientific community.

🏆 Academic Recognitions

Prof. Yang's remarkable contributions have earned him numerous accolades, including:

Postdoctoral Innovative Talent Support Program

Beijing Outstanding Talent – Young Backbone Individual

Inclusion in Stanford University’s World’s Top 2% Scientists (2022-2024) These prestigious honors highlight his sustained excellence and influence in the field of carbon neutrality and energy conversion.

🛠️ Technical Skills

Prof. Yang possesses a deep expertise in advanced material characterization and electrochemical techniques, including: Electrocatalysis testing and analysis, Nanomaterial synthesis and modification, Advanced spectroscopy and microscopy techniques, Computational modeling for material behavior predictions His technical prowess enables him to push the boundaries of innovation in clean energy technologies.

🎓 Teaching and Mentorship

As a professor and doctoral supervisor at USTB, Prof. Yang plays a pivotal role in shaping the next generation of researchers. He actively mentors Ph.D. and master's students, guiding them in cutting-edge research on sustainable energy solutions. His commitment to academic excellence ensures that his students receive top-tier education and research training.

🌏 Legacy and Future Contributions

Looking ahead, Prof. Yang aims to: Expand research on scalable hydrogen production technologies, Develop novel catalysts for efficient CO₂ conversion, Advance self-powered nanogenerator applications, Contribute to global efforts in achieving carbon neutrality His work continues to drive scientific innovation and practical solutions for a more sustainable future, making him a leading figure in electrochemical energy research.

📖Notable Publications

1. Gut dysbiosis is linked to hypertension
Authors: T Yang, MM Santisteban, V Rodriguez, E Li, N Ahmari, JM Carvajal, ...
Journal: Hypertension
Year: 2015

2. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys
Authors: T Yang, YL Zhao, Y Tong, ZB Jiao, J Wei, JX Cai, XD Han, D Chen, A Hu, ...
Journal: Science
Year: 2018

3. DSC: Scheduling parallel tasks on an unbounded number of processors
Authors: T Yang, A Gerasoulis
Journal: IEEE Transactions on Parallel and Distributed Systems
Year: 1994

4. Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy
Authors: YL Zhao, T Yang, Y Tong, J Wang, JH Luan, ZB Jiao, D Chen, Y Yang, ...
Journal: Acta Materialia
Year: 2017

5. A comparison of clustering heuristics for scheduling directed acyclic graphs on multiprocessors
Authors: A Gerasoulis, T Yang
Journal: Journal of Parallel and Distributed Computing
Year: 1992

6. The gut microbiota and the brain–gut–kidney axis in hypertension and chronic kidney disease
Authors: T Yang, EM Richards, CJ Pepine, MK Raizada
Journal: Nature Reviews Nephrology
Year: 2018

7. Hypertension-linked pathophysiological alterations in the gut
Authors: MM Santisteban, Y Qi, J Zubcevic, S Kim, T Yang, V Shenoy, ...
Journal: Circulation Research
Year: 2017