Rosa M. Alonso | Analytical Chemistry | Editorial Board Member

Prof. Rosa M. Alonso | Analytical Chemistry | Editorial Board Member

Professor | University of the Basque Country (UPV/EHU) | Spain

Professor Rosa M. Alonso is an accomplished analytical chemist at the University of the Basque Country (UPV/EHU), where she has served as a faculty member and has led the FARMARTEM research group. Under her leadership, FARMARTEM has been recognized as a consolidated research group by both UPV/EHU and the Basque Government, and forms part of the multidisciplinary Teaching and Research Unit (UFI 11/23) “New Technologies in Chemistry and Pharmacology Applied to Health.” Her research is dedicated to the development of advanced analytical methodologies across metabolomics, pharmaceutical analysis, environmental chemistry, and the conservation and dating of cultural heritage materials. Her group specializes in separation science, with particular emphasis on liquid and gas chromatography coupled to mass spectrometry, complemented by innovative sample preparation procedures tailored for complex matrices such as biological fluids, environmental samples, and historical documents. Professor Alonso has authored 190 scientific articles, more than half in top-quartile journals within analytical chemistry, and has delivered 190 conference presentations, including invited lectures. She has participated in 59 competitive research projects, leading 40 of them, alongside numerous industry collaborations and equipment acquisition initiatives. Professor Alonso also contributes extensively to the scientific community as a reviewer, member of the advisory boards of Current Chromatography and Separations, and evaluator for ANEP. Her excellence in teaching is evidenced by outstanding DOCENTIAZ evaluations and long-standing contributions to undergraduate, postgraduate, and international mobility programs.

Profile : Scopus 

Featured Publications

Elejalde, E., Alonso, R. M., Villarán, M. C., Díez-Gutiérrez, L., Chávarri, M., & López-de-Armentia, I. (2025). Exploring the bioavailability of red grape skin extract polyphenols: A Caco-2 cell model study. Foods, 14(13), 2253.

de la Hera, O., & Alonso, R. M. (2025). Contribution of gas chromatography–mass spectrometry (GC–MS) to the volatile organic compound profile of Vespa velutina nigrithorax larvae. Chemosensors, 13(5), 175.

de la Hera, O., Quintanilla-Casas, B., Bro, R., Fañanas, R., & Alonso, R. M. (2024). Volatile organic compound profile for the search of rejection markers in protein baits used as Vespa velutina control method. Microchemical Journal, 207, 111685.

de la Hera, O., Izaguirre, A., Rivas, A., & Alonso, R. M. (2024). QuEChERS-based method for the determination of fipronil in protein baits and Vespa velutina larvae by HPLC-DAD and GC-MS. Separations, 11(11), 317.

Hua Zhang | Analytical Chemistry | Best Researcher Award

Prof. Dr. Hua Zhang | Analytical Chemistry | Best Researcher Award

Professor | Henan Normal University | China

Professor Zhang Hua is a distinguished scholar in the fields of functional dye molecular engineering, biosensing, and advanced fluorescence technologies. With a Ph.D. from Dalian University of Technology, she has established a strong scientific presence through innovative research that bridges chemistry, materials science, and biomedicine. As a recipient of the National Excellent Young Scientist Fund and a recognized Henan Province Expert, Professor Zhang leads a university-level scientific innovation team focused on developing high-performance fluorescent dyes and imaging tools for disease diagnosis and molecular detection. Her research has significantly advanced the design and functional tuning of organic dyes for two-photon fluorescence applications, enabling highly sensitive and specific detection of key biomolecules such as nucleic acids, enzymes, and proteins. These technologies have been successfully applied to single-cell analysis, high-resolution bioimaging, and early-stage diagnostics. Professor Zhang has also driven the development of dye-based technologies that support industrial product validation, exemplified by contributions that helped a commercial product meet stringent EU REACH certification standards. Her growing portfolio of nine granted Chinese invention patents and 78 SCI-indexed publications, supported by an H-index of 27 and more than 2,669 citations, reflects her significant scholarly influence. She has completed multiple projects funded by the National Natural Science Foundation of China and is actively engaged in ongoing national-level research. Her memberships in key professional committees highlight her leadership in China’s analytical chemistry and biosensing communities. Professor Zhang’s work continues to accelerate innovation at the chemistry–biology interface, driving forward technologies that impact both scientific research and real-world biomedical applications.

Profiles : Scopus | ORCID

Featured Publications

Yang, Y. T., Liu, Y., …, & Zhang, H. (2025). H2S-activated Type-I photochemical probe: Fluorescent self-reporting for real-time monitoring of tumor ablation. Analytical Chemistry, 97(42), 23467–23476.

Han, J. N., Yang, M., …, & Zhang, H. (2025). Light-driven ESIPT-based anthraquinone analogues for synergistic fluorescent self-reporting and photodynamic therapy of malignant tumors. Journal of Medicinal Chemistry, 68(19), 20814–20826.

Liu, J., Liu, Y., Zhi, S., Yang, Y., Kim, H., Wu, D., Wang, G., James, T. D., Yoon, J., & Zhang, H. (2025). A nanotherapeutic agent for synergistic tumor therapy: Co-activation of photochemical-biological effects. Angewandte Chemie International Edition.

Niu, H. Y., Wang, S. N., …, & Zhang, H. (2025). Naphthalimide-based Type-I nano-photosensitizers for enhanced antitumor photodynamic therapy: H₂S synergistically regulates PeT and self-assembly. Angewandte Chemie International Edition. (Early Access).

Lv, C., Li, Z., Liu, W., Yang, M., Zhang, H., Fan, J., & Peng, X. (2025). An activatable chemiluminescent self-reporting sulfur dioxide donor for inflammatory response and regulation of gaseous vasodilation. ACS Sensors.

Andrea Carpentieri | Analytical Chemistry | Best Researcher Award

Prof. Andrea Carpentieri | Analytical Chemistry | Best Researcher Award

Professor | Department of Chemical Sciences Federico II, Naples IT | Italy

Prof. Andrea Carpentieri is an accomplished biochemist whose research career spans advanced biomolecular analysis, structural proteomics, and the application of biochemical methodologies to cultural heritage. Trained at the University of Naples “Federico II,” where he specialized in Biological Chemistry, his early work focused on the structural characterization of proteins, including the analysis of recombinant enzymes and the investigation of post-translational modifications such as glycosylation and phosphorylation. Through extensive experience in mass spectrometry including ESI-MS, MALDI-TOF, FT-ICR, and multidimensional chromatography. Prof. Carpentieri developed integrated strategies that combine classical biochemical techniques with cutting-edge MS/MS procedures for detailed molecular mapping. His doctoral and postdoctoral research expanded into functional proteomics, emphasizing protein–protein interactions, differential protein expression, and the identification of biomolecular changes associated with physiological and pathological processes, including apoptosis. A significant part of his international experience was gained at Boston University School of Medicine, where he investigated uncommon post-translational modifications in human protozoan parasites, particularly focusing on O-phosphoglycosylation in Entamoeba species, with implications for diagnostics and immunology. In recent years, Prof. Carpentieri has emerged as a leading figure in the field of biochemical applications for cultural heritage. His research employs high-resolution mass spectrometry to analyze biomolecules polysaccharides, lipids, proteins, and metabolites extracted from ancient artifacts, enabling the identification of original artistic materials, degradation products, and historical production techniques. These analytical insights support archaeometric investigations and inform conservation and restoration practices. Furthermore, he has contributed to the development of environmentally sustainable chemical formulations, including biocompatible adhesives, biocides, and solvents tailored for the preservation of artworks and historical objects. His interdisciplinary work bridges chemistry, archaeology, materials science, and conservation, enhanced by collaborations with Princeton University, the Courtauld Institute of Art, and several Italian cultural institutions. Through his scientific, educational, and outreach activities, Prof. Carpentieri has significantly advanced both biochemical knowledge and the protection of cultural heritage at national and international levels.

Profiles : Scopus | ORCID | Google Scholar

Featured Publications

Melchiorre, M., Melchiorre, C., Moracci, M., Somma, P. I., Markiewicz, M., Stolte, S., Cerruti, P., Ruffo, F., & Carpentieri, A. (2025). Lactic acid-based compounds as green alternative solvents for cultural heritage: Application on canvas painting restoration. Journal of Cultural Heritage. Advance online publication.

Lemos, R., Pérez-Badell, Y., De Nisco, M., Cimmino, G., Gonzalez, C., Carpentieri, A., Pacifico, S., Suárez, M., & Pedatella, S. (2025). A fullerene-based selenosugar ball. European Journal of Organic Chemistry. Advance online publication.

Lemos, R., Pérez-Badell, Y., De Nisco, M., Carpentieri, A., Suárez, M., & Pedatella, S. (2024). Organic chimeras based on selenosugars, steroids, and fullerenes as potential inhibitors of the β-amyloid peptide aggregation. ChemPlusChem, 90(3), e202400404.

Amato, L., De Rosa, C., Omodei, D., Tufano, C. C., Buono, R., Tuccillo, C., Roviello, G. N., Spinelli, M., Fontanarosa, C., Papaccio, F., Camerlingo, R., Morgillo, F., Carpentieri, A., Amoresano, A., Tirino, V., Iommelli, F., Corte, C. M. D., Del Vecchio, S., & De Rosa, V. (2025). Synergistic effects of oncogene inhibition and pyruvate dehydrogenase kinase blockade in resistant NSCLC cells. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease, 1871, 168014.

Cipolletta, B., Morelli, M., Perlingieri, C., Somma, P. I., Amoresano, A., Marino, G., & Carpentieri, A. (2024). Molecular characterization of adhesives (glue lining pastes) used in restoration. Analytical Chemistry, 96(42), 16551–16560.

 

Alena Novoselova | Analytical Chemistry | Best Researcher Award

Prof. Alena Novoselova | Analytical Chemistry | Best Researcher Award

IHTE UB RAS | Russia

Profiles

Scopus
Orcid

Early Academic Pursuits

Prof. Alena V. Novoselova laid a strong academic foundation in the field of chemistry, advancing into a specialization in high-temperature electrochemistry and radiochemistry. Her focus on analytical and thermodynamic studies of rare earth and actinide elements set the stage for her future scientific leadership. Her academic journey reflects a persistent dedication to exploring the fundamental behaviors of complex chemical systems, particularly those relevant to the nuclear sciences.

Professional Endeavors

As a Leading Researcher at the Radiochemistry Laboratory of the Institute of High-Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences (IHTE UB RAS), Prof. Novoselova plays a central role in advancing research on the electrochemical behavior of lanthanides and actinides. She actively collaborates with national and international scientific bodies and contributes to strategic research at state and academic levels. She also holds memberships in prestigious dissertation councils and serves as an expert evaluator for the Russian Academy of Sciences.

Contributions and Research Focus

Her core research revolves around the electrochemistry and thermodynamics of rare earth and actinide compounds, with a strong emphasis on molten salt media, which are critical in nuclear material processing and recycling. She investigates the formation of alloys, separation of fission products, and high-purity metal production using molten salt systems. The outcomes of her work are essential in the context of closed nuclear fuel cycle technologies, contributing to innovations in nuclear waste reprocessing.

Impact and Influence

Prof. Novoselova’s research has had a notable influence on the development of advanced nuclear technologies. Her work informs safe and efficient methodologies for nuclear fuel reprocessing. She has collaborated with institutions such as the State Scientific Center – Research Institute of Atomic Reactors, Ural Federal University, and Harbin Engineering University, playing a pivotal role in the education of new scientists and engineers. Her citation indices on Scopus (h-index: 19) and Web of Science (h-index: 17) underscore the relevance and reach of her scientific publications.

Academic Citations and Publications

With over 75 publications indexed in Scopus, Prof. Novoselova has established herself as a prolific researcher. Her scholarly output includes chapters in internationally recognized books on electrochemical and thermodynamic studies of radioactive and rare-earth elements, notably focusing on uranium, curium, ytterbium, and thulium. Her publications are frequently cited, reflecting sustained academic impact in her field.

Technical Skills

Prof. Alena V. Novoselova possesses a comprehensive set of technical skills that are essential to the advancement of nuclear material science and the development of closed nuclear fuel cycles. Her expertise spans electrochemical techniques specifically designed for molten salt environments, enabling precise control over high-temperature chemical processes. She is proficient in thermodynamic modeling and measurement, which supports the prediction and analysis of chemical behaviors in complex systems. Prof. Novoselova has made significant contributions to the separation processes of lanthanides and actinides key elements in nuclear reprocessing and is skilled in the characterization of nuclear materials. Furthermore, her deep understanding of high-temperature reactor chemistry and material recovery technologies positions her as a vital contributor to the innovation and safety of next-generation nuclear energy solutions.

Teaching Experience and Academic Roles

In addition to her research contributions, Prof. Novoselova is engaged in student training and academic mentorship. She has served as a guest professor at Harbin Engineering University, sharing her expertise with the next generation of chemists and engineers. She is an active member of doctoral and post-doctoral evaluation boards, contributing to the quality and rigor of academic standards in chemical sciences.

Legacy and Future Contributions

Prof. Novoselova’s work contributes to the strategic goal of achieving sustainable and safe nuclear energy through recycling and reprocessing. Her role in advancing the scientific understanding of actinide behavior in molten salts has significant implications for global nuclear policy and technology. Future contributions are likely to focus on developing cleaner, more efficient processes for rare earth and nuclear material handling.

Notable Publications

Electrochemical properties and extraction of erbium on a liquid gallium electrode in the 3LiCl–2KCl molten salt

Authors: Jiabao Gao, Kewei Jiang, Alena Novoselova, Valeri Smolenski, Jing Yu, Qi Liu, Rumin Li, Jun Wang
Journal: New Journal of Chemistry
Year: 2025

Electrochemical behavior and effective extraction of erbium in fused LiCl–KCl eutectic

Authors: Henan Zhang, Wantong Li, Jing Yu, Qi Liu, Alena Novoselova, Valeri Smolenski, Yongde Yan, Milin Zhang, Jun Wang
Journal: Journal of Rare Earths
Year: 2025

Electrochemistry of Uranium on Liquid Sn Electrode in Molten NaCl–2CsCl Eutectic

Authors: Alena Novoselova, Valeri Smolenski
Journal: Journal of The Electrochemical Society
Year: 2025

Potentiometric study of the interaction of Sm³⁺ and O²⁻ ions: thermodynamic properties of samarium compounds in molten NaCl–2CsCl eutectic

Authors: Henan Zhang, Qi Liu, Alena Novoselova, Valeri Smolenski, Kewei Jiang, Yongde Yan, Milin Zhang, Jun Wang
Journal: New Journal of Chemistry
Year: 2024

Cathode processes and uranium electrochemical extraction on W and Ga electrodes in LiCl–KCl melt

Authors: Alena Novoselova, Valeri Smolenski
Journal: Journal of Radioanalytical and Nuclear Chemistry
Year: 2024

Conclusion

Prof. Alena V. Novoselova is a distinguished figure in high-temperature electrochemistry and radiochemistry. Through her sustained academic excellence, impactful collaborations, and mentorship, she is advancing essential scientific knowledge in the field of nuclear chemistry. Her contributions are not only academically significant but also offer tangible pathways for improving global nuclear energy strategies.

Jing Chen | Analytical Chemistry | Outstanding Scientist Award

Prof. Jing Chen | Analytical Chemistry | Outstanding Scientist Award

National Natural Science Foundation of China, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Prof. Jing Chen began his academic journey with a strong commitment to scientific excellence in the fields of life and environmental analysis. From the outset, he displayed a deep interest in applying multidisciplinary theories and methodologies to address real-world analytical challenges. This early foundation equipped him to transition seamlessly from theoretical concepts to practical applications, setting the stage for a stable and impactful research trajectory.

👨‍🔬 Professional Endeavors

Prof. Chen currently holds a distinguished position at the National Natural Science Foundation of China, where he leads pioneering research at both national and provincial levels. Over the years, he has directed numerous high-impact projects, including those funded by the Gansu Provincial Science Foundation. His professional efforts have focused not only on scientific innovation but also on cultivating research that supports regional development goals, particularly in environmental sustainability.

🔬 Research Focus and Innovations

Prof. Chen’s core research areas encompass electrochemistry, electroanalytical chemistry, and computational chemistry. His most innovative contributions involve the development of electrochemical sensors and biosensors, using advanced materials such as MXenes and bioactive porphyrins. These innovations have enabled the highly selective and efficient detection of life-active molecules and environmental pollutants, providing robust tools for water quality assessment and ecological monitoring.

💡 Key Contributions

Prof. Chen has made transformative contributions to the detection and monitoring of pollutants by integrating smart material science with sensor design. His work offers practical solutions for ecological conservation, public health, and environmental policymaking. His major funded research projects include: National Natural Science Foundation of China (22374121) – ongoing; Key Project of Natural Science Foundation of Gansu Province (22JR5RA132); Key R&D Project, Gansu Province (18YF1GA050); and NSFC Project on Bioelectrochemical Detection Methods (21565022). These projects underscore his leadership in national priority areas such as environmental protection, bioanalysis, and advanced sensor technology.

🌍 Impact and Influence

Prof. Chen’s work has had a direct and lasting impact on ecological research, public safety, and green chemistry initiatives. His sensor technologies have been adapted for regional water quality monitoring, aligning with broader environmental goals of the province. His efforts contribute to ecological civilization construction and the economic development of Western China, reinforcing the societal relevance of scientific research.

📚 Academic Citations and Recognition

His scientific outputs have earned recognition in top-tier journals, with frequent citations reflecting the relevance and utility of his research. His MXene-based and porphyrin-functionalized platforms have become reference points in the study of next-generation biosensors, bioanalytical chemistry, and nanomaterial applications.

🧪 Technical Skills and Expertise

Prof. Chen possesses advanced technical proficiency in electrochemical analysis, sensor development, nanomaterial synthesis, and computational modeling. His skill in bridging theoretical design with laboratory experimentation allows for rapid innovation in sensor technology, with enhanced accuracy and environmental relevance.

👨‍🏫 Teaching and Mentorship

As an educator, Prof. Chen has demonstrated a consistent passion for mentoring emerging scientists, providing guidance in both theoretical understanding and experimental technique. His teaching philosophy emphasizes interdisciplinary research, encouraging students to address real-world problems through innovation and collaboration.

🌟 Legacy and Future Contributions

Looking forward, Prof. Jing Chen aims to further advance the field of environmental sensing and analytical chemistry by developing next-gen biosensors powered by smart materials and AI-assisted analytical platforms. His long-term vision includes not only scientific breakthroughs but also the training of future leaders in chemistry and environmental sciences. His legacy will be defined by innovative research, institutional leadership, and a sustained commitment to solving global environmental challenges.

📖Notable Publications

Electrochemiluminescence sensor based on upconversion nanoparticles and Zr-based porphyrinic metal-organic frameworks with recognition sites for mercaptan detection

  • Journal: Talanta

  • Year: 2025

Ratiometric Electrochemical DNAzyme Biosensor for Sensitive Detection of Salmonella in Urban Water Source

  • Journal: Environmental Science and Technology

  • Year: 2025

Ratio Fluorescence Detection of Salicylic Acid Based on Ti₃C₂ Quantum Dots

  • Journal: ACS Applied Nano Materials

  • Year: 2025

Rapid detection and differentiation of chlortetracycline and tetracycline by N,P-Ti₃C₂ QDs

  • Journal: Microchemical Journal

  • Year: 2024

L-Lysine-Functionalized Nickel-Zinc Bis(Dithiolene) Metal-Organic Framework for Electrochemical Chiral Recognition of Tryptophan Enantiomers

  • Journal: Chemistry of Materials

  • Year: 2024

CoFe₂O₄ nanocubes derived by Prussian Blue analogs for detecting dopamine

  • Journal: Microchemical Journal

  • Year: 2024

Multiwalled carbon nanotubes modified with nickel-zinc bis(dithiolene) metal-organic frameworks for electrochemical detection of 5-hydroxytryptamine

  • Journal: Journal of Electroanalytical Chemistry

  • Year: 2023

Photoanode with enhanced performance achieved by a novel charge modulation strategy without sacrificial agents

  • Journal: Journal of Electroanalytical Chemistry

  • Year: 2023

Lanping Guo | Analytical Chemistry | Best Researcher Award

 Prof. Lanping Guo | Analytical Chemistry | Best Researcher Award

Institute of Chinese Material Mecica, China

👨‍🎓Profiles

👩‍🔬 Early Academic Pursuits

Professor Guo Lanping began her academic journey in the realm of traditional Chinese medicine (TCM), developing a strong foundation in the field of Chinese Materia Medica. Her early studies led her to a distinguished academic path, eventually earning her a position as a graduate advisor at the China Academy of Chinese Medical Sciences (CACMS). She later expanded her academic horizon as a visiting scholar at the University of Innsbruck in Austria, deepening her expertise in environmental and ecological aspects of medicinal plants.

🧑‍🏫 Professional Endeavors

Currently, Professor Guo serves as the Director of the National Resource Center for Chinese Materia Medica at CACMS and is the head of the “Innovation Team for Ecological Agriculture of Chinese Materia Medica” in China. She also directs the Key Laboratory of Investigation and Zoning of Traditional Chinese Medicine Resources and oversees the Key Discipline of Medicinal Plants, both under the State Administration of Traditional Chinese Medicine (SATCM). Her work spans institutional leadership, project coordination, and strategic direction in resource ecology.

🔬 Contributions and Research Focus

Professor Guo’s research focuses primarily on the ecology of Chinese medicinal resources, with a special interest in ecological agriculture and how environmental stress influences plant growth and secondary metabolite accumulation. She pioneered the concept of ecological planting for Chinese material medica, offering practical and theoretical frameworks for sustainable agriculture. Her discovery of the “hormesis theory”, highlighting how low-dose heavy metals influence secondary metabolite production in medicinal plants, has significantly impacted the field, culminating in the development of the first ISO international standard for heavy metal limits in medicinal materials.

🌐 Impact and Influence

Professor Guo’s contributions have earned her widespread acclaim, including:

  • 🥈 Three-time recipient of the Second Prize of the State Science and Technology Progress Award

  • 🏅 Outstanding Contribution Award from ISO/TC249

  • 🏆 National Innovation Prize (2017)

  • 🎖 World Federation of Chinese Medicine Societies Science and Technology Progress Award

  • 👩‍💼 Leading Role Model by the National Women’s Federation

  • 🧬 Young Experts with Outstanding Contributions Award

Her work has directly influenced over 400 national and international standards and significantly advanced China’s leadership in ecological TCM cultivation.

📚 Academic Citations and Publications

With over 400 academic publications, Professor Guo has made seminal contributions to both Chinese and international journals. Notable works include:

  • “A practical protocol for comprehensive evaluation of sulfur-fumigation of Gastrodia Rhizoma” in Journal of Hazardous Materials (2017)

  • “CYP76B74 catalyzes the 3”-hydroxylation of geranylhydroquinone in shikonin biosynthesis” in Plant Physiology (2018)

Her papers are widely cited in studies related to metabolomics, environmental stress physiology, and pharmacognosy.

🧠 Technical Skills and Expertise

Professor Guo’s technical strengths lie in:

  • Metabolomic and secondary metabolite analysis

  • Risk assessment modeling for environmental contaminants

  • Development of international and national ISO standards

  • Software database design for TCM resource management

  • Ecological zoning and mapping of medicinal plant resources

She holds 22 patents and software copyrights, reflecting her innovation in research tools and methodologies.

👩‍🏫 Teaching Experience

As a graduate advisor at CACMS, Professor Guo has mentored numerous postgraduate students, integrating field research with academic instruction. Her pedagogical approach combines traditional herbal knowledge with modern ecological science, inspiring a new generation of TCM ecologists and pharmacologists.

🌱 Legacy and Future Contributions

Professor Guo Lanping’s legacy is deeply rooted in her holistic approach to medicinal plant research—linking ecology, agriculture, and pharmacology. Looking ahead, her focus remains on advancing sustainable and safe cultivation practices, influencing global standards, and bridging traditional knowledge with scientific innovation. Her work continues to shape China’s leadership in TCM ecological research and will likely guide global policy and practice in herbal medicine sustainability.

📖Notable Publications

A review of chemical constituents and health-promoting effects of citrus peels
Authors: N Liu, X Li, P Zhao, X Zhang, O Qiao, L Huang, L Guo, W Gao
Journal: Food Chemistry 365, 130585
Year: 2021

Proteomics: a powerful tool to study plant responses to biotic stress
Authors: Y Liu, S Lu, K Liu, S Wang, L Huang, L Guo
Journal: Plant Methods 15 (1), 135
Year: 2019

FAD-dependent enzyme-catalysed intermolecular [4+2] cycloaddition in natural product biosynthesis
Authors: L Gao, C Su, X Du, R Wang, S Chen, Y Zhou, C Liu, X Liu, R Tian, …
Journal: Nature Chemistry 12 (7), 620-628
Year: 2020

The potential roles of natural plant polysaccharides in inflammatory bowel disease: A review
Authors: W Yang, P Zhao, X Li, L Guo, W Gao
Journal: Carbohydrate Polymers 277, 118821
Year: 2022

Atractylodis Rhizoma: A review of its traditional uses, phytochemistry, pharmacology, toxicology and quality control
Authors: W Zhang, Z Zhao, L Chang, Y Cao, S Wang, C Kang, H Wang, L Zhou, …
Journal: Journal of Ethnopharmacology 266, 113415
Year: 2021

Characterisation and saccharide mapping of polysaccharides from four common Polygonatum spp.
Authors: P Zhao, X Li, Y Wang, L Yan, L Guo, L Huang, W Gao
Journal: Carbohydrate Polymers 233, 115836
Year: 2020

Threatened medicinal plants in China: Distributions and conservation priorities
Authors: X Chi, Z Zhang, X Xu, X Zhang, Z Zhao, Y Liu, Q Wang, H Wang, Y Li, …
Journal: Biological Conservation 210, 89-95
Year: 2017

Fei Yu | Analytical Chemistry | Best Researcher Award

Mr. Fei Yu | Analytical Chemistry | Best Researcher Award

Shanghai Tenth People's Hospital, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Yu Fei’s academic journey began with a Bachelor of Medicine (B.Med.) in Nuclear Medicine from Soochow University (1996-2001). This foundational education provided a strong background in medical imaging and nuclear diagnostics. Building on this, Yu Fei pursued a Master of Science (M.Sc.) in Public Health at Fudan University (2005-2008), which broadened his expertise in epidemiology, healthcare management, and disease prevention strategies. To further specialize in nuclear medicine, he completed a Doctor of Medicine (Ph.D.) at Tongji University (2009-2012), focusing on advanced medical imaging, radiopharmaceuticals, and nuclear diagnostics.

🏥 Professional Endeavors

Yu Fei has been an integral part of Tongji University and Shanghai Tenth People’s Hospital, where he has steadily progressed through various roles:

  • Physician (2001-2007) – Gaining hands-on clinical experience in diagnostic imaging and nuclear medicine procedures.
  • Attending Physician (2007-2013) – Expanding his clinical expertise while taking on responsibilities in patient care, research, and teaching.
  • Associate Chief Physician (2013-2018) – Playing a pivotal role in medical research and supervising junior physicians.
  • Chief Physician (2018-Present) – Leading advancements in nuclear medicine, guiding medical teams, and contributing to innovative research.

His steady career progression reflects dedication, expertise, and leadership in the medical field.

🔬 Contributions and Research Focus

Yu Fei’s research is centered on nuclear medicine and public health, with a particular focus on:

  • Radiopharmaceuticals and Molecular Imaging – Enhancing early disease detection and treatment effectiveness.
  • Oncological Imaging – Using PET/CT and SPECT for cancer diagnostics and therapy assessment.
  • Nuclear Cardiology – Advancing non-invasive imaging techniques for cardiovascular diseases.
  • Public Health and Preventive Medicine – Contributing to healthcare policies and epidemiological studies.

His work has improved diagnostic accuracy, influenced treatment strategies, and contributed to advancements in personalized medicine.

🌍 Impact and Influence

As a Chief Physician at Shanghai Tenth People’s Hospital, Yu Fei has significantly impacted the fields of nuclear medicine and medical imaging. His leadership in clinical applications, research innovations, and academic mentorship has shaped both medical practice and scientific advancements. His contributions in oncology, cardiology, and public health imaging continue to influence medical professionals locally and internationally.

📚 Academic Citations and Publications

Yu Fei has published numerous research papers in leading medical journals, focusing on nuclear medicine applications, radiopharmaceuticals, and imaging advancements. His research has been widely cited, reflecting his influence in the academic and medical research communities.

🛠️ Technical Skills

With extensive experience in nuclear medicine and diagnostic imaging, Yu Fei is proficient in:

  • Positron Emission Tomography (PET/CT)
  • Single Photon Emission Computed Tomography (SPECT)
  • Radiopharmaceutical Development and Application
  • Cardiac and Oncological Nuclear Imaging
  • Epidemiological Data Analysis in Public Health

His technical expertise enables accurate diagnosis and cutting-edge research in nuclear imaging.

👨‍🏫 Teaching and Mentorship

Yu Fei has played a key role in training and mentoring medical students, residents, and junior physicians at Tongji University and Shanghai Tenth People’s Hospital. His teaching contributions include:

  • Clinical Training in Nuclear Medicine – Preparing future specialists with hands-on experience.
  • Medical Research Supervision – Guiding students in conducting and publishing research.
  • Continuing Medical Education (CME) Programs – Enhancing the skills of practicing professionals in nuclear medicine.

His mentorship has fostered the growth of future medical leaders and researchers.

🚀 Legacy and Future Contributions

Yu Fei’s career has already left a significant mark on nuclear medicine and medical imaging. Looking ahead, his goals include:

  • Expanding Research in Molecular Imaging – Improving early disease detection techniques.
  • Developing Innovative Radiopharmaceuticals – Enhancing therapeutic applications.
  • Advancing Public Health Imaging – Integrating nuclear medicine in preventive healthcare.
  • Mentoring the Next Generation – Continuing to train and inspire future medical professionals.

📖Notable Publications

Minal Ghante | Analytical Chemistry | Best Researcher Award

Dr. Minal Ghante | Analytical Chemistry | Best Researcher Award

Smt. Kashibai Navale College of Pharmacy, India

👨‍🎓Profiles

🎓 Early Academic Pursuits

From the outset of your academic journey, you demonstrated a keen interest in chemistry and material sciences, which led you to pursue higher education in this field. Your Bachelor’s, Master’s, and Ph.D. studies at Thiruvalluvar University provided a solid foundation in chemistry, focusing on nanomaterials and electrocatalysis. Your early research efforts delved into photocatalysis and energy storage systems, setting the stage for your future contributions to renewable energy research.

🏆 Professional Endeavors

Your professional career has been shaped by roles in academia and research, particularly through your postdoctoral fellowship at Chulalongkorn University, Bangkok, Thailand. Under the mentorship of Dr. Piyasan Praserthdam, you continued your explorations in electrocatalysis and nanomaterials. Your expertise spans energy storage, hydrogen evolution reaction (HER), and catalysis, with a specific focus on sustainable and platinum-free electrocatalysts.

🔬 Contributions and Research Focus

A key area of your research revolves around the design and development of nanomaterials for energy conversion. Your work in HER and OER electrocatalysis has played a pivotal role in advancing green hydrogen technology. You have also contributed to the study of supercapacitors, electrochemical impedance spectroscopy, and photocatalytic materials, making significant strides toward efficient and cost-effective energy solutions. Your Ph.D. thesis focused on the synthesis, characterization, and application of platinum-free electrocatalysts, demonstrating your commitment to sustainable research.

🌍 Impact and Influence

Your research has had a profound impact on the field of sustainable energy and nanotechnology, contributing to the global push for cleaner energy solutions. Through international collaborations and scientific publications, your work has influenced both academic circles and industrial applications. The practical applications of your research in energy storage and hydrogen production have the potential to revolutionize renewable energy technologies.

📚 Academic Citations and Publications

Your scholarly contributions include several SCI-indexed publications, showcasing your research in renowned journals and international conferences. Your work has garnered significant recognition, with numerous citations in leading scientific papers. This highlights the relevance and impact of your findings in the scientific community.

🛠️ Technical Skills

With a strong background in analytical and electrochemical techniques, you possess expertise in:

👨‍🏫 Teaching and Mentorship

Throughout your academic career, you have actively mentored and guided students, fostering the next generation of researchers. Your involvement in student projects during your Ph.D. and postdoctoral tenure has played a crucial role in their academic and professional development. Your dedication to knowledge-sharing and mentorship is a testament to your commitment to academic excellence.

🚀 Legacy and Future Contributions

Your long-term vision includes expanding the frontiers of green energy research by focusing on sustainable electrocatalysts and advanced nanomaterials. Your work has already paved the way for innovative energy storage systems, and you continue to explore cost-effective solutions for hydrogen production and environmental sustainability. Moving forward, you aim to contribute to cutting-edge research, mentor upcoming scientists, and drive impactful collaborations worldwide.

📖Notable Publications

  • RP-HPLC and HPTLC method development and validation for estimation of dolutegravir in bulk and tablet dosage form
    Authors: Ghante, M.R.; Sawant, S.D.; Undre, M.; Jagtap, S.G.; Kulkarni, P.; Nikam, V.S.
    Journal: Indian Drugs
    Year: 2019

  • Stability indicating method development and validation of finasteride by high-performance thin-layer chromatography studies
    Authors: Sawant, S.; Ghante, M.
    Journal: Asian Journal of Chemistry
    Year: 2017

  • Development and validation of stability indicating method for darunavir with forced degradation studies using LC-ESI-MS/MS
    Authors: Ghante, M.; Sawant, S.D.
    Journal: Asian Journal of Chemistry
    Year: 2016

  • Development and validation of UV spectrophotometric method for estimation of Darunavir ethanolate in bulk and tablet dosage form
    Authors: Ghante, M.R.; Shelar, R.S.; Sawant, S.D.; Kadam, M.M.
    Journal: International Journal of Pharmacy and Pharmaceutical Sciences
    Year: 2014

  • Development and validation of UV spectrophotometric methods for estimation of Atazanavir sulphate in bulk and tablet dosage form
    Authors: Ghante, M.R.; Kadam, M.M.; Sawant, S.D.; Shelar, R.S.
    Journal: International Journal of Pharmacy and Pharmaceutical Sciences
    Year: 2014