Muhammad Kashif Majeed | Materials Chemistry | Best Researcher Award

Dr. Muhammad Kashif Majeed | Materials Chemistry | Best Researcher Award

National University of Science and Technology, Pakistan

👨‍🎓Profiles

📚 Early Academic Pursuits

Dr. Muhammad Kashif Majeed’s academic journey reflects a strong foundation in chemistry, especially materials science and electrochemistry. His studies began with a Bachelor's degree in Chemistry from Gomal University, Pakistan, followed by a Master’s in the same field. His educational path continued with a Ph.D. in Chemistry (Materials/Inorganic) from Shandong University, China, where he focused on the synthesis and electrochemical performances of Si/C-based anode materials for lithium-ion batteries. His thesis, guided by Professors Yang Jian and Xiaojian Ma, provided significant contributions to the development of energy storage solutions.

🧑‍🔬 Professional Endeavors

Since 2023, Dr. Majeed has been balancing multiple prestigious roles. He is an Assistant Professor in the Department of Chemistry at the National University of Science and Technology, Islamabad, Pakistan. He also holds a Senior Researcher position in Mechanical Engineering at the University of Texas at Dallas, Richardson, Texas, U.S. His career trajectory includes prestigious postdoctoral experiences at globally recognized institutions, including the University of Texas at Arlington and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences. These roles have enabled him to strengthen his expertise in materials science, catalysis, and energy storage technologies.

🔬 Contributions and Research Focus

Dr. Majeed’s research interests primarily lie in materials chemistry, particularly focusing on lithium-ion battery development, nanomaterials, and electrochemical systems. His work on controllable synthesis techniques for Si/C-based anode materials has had a profound impact on the field of energy storage. Additionally, he has conducted advanced research in materials synthesis, crystal analysis, and electrochemical analysis techniques such as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge/discharge tests. His research has contributed significantly to the development of efficient, sustainable materials for energy storage systems, thus advancing clean energy technologies.

🌍 Impact and Influence

Dr. Majeed’s research has been pivotal in enhancing our understanding of electrochemical energy storage materials, especially those that involve novel materials like Si/C anodes. His work has been recognized in several top-tier journals such as ACS Applied Materials Interfaces, ACS Omega, Materials, and Sustainable Energy and Fuels. As an editorial board member and reviewer for prestigious journals, he plays an integral role in shaping future scientific discourse and advancing the materials science community. His collaborations across continents further amplify his global impact in the field.

📑 Academic Cites and Publications

Dr. Majeed’s publications in leading scientific journals have garnered significant attention in the materials science and electrochemistry communities. His research is frequently cited, highlighting its importance in advancing battery technology and energy storage solutions. As an active journal reviewer for high-impact publications such as ACS Applied Materials Interfaces and Chemistry-A European Journal, he not only contributes to scientific literature but also ensures the high quality and rigor of published research in his field.

🛠️ Technical Skills

Dr. Majeed possesses a diverse skill set, including proficiency in advanced materials characterization techniques such as X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR). His expertise extends to the use of computational tools for density functional theory (DFT), material modeling (ChemCraft, Gauss view), and nano-materials synthesis via various methods like sol-gel, hydrothermal, and solvothermal. He is highly proficient in electrochemical analysis methods, making him a versatile researcher capable of addressing complex material challenges.

👨‍🏫 Teaching Experience and Mentorship

As an Assistant Professor at the National University of Science and Technology, Dr. Majeed is involved in teaching advanced chemistry courses, where he imparts knowledge in materials science and electrochemistry. His teaching approach integrates his deep research experience, offering students a comprehensive understanding of both theory and practical applications in chemistry and materials science. Dr. Majeed’s mentorship extends beyond the classroom, as he actively guides research projects, helping students navigate complex scientific problems and develop critical skills for their future careers.

🏆 Legacy and Future Contributions

Dr. Majeed’s future contributions to the fields of energy storage and materials science are poised to have a lasting impact. His work in developing high-performance, sustainable materials for energy applications will continue to drive innovation in battery technologies. Moreover, his collaborative research efforts at global institutions suggest that he will remain at the forefront of scientific advancements, mentoring the next generation of researchers and contributing to a sustainable energy future. As he continues his academic career, Dr. Majeed is likely to leave a significant legacy in both research and education, inspiring future advancements in materials science and engineering.

📖Notable Publications

Interfacial Engineering of Polymer Solid‐State Lithium Battery Electrolytes and Li‐Metal Anode: Current Status and Future Directions

Authors: Muhammad Kashif Majeed, Arshad Hussain, Ghulam Hussain, Muhammad Umar Majeed, Muhammad Zeeshan Ashfaq, Rashid Iqbal, Adil Saleem

Journal: Small

Year: 2024-12

Designing Nanocomposite-Based Electrochemical Biosensors for Diabetes Mellitus Detection: A Review

Authors: Xiang Guo, Jiaxin Wang, Jinyan Bu, Huichao Zhang, Muhammad Arshad, Ayesha Kanwal, Muhammad K. Majeed, Wu-Xing Chen, Kuldeep K Saxena, Xinghui Liu

Journal: ACS Omega

Year: 2024-07-16

Ni-rich cathode evolution: exploring electrochemical dynamics and strategic modifications to combat degradation

Authors: Adil Saleem, Leon L. Shaw, Rashid Iqbal, Arshad Hussain, Abdul Rehman Akbar, Bushra Jabar, Sajid Rauf, Muhammad Kashif Majeed

Journal: Energy Storage Materials

Year: 2024-05

Co3(hexaamino dipyrazinoquinoxaline)2: Highly conductive and robust two-dimensional Aza-based cobalt metal-organic framework as an efficient electrocatalyst for acidic oxygen evolution

Authors: Rashid Iqbal, M. Shahzaib Naeem, Muhammad Ahmad, Arshad Hussain, Abdul Rehman Akbar, Maryam Kiani, M. Zeeshan Ashfaq, Sajid Rauf, Kareem Yusuf, Muhammad K. Majeed et al.

Journal: Journal of Power Sources

Year: 2024-02

Boosting the crystallinity of novel two-dimensional hexamine dipyrazino quinoxaline-based covalent organic frameworks for electrical double-layer supercapacitors

Authors: Rashid Iqbal, Muhammad Kashif Majeed, Arshad Hussain, Aziz Ahmad, Muhammad Ahmad, Bushra Jabar, Abdul Rehman Akbar, Sajjad Ali, Sajid Rauf, Adil Saleem

Journal: Materials Chemistry Frontiers

Year: 2023

Simulation Analysis of Novel Integrated LNG Regasification-Organic Rankine Cycle and Anti-Sublimation Process to Generate Clean Energy

Authors: Suri, S.U.K.; Majeed, M.K.; Ahmad, M.S.

Journal: Energies

Year: 2023

 

 

Tao Yang | Electrochemistry | Best Researcher Award

Prof. Tao Yang | Electrochemistry | Best Researcher Award

University of Science and Technology Beijing, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Prof. Tao Yang embarked on his academic journey at the University of Science and Technology Beijing (USTB), where he pursued a doctoral degree at the State Key Laboratory of Advanced Metallurgy from 2012 to 2018. His early research laid a strong foundation in materials science and electrochemistry, setting the stage for his future contributions to sustainable energy and carbon neutrality.

👨‍🏫 Professional Endeavors

After completing his doctorate, Prof. Yang continued at USTB as a postdoctoral researcher in the School of Materials Science and Engineering (2018-2021). During this period, he expanded his expertise in electrocatalysis and nanogenerator technologies. He then advanced to an associate professor role at the Collaborative Innovation Center of Steel Technology (2018-2021), further enhancing his research impact. Since July 2021, he has served as a full professor at the Institute of Carbon Neutrality at USTB, leading groundbreaking research initiatives in sustainable energy solutions.

🔬 Contributions and Research Focus

Prof. Yang's research spans multiple critical areas in electrochemistry and energy science, including:

Electrocatalysis & Hydrogen Production: Developing advanced materials for water splitting to generate hydrogen efficiently.

Carbon Dioxide Reduction & Utilization: Innovating techniques to convert CO₂ into valuable chemical fuels, addressing climate change challenges.

Piezoelectricity & Nanogenerators: Exploring self-powered energy harvesting technologies for renewable energy applications.

Electromagnetic Wave Absorption: Investigating materials that mitigate electromagnetic interference, contributing to advanced communication and defense technologies.

📊 Impact and Influence

With over 60 SCI/EI-indexed papers as the first or corresponding author, Prof. Yang has established himself as a prolific researcher. His work has amassed 3,500 citations on Google Scholar, achieving an h-index of 36. Notably, 8 of his papers have been featured as journal covers, and 7 have been recognized as ESI Highly Cited Papers, underscoring the significance of his research in the scientific community.

🏆 Academic Recognitions

Prof. Yang's remarkable contributions have earned him numerous accolades, including:

Postdoctoral Innovative Talent Support Program

Beijing Outstanding Talent – Young Backbone Individual

Inclusion in Stanford University’s World’s Top 2% Scientists (2022-2024) These prestigious honors highlight his sustained excellence and influence in the field of carbon neutrality and energy conversion.

🛠️ Technical Skills

Prof. Yang possesses a deep expertise in advanced material characterization and electrochemical techniques, including: Electrocatalysis testing and analysis, Nanomaterial synthesis and modification, Advanced spectroscopy and microscopy techniques, Computational modeling for material behavior predictions His technical prowess enables him to push the boundaries of innovation in clean energy technologies.

🎓 Teaching and Mentorship

As a professor and doctoral supervisor at USTB, Prof. Yang plays a pivotal role in shaping the next generation of researchers. He actively mentors Ph.D. and master's students, guiding them in cutting-edge research on sustainable energy solutions. His commitment to academic excellence ensures that his students receive top-tier education and research training.

🌏 Legacy and Future Contributions

Looking ahead, Prof. Yang aims to: Expand research on scalable hydrogen production technologies, Develop novel catalysts for efficient CO₂ conversion, Advance self-powered nanogenerator applications, Contribute to global efforts in achieving carbon neutrality His work continues to drive scientific innovation and practical solutions for a more sustainable future, making him a leading figure in electrochemical energy research.

📖Notable Publications

1. Gut dysbiosis is linked to hypertension
Authors: T Yang, MM Santisteban, V Rodriguez, E Li, N Ahmari, JM Carvajal, ...
Journal: Hypertension
Year: 2015

2. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys
Authors: T Yang, YL Zhao, Y Tong, ZB Jiao, J Wei, JX Cai, XD Han, D Chen, A Hu, ...
Journal: Science
Year: 2018

3. DSC: Scheduling parallel tasks on an unbounded number of processors
Authors: T Yang, A Gerasoulis
Journal: IEEE Transactions on Parallel and Distributed Systems
Year: 1994

4. Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy
Authors: YL Zhao, T Yang, Y Tong, J Wang, JH Luan, ZB Jiao, D Chen, Y Yang, ...
Journal: Acta Materialia
Year: 2017

5. A comparison of clustering heuristics for scheduling directed acyclic graphs on multiprocessors
Authors: A Gerasoulis, T Yang
Journal: Journal of Parallel and Distributed Computing
Year: 1992

6. The gut microbiota and the brain–gut–kidney axis in hypertension and chronic kidney disease
Authors: T Yang, EM Richards, CJ Pepine, MK Raizada
Journal: Nature Reviews Nephrology
Year: 2018

7. Hypertension-linked pathophysiological alterations in the gut
Authors: MM Santisteban, Y Qi, J Zubcevic, S Kim, T Yang, V Shenoy, ...
Journal: Circulation Research
Year: 2017

Yi Yu | Materials Chemistry | Best Researcher Award

Prof. Yi Yu | Materials Chemistry | Best Researcher Award

Gannan Normal University, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Professor Yi Yu embarked on his academic journey with a strong foundation in photonics and materials science. His early research was focused on the development of novel inorganic optical materials, particularly for white light-emitting diodes (wLEDs). With a keen interest in the intersection of physics and material engineering, he pursued higher education that provided him with expertise in optical properties, luminescent materials, and photonic applications.

🏛️ Professional Endeavors

Currently serving as a Professor at Gannan Normal University, China, Yi Yu has been actively engaged in research, teaching, and mentoring young scientists. His expertise in optical materials has earned him recognition as a leading figure in photonics. In 2020, he received the prestigious Natural Science Foundation of Jiangxi Province for Distinguished Young Scholars, highlighting his contributions to the field.

🔬 Contributions and Research Focus

Professor Yi Yu’s research primarily revolves around inorganic optical materials for wLEDs and related applications. His work aims to improve the efficiency, stability, and color quality of wLEDs, making them more sustainable and commercially viable. He has contributed significantly to material synthesis, luminescent enhancement, and photonic device integration. His research findings have led to advancements in LED lighting technology, benefiting industries such as display technology, automotive lighting, and smart illumination systems.

🌍 Impact and Influence

With an extensive body of work in photonics, Professor Yi Yu has influenced both academic and industrial sectors. His research has helped bridge the gap between fundamental optical science and practical LED applications. His work is frequently cited by researchers in photonics, materials science, and semiconductor technology, demonstrating its broad impact.

📚 Academic Citations and Publications

Professor Yi Yu has published numerous high-impact research papers in SCI-indexed journals, solidifying his reputation as a key contributor to the field. His research articles are widely referenced, showcasing his role in advancing knowledge on luminescent materials, phosphors for LEDs, and energy-efficient lighting solutions.

⚙️ Technical Skills and Expertise

Yi Yu’s technical expertise spans across:

  • Synthesis of inorganic optical materials
  • Spectroscopic analysis of luminescent materials
  • Optoelectronic device fabrication
  • Photonic material characterization
  • Thermal stability and efficiency optimization in wLEDs

🎓 Teaching Experience and Mentorship

As a Professor, Yi Yu is dedicated to mentoring the next generation of photonics researchers. He has guided numerous students in their graduate and doctoral studies, helping them explore cutting-edge research in optical materials. His teaching methodology integrates theoretical knowledge with hands-on experimental training, ensuring that students develop both conceptual understanding and practical expertise.

🏆 Legacy and Future Contributions

Professor Yi Yu’s work continues to shape the future of photonics, with ongoing projects aimed at enhancing LED performance, developing next-generation luminescent materials, and expanding applications of inorganic optical materials. His contributions not only advance academic research but also pave the way for technological innovations in energy-efficient lighting and optoelectronics.

📖Notable Publications

Constructing core-shell structural bimetallic CoNi alloys doped carbon aerogels for highly efficient electromagnetic wave absorption
Authors: Q. Xu, X. Zhu, J. Yu, X. Liu, X. Zeng
Journal: Journal of Alloys and Compounds
Year: 2025

Benefit of Tb³⁺ ions to the spectral properties of Dy³⁺/Tb³⁺:CaYAlO₄ crystal for use in yellow laser
Authors: Y. Gong, Y. Wang, Z. Wang, Y. Sun, Y. Yu
Journal: Journal of Luminescence
Year: 2024

Benefit of Pr³⁺ ions to the spectral properties of Er³⁺/Pr³⁺:SrLaAlO₄ crystal for use in 2.7 μm mid-infrared laser
Authors: Y. Wang, J. Cheng, Y. Gong, Y. Sun, Y. Yu
Journal: Journal of Luminescence
Year: 2023

Dual-emission center ratiometric optical thermometer based on Bi³⁺ and Mn⁴⁺ co-doped SrGd₂Al₂O₇ phosphor
Authors: Y. Yu, K. Shao, C. Niu, X. Zhang, Y. Wang
Journal: RSC Advances
Year: 2023

Kiran Aftab | Electrochemistry | Best Researcher Award -1735

Dr. Kiran Aftab | Electrochemistry | Best Researcher Award

Government College University Faisalabad, Pakistan

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Kiran Aftab embarked on her academic journey with a strong foundation in science, excelling in her early education. She secured first-division results in her Matric (1993) and F.Sc. (1996) from Government Girls High School and Government College for Women, Madina Town, Faisalabad. Her passion for chemistry led her to pursue a B.Sc. (1998) from Punjab University, followed by an M.Sc. (2002) in Chemistry at the University of Agriculture, Faisalabad, where she focused on the production of active carbon and furfural from Kai using chemical treatments. Her research journey intensified during her M.Phil. (2004), where she optimized conditions for producing Copper Phthalocyanin Blue pigment. This was further elevated in her Ph.D. (2013) at Government College University Faisalabad/NIBGE, where she worked on developing low-cost methodologies for removing toxic metals (Pb, Zn) using fungal biomass, showcasing her commitment to environmental chemistry and sustainable solutions.

🏆 Professional Endeavors

With a career spanning over two decades, Dr. Kiran Aftab has made significant contributions to academia and research. Her journey began as a Lecturer (BPS-18) at GCUF in 2003, where she nurtured young minds for over a decade. She progressively advanced to Assistant Professor (BPS-19) in 2014 and later took on higher responsibilities, including serving in an officiating role (OPS). From 2015 to 2018, she was on deputation at GCWUF, further expanding her influence in academia. In 2021, she was appointed Assistant Professor (BPS-19) at GCUF, and by the end of 2022, she was promoted to Associate Professor (BPS-20), solidifying her role as a leading educator and researcher.

🔬 Contributions and Research Focus

Dr. Kiran Aftab’s research primarily focuses on environmental chemistry, sustainable materials, and industrial applications. Her doctoral work on fungal biomass for toxic metal removal highlights her dedication to eco-friendly solutions for pollution control. She has extensively worked on: Heavy Metal Removal: Developing innovative, cost-effective methods for mitigating industrial pollutants. Pigment Chemistry: Optimizing the synthesis of industrial pigments like Copper Phthalocyanin Blue. Waste Utilization: Transforming agricultural waste into valuable chemical compounds, as seen in her M.Sc. research. Her work contributes to both theoretical advancements and real-world applications in sustainable chemistry.

🌍 Impact and Influence

Dr. Aftab’s contributions to environmental chemistry have practical implications for industrial waste management and pollution control. By developing low-cost methodologies for metal removal, she has paved the way for sustainable industrial practices. Her research has influenced scholars and professionals working in green chemistry, bioremediation, and industrial waste management. As an HEC-approved research supervisor, she continues to mentor aspiring chemists, ensuring that her expertise is passed on to the next generation of researchers.

📚 Academic Citations and Recognitions

Dr. Kiran Aftab’s research has been recognized in academia, with citations reflecting the significance of her work in environmental remediation and industrial chemistry. Her studies on fungal biomass applications and pigment optimization have contributed to scientific discussions in waste management and sustainable materials. Her active involvement in national and international research platforms, along with her ORCID profile (0000-0003-4180-8623), underscores her standing as a distinguished scholar.

🛠️ Technical Skills

Dr. Aftab possesses a robust technical skill set in analytical chemistry, industrial pigment formulation, and environmental pollution control. Her expertise includes:

Bioremediation Techniques for heavy metal removal.

Pigment Chemistry for industrial applications.

Analytical Instrumentation for chemical characterization.

Sustainable Waste Utilization strategies.

Her interdisciplinary approach integrates chemistry, environmental science, and industrial applications.

👩‍🏫 Teaching and Mentorship Experience

With 20 years of teaching experience, Dr. Kiran Aftab has played a pivotal role in shaping the academic careers of students at Government College University Faisalabad. As a mentor and research supervisor, she has guided numerous postgraduate students in their theses and research projects. Her ability to bridge theoretical knowledge with practical applications has made her a respected educator in the field of chemistry.

🌟 Legacy and Future Contributions

Dr. Kiran Aftab’s dedication to research and education continues to impact the scientific community. Her work in environmental chemistry and sustainable industrial practices serves as a model for future researchers. Looking ahead, she aims to: Expand research in green chemistry and eco-friendly materials. Mentor more postgraduate researchers in environmental remediation. Collaborate on international research projects to address global environmental challenges. Through her relentless pursuit of scientific excellence, Dr. Aftab is leaving a lasting legacy in both academia and industry.

📖Notable Publications

Dyes adsorption using clay and modified clay: A review

  • Authors: A. Kausar, M. Iqbal, A. Javed, K. Aftab, H. N. Bhatti, S. Nouren
  • Journal: Journal of Molecular Liquids
  • Year: 2018

Determination of different trace and essential elements in lemon grass samples by X-ray fluorescence spectroscopy technique

  • Authors: K. Aftab, M. D. Ali, P. Aijaz, N. Beena, H. J. Gulzar, K. Sheikh, Q. Sofia
  • Journal: International Food Research Journal
  • Year: 2011

Iron oxide nanoparticles immobilized Aspergillus flavus manganese peroxidase with improved biocatalytic, kinetic, thermodynamic, and dye degradation potentialities

  • Authors: U. Kalsoom, Z. Ahsan, H. N. Bhatti, F. Amin, R. Nadeem, K. Aftab, M. Bilal
  • Journal: Process Biochemistry
  • Year: 2022

Enzyme‐assisted bioremediation approach for synthetic dyes and polycyclic aromatic hydrocarbons degradation

  • Authors: Z. Ahsan, U. Kalsoom, H. N. Bhatti, K. Aftab, N. Khalid, M. Bilal
  • Journal: Journal of Basic Microbiology
  • Year: 2021

Wastewater-irrigated vegetables are a significant source of heavy metal contaminants: Toxicity and health risks

  • Authors: K. Aftab, S. Iqbal, M. R. Khan, R. Busquets, R. Noreen, N. Ahmad, S. G. T. Kazimi
  • Journal: Molecules
  • Year: 2023

Physico-chemical study for zinc removal and recovery onto native/chemically modified Aspergillus flavus NA9 from industrial effluent

  • Authors: K. Aftab, K. Akhtar, A. Jabbar, I. H. Bukhari, R. Noreen
  • Journal: Water Research
  • Year: 2013

Batch and column study for Pb(II) remediation from industrial effluents using glutaraldehyde–alginate–fungi biocomposites

  • Authors: K. Aftab, K. Akhtar, A. Jabbar
  • Journal: Ecological Engineering
  • Year: 2014

 

Eugene Mananga | Nuclear Magnetic Resonance | Best Researcher Award 1739

Prof. Dr. Eugene Mananga | Nuclear Magnetic Resonance (NMR) | Best Researcher Award

The City University of New York United States

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Eugene Stéphane Mananga began his academic journey in Cameroon, where he demonstrated exceptional talent in physics and mathematics. He completed his B.Sc. in Physics/Chemistry from the University of Yaoundé in 1990, ranking among the top 5% of his class. He continued his studies, earning an M.Sc. in Physics (1991) and a DEA in Physics (1992), securing first rank. His academic curiosity led him to pursue a Doctorate in Mechanics - Solitons (1992-94), though he did not defend his thesis. His academic ambitions took him to The City University of New York (CUNY), where he earned multiple advanced degrees, including an M.A. in Physics (2002), an M. Phil. in Physics (2004), and a Ph.D. in Physics (2005) under the mentorship of Distinguished Professor Steven G. Greenbaum. His doctoral research set the stage for groundbreaking work in nuclear magnetic resonance (NMR) and condensed matter physics.

🏛️ Professional Endeavors

Dr. Mananga has held prestigious positions at Harvard University, MIT, CUNY, New York University (NYU), and Brookhaven National Laboratory, contributing significantly to medical physics, solid-state NMR, and nuclear medicine. He has been a:

Postdoctoral Fellow at Harvard Medical School (2011-14) and the Atomic Energy Commission (CEA), France (2009-11), working on neuroimaging and nuclear medicine.

Research Fellow at Massachusetts General Hospital and National High Magnetic Field Lab, specializing in high-field NMR applications.

NSF/AGEP-MAGNET Chancellor Fellow at CUNY (2005-07), demonstrating excellence in research and education.

Dr. Mananga’s interdisciplinary expertise spans across physics, engineering, medical sciences, and sustainability, reflecting his broad academic interests and impact.

🏆 Contributions and Research Focus

Dr. Mananga’s research has significantly advanced solid-state nuclear magnetic resonance (NMR), quantum physics, and medical imaging. He is best known for his work on the Floquet-Magnus expansion, a mathematical technique widely applied in NMR spectroscopy and condensed matter physics. His key contributions include:

Solid-State NMR Spectroscopy: His work on dipolar recoupling techniques has improved signal processing in high-field NMR.

Quantum Physics & Magnonics: He has extended the Floquet-Magnus expansion theory, enabling new applications in quantum mechanics and spintronics.

Medical Imaging & Nuclear Medicine: His research at Harvard Medical School and Massachusetts General Hospital has contributed to better diagnostic imaging techniques in nuclear medicine.

Sustainability & Materials Science: His recent studies at Harvard University (HES, 2022) focus on sustainable materials and their applications in energy storage and green technology.

His ability to bridge physics, engineering, and medicine highlights his interdisciplinary impact on modern science.

🌍 Impact and Influence

Dr. Mananga’s research has led to pioneering advancements in NMR spectroscopy, quantum physics, and medical imaging. His work has been widely cited, influencing scientists, engineers, and medical researchers across disciplines. Some key aspects of his influence include:

Academic Citations & Recognition: His publications, particularly on the Floquet-Magnus expansion and solid-state NMR, have been cited hundreds of times in prestigious journals.

Mentorship & Collaboration: He has collaborated with leading institutions, including Harvard, MIT, CUNY, NYU, and Brookhaven National Laboratory, mentoring students and researchers worldwide.

Technical Contributions: His research has improved NMR techniques, quantum computing principles, and sustainable material applications.

Dr. Mananga’s contributions continue to shape scientific advancements in multiple fields.

🛠️ Technical Skills

Dr. Mananga possesses expertise in advanced scientific techniques, including:

Nuclear Magnetic Resonance (NMR) Spectroscopy

Quantum Physics & Spintronics

Medical Imaging & Nuclear Medicine

Biostatistics & Applied Mathematics

Sustainable Materials & Green Technology

His strong computational and analytical skills allow him to solve complex problems across physics, chemistry, and medical sciences.

📚 Teaching Experience

Dr. Mananga has a strong background in academia, having taught and mentored students at: City University of New York (CUNY), New York University (NYU), Harvard Medical School. His dedication to education has inspired numerous students to pursue careers in physics, engineering, and medical sciences.

🚀 Legacy and Future Contributions

Dr. Mananga’s legacy lies in his ability to integrate physics, medical imaging, and sustainable materials science. His future contributions are expected to:

Advance quantum computing and solid-state NMR spectroscopy

Enhance nuclear medicine techniques for better diagnostics

Promote sustainability in energy storage and materials science

Mentor the next generation of scientists and engineers

His pioneering research and interdisciplinary approach ensure that his work will continue to impact science, technology, and medicine for decades.

📖Notable Publications

Introduction of the Floquet-Magnus expansion in solid-state nuclear magnetic resonance spectroscopy
Authors: ES Mananga, T Charpentier
Journal: The Journal of Chemical Physics, 2011

Facile synthesis of the Basolite F300-like nanoscale Fe-BTC framework and its lithium storage properties
Authors: X Hu, X Lou, C Li, Y Ning, Y Liao, Q Chen, ES Mananga, M Shen, B Hu
Journal: RSC Advances, 2016

High pressure NMR study of water self-diffusion in NAFION-117 membrane
Authors: JRP Jayakody, PE Stallworth, ES Mananga, J Farrington-Zapata
Journal: The Journal of Physical Chemistry B, 2004

On the Floquet–Magnus expansion: Applications in solid-state nuclear magnetic resonance and physics
Authors: ES Mananga, T Charpentier
Journal: Physics Reports, 2016

NMR investigation of water and methanol transport in sulfonated polyarylenethioethersulfones for fuel cell applications
Authors: JRP Jayakody, A Khalfan, ES Mananga, SG Greenbaum, TD Dang
Journal: Journal of Power Sources, 2006

Finite pulse width artifact suppression in spin-1 quadrupolar echo spectra by phase cycling
Authors: ES Mananga, YS Rumala, GS Boutis
Journal: Journal of Magnetic Resonance, 2006

Efficient theory of dipolar recoupling in solid-state nuclear magnetic resonance of rotating solids using Floquet–Magnus expansion: Application on BABA and C7 radiofrequency
Authors: ES Mananga, AE Reid, T Charpentier
Journal: Solid State Nuclear Magnetic Resonance, 2012

Sundaramahalingam M. A | Bioenergy | Young Scientist Award

Dr. Sundaramahalingam M. A | Bioenergy | Young Scientist Award

V. S. B. Engineering College, India

👨‍🎓Profiles

Early Academic Pursuits 🎓

Dr. M. A. Sundaramahalingam's academic journey began with a strong foundation in biotechnology, achieving his B.Tech in Biotechnology from Karpaga Vinayaga College of Engineering and Technology, Chennai, in 2015. His drive for advanced knowledge led him to pursue an M.Tech in Biotechnology from Kamaraj College of Engineering and Technology, Madurai. He further enhanced his academic profile by earning a Ph.D. in Chemical Engineering from the prestigious National Institute of Technology, Thiruchirappalli. His educational background laid a robust foundation for his research and professional endeavors, contributing to his profound understanding of the ever-evolving field of biotechnology.

Professional Endeavors 💼

Dr. Sundaramahalingam has made significant strides in his professional career, particularly as an Assistant Professor (SG) at V.S.B. Engineering College, Karur, where he has contributed to multiple areas within biotechnology and chemical engineering. His role involved guiding students in subjects such as Bioinformatics, Bioprocess Laboratory, Bioinformatics Laboratory, and Bioenergy and Biofuels. These responsibilities reflect his commitment to developing the next generation of professionals and researchers in the biotechnology field. His passion for teaching is matched by his continuous involvement in both theoretical and practical aspects of the field.

Contributions and Research Focus 🔬

His research focus primarily revolves around bioinformatics, bioprocess engineering, and the development of bioenergy and biofuels. His studies explore the intersection of biotechnology and chemical engineering, where he has contributed valuable insights into improving bioprocesses and energy solutions. His work also extends to the computational and practical applications of bioinformatics, ensuring a multi-disciplinary approach to problem-solving in modern biotechnology.

Impact and Influence 🌍

His work has a significant impact on both academic and practical domains. His contributions to the fields of bioenergy, biofuels, and bioinformatics have been pivotal in advancing the understanding of sustainable energy sources and the development of innovative biotechnological solutions. Through his research, he has influenced the academic community, providing important tools and insights that aid the design of cleaner, more efficient biotechnological processes. His academic pursuits also aim to bridge gaps between theoretical knowledge and practical application, thereby advancing the future of biotechnology.

Academic Cites and Recognitions 📚

His academic excellence is evident not only in his high academic performance but also through his scholarly contributions. As an educator and researcher, he has published works that contribute to the growing body of knowledge in biotechnology and chemical engineering. His academic journey, particularly his research in bioinformatics and biofuels, has attracted attention in relevant scientific communities, with recognition from both peers and students.

Technical Skills 🛠️

Dr. Sundaramahalingam is proficient in a range of technical skills that are essential for his research and teaching roles. He is adept at using software such as PyCharm for programming, Cytoscape for network analysis, and Aspen for process modeling and simulation. His skills extend to the use of desktop publishing tools, as well as advanced instrumentation techniques relevant to biotechnology and chemical engineering, enabling him to stay at the forefront of innovation in these fields.

Teaching Experience 📚

With a passion for nurturing young minds, Dr. Sundaramahalingam has been instrumental in the development of students' academic and research skills. His experience as an Assistant Professor at V.S.B. Engineering College encompasses a diverse teaching portfolio, including bioinformatics and bioprocess-related subjects, where he has not only lectured but also mentored students in their research endeavors. Through his guidance, students have achieved success in various projects and research activities, solidifying his reputation as a dedicated and effective educator.

Legacy and Future Contributions 🔮

Looking ahead, Dr. Sundaramahalingam is poised to make significant contributions to the fields of biotechnology and chemical engineering. His research on bioenergy and biofuels is expected to play a pivotal role in the global push toward renewable energy sources. He remains committed to advancing sustainable technologies and exploring new avenues for bioinformatics and bioengineering applications. As he continues to build upon his extensive academic and professional background, Dr. Sundaramahalingam aims to leave a lasting legacy of innovation, education, and global impact in the biotechnology sector.

📖Notable Publications

  • Biohydrogen recovery by biosurfactant-induced ultrasonic fractionation of macroalgae, Sargassum tennerimum
    • Authors: Sundaramahalingam, M.A., Snehya, A.V., Sivashanmugam, P., Rajeshbanu, J., Anandan, S.
    • Journal: Biomass Conversion and Biorefinery
    • Year: 2025
  • Synergistic biodiesel production from food flavourant industry wastewater using Rhodotorula mucilaginosa and Chlorella vulgaris
    • Authors: Sundaramahalingam, M.A., Sivashanmugam, P.
    • Journal: Process Safety and Environmental Protection
    • Year: 2024
  • Production of lipase from Priestia endophytica SSP strain and its potential application in deinking of printed paper
    • Authors: Sundaramahalingam, M.A., Vijayachandran, P., Rajeshbanu, J., Sivashanmugam, P.
    • Journal: Biomass Conversion and Biorefinery
    • Year: 2024
  • Optimization of process parameters in acoustic cavitation mediated extraction of pectin from Prosopis juliflora pod peel and its analytical characterization
    • Authors: Ponmanian M, Vishnuprasad S, Suriiyakumar R, Ganeshmoorthy I, Sundaramahalingam M.A.
    • Journal: Biomass Conversion and Biorefinery
    • Year: 2024
  • An Algorithmic Soft Computing Technique for Identifying Lipase-Producing Yeast Using Its Gene Expression Data
    • Authors: Sundaramahalingam, M.A., Teja, R., Sivashanmugam
    • Book: Computational Approaches in Bioengineering: Volume 1: Computational Approaches in Biotechnology and Bioinformatics
    • Year: 2024
  • Surfactant Combined Ultrasonic Pre-treatment for the disintegration of Sargassum tennerimum (marine macroalgae) and Evaluation of its Efficiency for the Generation of Biohydrogen
    • Authors: Snehya, A.V., Sundaramahalingam, M.A., Banu, J.R., Sivashanmugam, P.
    • Journal: Bioenergy Research
    • Year: 2023
  • Production of microbial carotenoid using innate inherent of the food industry wastewater
    • Authors: Sundaramahalingam, M.A., Sivashanmugam, P.
    • Journal: Journal of Molecular Liquids
    • Year: 2023