Professor | Department of Chemical Sciences Federico II, Naples IT | Italy
Prof. Andrea Carpentieri is an accomplished biochemist whose research career spans advanced biomolecular analysis, structural proteomics, and the application of biochemical methodologies to cultural heritage. Trained at the University of Naples “Federico II,” where he specialized in Biological Chemistry, his early work focused on the structural characterization of proteins, including the analysis of recombinant enzymes and the investigation of post-translational modifications such as glycosylation and phosphorylation. Through extensive experience in mass spectrometry including ESI-MS, MALDI-TOF, FT-ICR, and multidimensional chromatography. Prof. Carpentieri developed integrated strategies that combine classical biochemical techniques with cutting-edge MS/MS procedures for detailed molecular mapping. His doctoral and postdoctoral research expanded into functional proteomics, emphasizing protein–protein interactions, differential protein expression, and the identification of biomolecular changes associated with physiological and pathological processes, including apoptosis. A significant part of his international experience was gained at Boston University School of Medicine, where he investigated uncommon post-translational modifications in human protozoan parasites, particularly focusing on O-phosphoglycosylation in Entamoeba species, with implications for diagnostics and immunology. In recent years, Prof. Carpentieri has emerged as a leading figure in the field of biochemical applications for cultural heritage. His research employs high-resolution mass spectrometry to analyze biomolecules polysaccharides, lipids, proteins, and metabolites extracted from ancient artifacts, enabling the identification of original artistic materials, degradation products, and historical production techniques. These analytical insights support archaeometric investigations and inform conservation and restoration practices. Furthermore, he has contributed to the development of environmentally sustainable chemical formulations, including biocompatible adhesives, biocides, and solvents tailored for the preservation of artworks and historical objects. His interdisciplinary work bridges chemistry, archaeology, materials science, and conservation, enhanced by collaborations with Princeton University, the Courtauld Institute of Art, and several Italian cultural institutions. Through his scientific, educational, and outreach activities, Prof. Carpentieri has significantly advanced both biochemical knowledge and the protection of cultural heritage at national and international levels.
Featured Publications
Melchiorre, M., Melchiorre, C., Moracci, M., Somma, P. I., Markiewicz, M., Stolte, S., Cerruti, P., Ruffo, F., & Carpentieri, A. (2025). Lactic acid-based compounds as green alternative solvents for cultural heritage: Application on canvas painting restoration. Journal of Cultural Heritage. Advance online publication.
Lemos, R., Pérez-Badell, Y., De Nisco, M., Cimmino, G., Gonzalez, C., Carpentieri, A., Pacifico, S., Suárez, M., & Pedatella, S. (2025). A fullerene-based selenosugar ball. European Journal of Organic Chemistry. Advance online publication.
Lemos, R., Pérez-Badell, Y., De Nisco, M., Carpentieri, A., Suárez, M., & Pedatella, S. (2024). Organic chimeras based on selenosugars, steroids, and fullerenes as potential inhibitors of the β-amyloid peptide aggregation. ChemPlusChem, 90(3), e202400404.
Amato, L., De Rosa, C., Omodei, D., Tufano, C. C., Buono, R., Tuccillo, C., Roviello, G. N., Spinelli, M., Fontanarosa, C., Papaccio, F., Camerlingo, R., Morgillo, F., Carpentieri, A., Amoresano, A., Tirino, V., Iommelli, F., Corte, C. M. D., Del Vecchio, S., & De Rosa, V. (2025). Synergistic effects of oncogene inhibition and pyruvate dehydrogenase kinase blockade in resistant NSCLC cells. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease, 1871, 168014.
Cipolletta, B., Morelli, M., Perlingieri, C., Somma, P. I., Amoresano, A., Marino, G., & Carpentieri, A. (2024). Molecular characterization of adhesives (glue lining pastes) used in restoration. Analytical Chemistry, 96(42), 16551–16560.