Rohit Vekariya | Physical Chemistry | Outstanding Scientist Award

Assist. Prof. Dr. Rohit Vekariya | Physical Chemistry | Outstanding Scientist Award

CVM University | India

Dr. Rohit L. Vekariya’s research centers on the design, synthesis, and characterization of task-specific ionic liquids and their multidisciplinary applications. His work spans environmental remediation, soft matter and nanotechnology, catalysis, and energy storage systems. He has contributed significantly to water purification, nanoparticle synthesis, micellar self-assembly, and polymer electrolytes. His postdoctoral research advanced ionic-liquid-based catalysts and energy devices, including supercapacitors. Integrating techniques such as SANS, DLS, NMR, and electrochemistry, his research has achieved high international impact and recognition.

Citation Metrics (Scopus)

 2500
 2000
 1000
   500
     0

Citations
2,392

Documents
51

h-index
20

Citations

Documents

h-index

View Scopus Profile View ORCID Profile View Google Scholar Profile

Featured Publications

Abdel-Nasser Alaghaz | Inorganic Chemistry | Research Excellence Award

Prof. Abdel-Nasser Alaghaz | Inorganic Chemistry | Research Excellence Award

Jazan University | Saudi Arabia

Dr. Abdel-Nasser M. A. Alaghaz is a distinguished Egyptian chemist and Professor of Inorganic and Analytical Chemistry at Al-Azhar University, with over two decades of dedicated academic and research experience. His research primarily focuses on coordination chemistry and phosphorus-containing ligands, with a particular emphasis on cyclodiphosph(V)azane derivatives and related compounds. Dr. Alaghaz has made significant contributions to the synthesis, characterization, and biological evaluation of transition metal complexes, including Co(II), Ni(II), Cu(II), and Pd(II). His work integrates detailed physicochemical analyses, such as thermal stability, electrical conductivity, and spectral characterization (IR, UV-Vis, NMR), to explore structure–property relationships. Many of his studies have investigated the correlation between molecular structure and biological activity, highlighting potential pharmaceutical applications and advancing the development of functional materials. Over the years, he has authored numerous high-impact publications in peer-reviewed journals, showcasing novel synthetic strategies and elucidating ligand–metal interactions. Beyond research, Dr. Alaghaz is a respected educator and mentor, guiding graduate and doctoral students, shaping curricula, and fostering scientific inquiry. His work bridges fundamental inorganic chemistry and applied bioinorganic research, influencing both academic and industrial practices. By combining theoretical insights with practical innovation, Dr. Alaghaz has significantly enriched the fields of inorganic synthesis, materials chemistry, and bioinorganic applications. His groundbreaking contributions and unwavering dedication make him a prominent figure in chemistry, inspiring future generations of scientists in Egypt and internationally.

Profiles : Scopus | ORCID | Google Scholar

Featured Publications

1. Siddiq, H. A., Alkhathami, N. D., Ageeli, A. A., Mousa, I., Alenazy, D. M., Alatawi, N. M., & Alaghaz, A.-N. M. A. (2025). Synthesis and quantum chemical calculations of nano‐sized metal (III/II) complexes of furan‐based Schiff base for promising therapeutic studies: Interaction with biomolecules, antioxidant activity, in vitro cytotoxicity, apoptotic activity, and cell cycle analysis. Applied Organometallic Chemistry.

2. Alenazy, D. M., Siddiq, H. A., Alatawi, N. M., Ageeli, A. A., Alkhathami, N. D., Mousa, I., & Alaghaz, A.-N. M. A. (2025). Synthesis, DFT, spectral characterization, cell cycle, apoptosis, cytotoxicity, DNA binding/cleavage, molecular docking, and antimicrobial insights of nano‐sized Pd (II) and Cu (II) complexes with benzothiazole‐appended ligand. Applied Organometallic Chemistry.

3. Alaghaz, A.-N. M. A., Hakami, O., Alamri, A. A., Amri, N., Souadi, G., & Aldulmani, S. A. (2025). Cell cycle arrest, apoptosis assay, cytotoxicity, molecular docking, DNA binding/cleavage, and biological evaluation of Pt(II), Ni(II), Pd(II), and Cu(II) nano‐sized complexes of 2‐(6-fluorobenzo[d]thiazol‐2‐yl)phenol: Design, synthesis, and spectral approach. Applied Organometallic Chemistry.

4. Mousa, I., Madkhali, M. M. M., Siddiq, H. A., Alaghaz, A.-N. M. A., Rezk, G. N., & El-Bindary, A. A. (2025). Synthesis, characterization, DFT calculations, and pharmacological activity of azo dye ligand and its Cu(II) complex comprising nitrogen and oxygen donor atoms. Applied Organometallic Chemistry.

5. Alkhathami, N. D., Alenazy, D. M., Mousa, I., Alatawi, N. M., Siddiq, H. A., Ageeli, A. A., & Alaghaz, A.-N. M. A. (2025). Design, synthesis, DFT, and biological evaluation of nano‐sized Pt(II) and Cu(II) complexes of 2‐(benzo[d]oxazol‐2‐yl)phenylphosphoramidic dichloride: Spectral analysis, cell cycle arrest, apoptosis assay, cytotoxicity, and DNA binding/cleavage. Applied Organometallic Chemistry.

Nikolaos Koletsis | Biochemistry | Best Researcher Award

Mr. Nikolaos Koletsis | Biochemistry | Best Researcher Award

National and Kapodistrian University of Athens | Greece

Nikolaos E. Koletsis is a chemist with a Master of Science in Applied Biochemistry from the University of Patras and a Bachelor of Science in Chemistry from the University of Ioannina. His academic and research background is grounded in molecular and cellular biochemistry, with a particular emphasis on cancer biology, extracellular matrix (ECM) dynamics, and the development of three-dimensional (3D) cell culture models. During his MSc research at the Laboratory of Biochemistry, University of Patras, he investigated the functional properties and differential expression of key ECM components in 3D breast cancer spheroids. His work integrated advanced biochemical techniques including 3D cell culture, gene expression analysis (qPCR), HPLC, ELISA, electrophoresis, and statistical methodologies such as T-test and ANOVA. This project has culminated in both national and international presentations, and a first-author publication in Cells. Koletsis also conducted pioneering undergraduate research at the University of Ioannina, synthesizing novel alkaline earth metal-organic frameworks (MOFs) with potential applications in biodiesel catalysis. This work led to the identification of a new magnesium-glycerol complex, a structure reported for the first time in literature. He has co-authored three peer-reviewed journal articles indexed in Scopus, which have collectively received 15 citations, and he currently holds an h-index of 1. His publications appear in respected journals such as Cells, FEBS Journal, and Archives of Medical Science – Atherosclerotic Diseases, reflecting the interdisciplinary and impactful nature of his work. In addition to his lab-based expertise, Koletsis is adept in scientific writing, data analysis, and conference presentations, demonstrating a clear capacity for translating experimental data into meaningful scientific contributions. His career interests lie at the intersection of biomedical research, applied sciences, and translational innovations in cancer and materials chemistry.

Profiles : Scopus | Orcid

Featured Publications

  • Koletsis, N. E., Mangani, S., Franchi, M., Piperigkou, Z., & Karamanos, N. K. (2025). Development, functional characterization, and matrix effectors dynamics in 3D spheroids of triple-negative breast cancer cells. Cells, 14(17), 1351.

  • Anagnostopoulos, S., Baltayiannis, N., Koletsis, N. E., et al. (2025). 3D printing in medicine: Bridging imaging, education, and practice. Archives of Medical Science – Atherosclerotic Diseases, 10(1), 172–188.

  • Mangani, S., Piperigkou, Z., Koletsis, N. E., Ioannou, P., & Karamanos, N. K. (2024). Estrogen receptors and extracellular matrix: The critical interplay in cancer development and progression. FEBS Journal.

  • Piperigkou, Z., Mangani, S., Koletsis, N. E., Koutsakis, C., Mastronikolis, N. S., Franchi, M., & Karamanos, N. K. (2025). Principal mechanisms of extracellular matrix-mediated cell–cell communication in physiological and tumor microenvironments. FEBS Journal.

 

Binbin Li | Physical Chemistry | Best Researcher Award

Dr. Binbin Li | Physical Chemistry | Best Researcher Award

Central South University, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Binbin Li embarked on his academic journey in mineral processing engineering, developing a strong foundation in the fundamentals of extractive metallurgy and flotation chemistry. His formative education cultivated a keen interest in the intricate mechanisms governing flotation interface chemistry. His academic excellence laid the groundwork for his future research into the molecular design of flotation pharmaceuticals and the environmentally conscious separation of complex ores.

👨‍🔬 Professional Endeavors

Dr. Li is currently affiliated with the School of Minerals Processing and Bioengineering at Central South University, a national leader in resource engineering. He operates within key national disciplines and provincial key laboratories, actively engaging in the practical and theoretical challenges of the mining industry. His work is directly aligned with China’s “Double Carbon” strategy, emphasizing green development and sustainable resource utilization.

🔬 Contributions and Research Focus

Dr. Binbin Li’s research bridges flotation interface chemistry, high-efficiency reagent design, and the comprehensive utilization of strategic minerals like Cu-Ni-Mo ores, phosphate, and fluorite. He adopts an interdisciplinary approach, integrating bioengineering, materials science, and environmental engineering to advance cleaner and more effective mineral separation techniques. His projects tackle both fundamental surface interactions and applied process optimizations, demonstrating a rare blend of theoretical insight and industrial relevance.

🌍 Impact and Influence

Dr. Li’s scholarly output has been published in prestigious international journals such as the Journal of Cleaner Production, Energy & Fuels, Minerals Engineering, Process Safety and Environmental Protection, and Journal of Molecular Liquids. His research not only enhances the efficiency of mineral separation but also reduces the ecological footprint of mining operations—contributing significantly to global efforts in green and sustainable mining.

📈 Academic Citations

Dr. Li has accrued numerous citations from both domestic and international scholars, signaling his rising impact within the fields of nonferrous metals processing and flotation reagent chemistry. His works are frequently referenced for their novel mechanistic insights and practical applications in cleaner production and mineral beneficiation.

🛠️ Technical Skills

Dr. Li is proficient in advanced interface analysis techniques, molecular modeling, reagent synthesis, and bioflotation process design. His expertise extends to the use of spectroscopy, surface tension analysis, and computational chemistry to design reagents that interact optimally with mineral surfaces under varying pH and ionic conditions.

🧑‍🏫 Teaching Experience

In addition to his research, Dr. Li contributes to the academic community through teaching and mentorship at Central South University. He guides undergraduate and postgraduate students in projects focusing on mineral processing technologies and sustainable chemical engineering, fostering the next generation of innovative engineers and researchers.

📚 Publications and Patents

He has contributed to a wide range of publications indexed in SCI and Scopus, and is actively involved in patent development related to novel reagent formulations and flotation process innovations. While specific ISBNs or patent numbers are pending release, his intellectual contributions continue to fuel technological progress in resource engineering.

🌟 Legacy and Future Contributions

As a young yet impactful scholar, Dr. Binbin Li’s legacy is being built on innovation, sustainability, and practical engineering solutions. Moving forward, he aims to deepen the integration of molecular-level flotation mechanisms with scalable industrial technologies. His commitment to supporting China’s ecological goals through cleaner mining practices ensures that his research will remain both timely and transformative.

📖Notable Publications

IMU-Based quantitative assessment of stroke from gait
Journal: Scientific Reports
Year: 2025
Citations: 2

Enhancing Li-storage ability of FeC₂O₄ anode enabled by oxygen-vacancy-enriched amorphous carbon microspheres compositing via hydrogen bonding interactions
Journal: Electrochimica Acta
Year: 2025

Application of graphitic carbon nitride (g-C₃N₄) in solid polymer electrolytes: A mini review
Journal: (Journal name not specified)
Year: 2025

Safwan Ashour | Analytical Chemistry | Best Researcher Award

Prof. Safwan Ashour | Analytical Chemistry | Best Researcher Award

Gaziantep University, Turkey

👨‍🎓Profiles

🎓 Early Academic Pursuits

Prof. Safwan Ashour began his distinguished academic journey at the University of Aleppo, Syria, where he earned his B.Sc. in Applied Chemistry in 1978. Demonstrating exceptional promise, he pursued a Postgraduate Diploma in Chemistry (1980), solidifying his foundational knowledge in the field. He made national academic history by completing Syria’s first master’s thesis in chemistry in 1982, titled “The Effect of Non-Aqueous Media on the Analysis of Semiconductors by Conductometric Method.” His commitment to pioneering research continued with a Ph.D. in Analytical Chemistry in 1992, also from Aleppo University. His doctoral thesis, “Spectrophotometric Analysis in Non-Aqueous and Mixed Media,” laid the groundwork for his future contributions to advanced analytical methods.

🧪 Professional Endeavors

Following his academic achievements, Prof. Ashour built an illustrious career, ultimately securing a position at Gaziantep University in Turkey. His career reflects a rich blend of international experience and regional influence, as he transitioned from Syrian academic institutions to Turkey’s higher education landscape. At Gaziantep University, he has served not only as a professor but also as a mentor and contributor to curriculum development in analytical chemistry and related disciplines.

🔬 Contributions and Research Focus

Prof. Ashour’s research has been centered on analytical chemistry, particularly in non-aqueous and mixed media—a niche yet critical area for enhancing accuracy and sensitivity in chemical analysis. His work in spectrophotometric and conductometric methods has paved new pathways in the analysis of semiconductors and complex chemical systems. His findings have addressed practical problems in chemistry, contributing to the development of improved materials, sensor technologies, and solvent systems for chemical detection.

🌍 Impact and Influence

Prof. Ashour’s scientific impact resonates beyond academia. By pioneering the first master’s thesis in Syria’s chemistry field, he not only set a historical benchmark but also inspired a generation of chemists. His transition to Turkey and contributions at Gaziantep University reflect his role as a bridge between Arab and Turkish scientific communities, encouraging collaboration and knowledge exchange across borders.

📚 Academic Citations and Recognition

Over the decades, Prof. Ashour’s research has been cited in numerous journals and academic platforms, underscoring his scholarly influence. While exact citation numbers aren’t listed here, his foundational work in non-aqueous analytical chemistry continues to be referenced in studies involving electrochemistry, environmental monitoring, and advanced material analysis.

🛠️ Technical and Analytical Skills

Prof. Ashour is proficient in a wide range of chemical analysis techniques including spectrophotometry, conductometry, and chemical method development in non-aqueous systems. His expertise extends to semiconductor analysis, solution chemistry, and the application of these methods in interdisciplinary research.

👨‍🏫 Teaching Experience and Academic Leadership

As an educator, Prof. Ashour has mentored countless students through undergraduate, master’s, and doctoral programs. His teaching style is marked by clarity, rigor, and a commitment to fostering independent research skills. He is known for encouraging innovative thinking and bridging theoretical chemistry with real-world applications. His tenure at Gaziantep University further signifies his leadership in shaping future chemists and researchers.

🧭 Legacy and Future Contributions

Prof. Safwan Ashour’s legacy lies in his trailblazing role in Syria’s chemistry education, his scientific leadership in Turkey, and his contributions to analytical chemistry that continue to guide new research. Looking forward, his work sets a strong foundation for green analytical methods, innovative solvent systems, and international scientific collaboration. As a veteran academic, he remains an influential voice in the chemistry community, committed to expanding the horizons of analytical science.

📖Notable Publications

  • Simple extractive colorimetric determination of levofloxacin by acid–dye complexation methods in pharmaceutical preparations
    Authors: S. Ashour, R. Al-Khalil
    Journal: Il Farmaco
    Year: 2005

  • Simultaneous determination of miconazole nitrate and metronidazole in different pharmaceutical dosage forms by gas chromatography and flame ionization detector (GC-FID)
    Authors: S. Ashour, N. Kattan
    Journal: International Journal of Biomedical Science: IJBS
    Year: 2010

  • Spectrophotometric determination of alfuzosin HCl in pharmaceutical formulations with some sulphonephthalein dyes
    Authors: S. Ashour, M.F. Chehna, R. Bayram
    Journal: International Journal of Biomedical Science
    Year: 2006

  • Direct spectrophotometric determination of metformin hydrochloride in pure form and in drug formulations
    Authors: S. Ashour, R. Kabbani
    Journal: Analytical Letters
    Year: 2003

  • Development and validation of sensitive kinetic spectrophotometric method for the determination of moxifloxacin antibiotic in pure and commercial tablets
    Authors: S. Ashour, R. Bayram
    Journal: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
    Year: 2015

Yikang Liu | Chemical Kinetics | Best Researcher Award

Dr. Yikang Liu |  Chemical Kinetics | Best Researcher Award

University of Science and Technology Beijing,China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Yikang Liu began his academic journey with a deep-rooted interest in energy and environmental safety, which led to his specialization in mine fire prevention. His foundational studies at the University of Science and Technology Beijing (USTB) provided a rigorous training ground where he developed the technical and theoretical knowledge that would later define his research trajectory.

🧑‍🔬 Professional Endeavors

Currently serving at USTB, Dr. Liu collaborates with national research centers and mining corporations to translate laboratory findings into field-ready fire prevention strategies. His research integrates real-world mining challenges with cutting-edge scientific approaches, positioning him as a bridge between academia and industry.

🔬 Contributions and Research Focus

Dr. Liu’s core research areas include spontaneous combustion of water-immersed coal, competitive gas adsorption, and the suppression of coal ignition using inert gases. His work significantly contributes to developing practical solutions for underground fire hazards. A highlight of his current research is the optimization of early-warning systems through the dynamics of gas adsorption, alongside advanced inertization techniques for high-risk mining zones.

🌍 Impact and Influence

With nearly 20 peer-reviewed publications and five patents to his name, Dr. Liu has made a marked impact on the field of fire prevention in mining. His methodologies are already influencing safety protocols in Chinese coal mines and contributing to safer working environments. Collaborations with major mining groups amplify his influence, ensuring that his innovations are both scalable and sustainable.

📚 Academic Citations

Among his contributions, his paper indexed under DOI: 10.1016/j.fuel.2025.134572 has gained notable recognition. It underpins much of the ongoing work in coal combustion prevention and continues to be cited across related scientific literature.

🛠️ Technical Skills

Dr. Liu demonstrates a strong command of gas adsorption modeling, fire suppression system design, coal thermal analysis, and mine safety instrumentation. His cross-disciplinary expertise blends chemistry, engineering, and environmental science, empowering him to innovate within complex, high-risk industrial systems.

👨‍🏫 Teaching Experience

While primarily research-focused, Dr. Liu actively mentors graduate students and young researchers. He has guided several thesis projects related to mine fire dynamics and safety innovations, fostering a new generation of scientists in his field.

🌟 Legacy and Future Contributions

Looking forward, Dr. Liu aims to expand his work into AI-driven predictive systems for mine fire hazards and broaden his collaborations internationally. His legacy lies in transforming theoretical research into life-saving technologies, with long-term goals of influencing global mine safety standards.

📖Notable Publications

  • Title: Study on CO formation and pore structure development during low-temperature oxidation of coal in CO₂-N₂ environment
    Authors: Liu Yikang, Wang Haiyan, Niu Huiyong, Shao Zhuangzhuang, Yang Yanxiao, Liu Xiaolu, Wang Gongda, Zhou Zhenxing, Wang Hui
    Journal: Journal of Cleaner Production
    Year: 2025

  • Title: Time-shift effect of spontaneous combustion characteristics and microstructure difference of dry-soaked coal
    Authors: Liu Yikang, Wang Haiyan, Niu Huiyong, Wang Tao, Chen Zhiwen, Chen Yuqi, Qi Qingjie
    Journal: International Journal of Coal Science and Technology
    Year: 2024

  • Title: Study on the difference of coal spontaneous combustion characteristic parameters after lean oxygen combustion in different inert gas environments: Microscopic and macroscopic
    Authors: Wang Haiyan, Liu Yikang, Niu Huiyong, Shao Zhuangzhuang, Wang Gongda, Wang Hui
    Journal: Fuel
    Year: 2025

  • Title: Coal Pore Structure Evolution Under Drying – Wetting Cycle
    Authors: Liu Yikang, Wang Haiyan, Niu Huiyong, Xing Shuwen, Wang Gongda, Zhou Zhenxing, Yang Yanxiao, Liu Xiaolu
    Journal: Natural Resources Research
    Year: 2025

  • Research Progress and Visualization Analysis of Spontaneous Combustion of Water-Immersed Coal
    Authors: Liu Yikang, Wang Haiyan, Niu Huiyong, Chen Yuqi, Wang Gongda, Tian Fan, Tang Jiawen, Qi Qingjie
    Journal: Combustion Science and Technology
    Year: 2025 (assumed)

Alwyn Henriques | Reaction Mechanisms | Best Researcher Award

Mr. Alwyn Henriques | Reaction Mechanisms | Best Researcher Award

University of the West Indies, Jamaica

👨‍🎓Profiles

🎓 Early Academic Pursuits

Alwyn Henriques began his academic journey at Wolmer’s Boys’ School (2009–2013), where he excelled in a broad range of CSEC subjects including English Language, Mathematics, Biology, Chemistry, Physics, Geography, Information Technology, and Caribbean History. He continued his studies with CAPE Unit 1 courses in Chemistry, Biology, and Physics. His academic path advanced further at the University of the West Indies (2014–2021), where he completed undergraduate studies in Chemistry, reaching Levels 2 and 3, which provided him with a solid foundation in analytical and applied chemistry.

💼 Professional Endeavors

Alwyn has engaged in diverse professional roles that reflect a combination of scientific, technical, and customer service expertise. At the National Health Fund (NHF), he served as a Pharmacy Assistant in June 2018 and 2019, where he introduced and advised on the use of digital solutions like a quick prescription mobile application and self-serve kiosk services. He also assisted in medication packing, gaining practical insight into pharmaceutical distribution. In September 2017, he worked as a Chemistry Lab Technician at the Convent of Mercy (Alpha), where he prepared laboratory apparatus and ensured safety protocols for chemical experiments. His earlier experience at RADA in August 2017 involved organizing agricultural seminar documents as a file clerk.

🔬 Contributions and Research Focus

Alwyn’s most significant research contributions came during his internship at the Scientific Research Council (SRC) in July 2021. There, he explored the chemical transformation and pharmacological behavior of cannabis-derived compounds, focusing on the conversion of cannabidiol (CBD) to tetrahydrocannabinol (THC), THC spoilage to cannabinol (CBN), and the redox-based metabolism of these compounds in the body. His research also delved into wastewater chemical analysis, pharmaceutical development processes, cacao bean applications in food and medicine, and cannabis-derived renewable materials—demonstrating a strong orientation toward sustainable and innovative chemistry.

🌍 Impact and Influence

Alwyn’s multidisciplinary career showcases a commitment to socially impactful science. His promotion of digital health services at NHF and exploration of plant-based compounds for pharmaceuticals mark him as a forward-thinking individual attuned to modern healthcare, sustainability, and biotechnology trends. He contributes to Jamaica’s evolving landscape of scientific development, especially in areas of public health innovation and natural product chemistry.

🧠 Technical Skills

Alwyn’s technical skill set includes laboratory preparation of chemicals and apparatus, cannabinoid conversion and pharmacokinetics, wastewater analysis, pharmaceutical formulation, data organization, and customer support systems. His adaptability in both scientific and service-oriented environments illustrates a strong balance of precision, communication, and innovation.

👨‍🏫 Teaching Experience

Although he has not held a formal teaching post, Alwyn’s role as a lab technician involved active support of educational activities by preparing experiments and maintaining a safe and functional learning environment. This experience has equipped him with the foundational skills for future roles in academic support or technical instruction.

📚 Academic Cites and References

While no formal publications have been cited, Alwyn’s research during his SRC internship likely contributed to internal reports or scientific reviews. His professional references include Norman Biggs, a Justice of the Peace, Adriel Albert-James, a Chemistry Lecturer and Researcher, and Nickeisha Stephenson, a customer service and loan advisor, all of whom can attest to his character and capability across various fields.

🌱 Legacy and Future Contributions

Alwyn Henriques is a promising scientific professional with a unique blend of academic, research, and service-oriented experience. His passion for natural product chemistry, commitment to sustainable innovation, and fluency in digital healthcare solutions set the stage for impactful contributions in the future. As he continues to grow, he is well-positioned to play a pivotal role in the advancement of biomedical science, renewable resources, and public health technologies.

📖Notable Publication

Cannabinoid spoilage, metabolism and cannabidiol (CBD) conversion to Tetrahydrocannabinol (THC) mechanisms with energetic parameters

Authors:
Alwyn Henriques

Journal:
Journal of Cannabis Research

Year:
2025

Hongli Li | Analytical Chemistry | Best Researcher Award -1712

Assoc. Prof. Dr. Hongli Li | Analytical Chemistry | Best Researcher Award

Nanjing Normal University, China

👨‍🎓Profiles

🏫 Early Academic Pursuits

Dr. Hongli Li began his academic journey by earning a Ph.D. from Washington State University in the United States, where he deepened his expertise in mass spectrometry (MS) techniques. Following his doctoral studies, he advanced his research capabilities with postdoctoral research at the US Food and Drug Administration (FDA), gaining valuable insights into novel MS methods. His foundational work in analytical techniques like ambient ionization MS, liquid chromatography-MS, and ion mobility-MS helped shape the trajectory of his academic career, particularly in the development of new methodologies and applications in diverse fields like food safety, tobacco analysis, and environmental studies.

💼 Professional Endeavors

As an Associate Professor at Nanjing Normal University, Dr. Li has led and contributed to groundbreaking research projects focused on enhancing mass spectrometry methods. His leadership in securing competitive grants, such as the National Natural Science Foundation of China, highlights his pivotal role in the scientific community. Dr. Li has focused on the development of novel mass spectrometry strategies, particularly for characterizing carbohydrate structural isomers, real-time volatile sample analysis, and rapid natural product assessments.

🔬 Research Focus & Innovations

Dr. Li’s research emphasizes pushing the boundaries of mass spectrometry to tackle complex challenges. His focus areas include: Carbohydrate Structural Isomer Characterization: Innovating methods like in situ methylation and ambient ionization MS for detailed analysis of carbohydrate isomers. Real-Time Volatile and Gas Sample Analysis: Developing specialized interfaces to enhance the analysis of gaseous compounds. Natural Product Analysis: Establishing rapid, high-throughput techniques for identifying and quantifying natural products, crucial in fields like food safety and environmental health.

🌍 Impact and Influence

Dr. Li’s work in advancing mass spectrometry methods has had a significant impact on various sectors, including food, tobacco, and environmental analysis. His contributions to ambient ionization MS have enabled more efficient, non-invasive testing techniques, which are especially important for human health diagnostics like exhaled breath analysis. Through his innovative approach to carbohydrate analysis, Dr. Li has made strides in understanding complex biochemical structures, which could potentially revolutionize both academic research and applied sciences.

📚 Academic Cites & Recognition

Dr. Li’s research has earned widespread recognition, as evidenced by citations in key academic journals. Notable achievements include: 2017 FDA Scientific Achievement Award: Recognizing his contributions to scientific advancements in the FDA. 2019 Jiangsu Province Innovation and Entrepreneurship Team Award: Acknowledging his innovative contributions to the field of mass spectrometry. 2022-2023 Top Cited Article in Rapid Communications in Mass Spectrometry: A testament to the importance and relevance of his research in the scientific community. 2024 Excellence in Undergraduate Teaching: Highlighting his dedication to fostering the next generation of scientists at Nanjing Normal University.

🛠️ Technical Skills

Dr. Li is proficient in several advanced techniques and methods essential to his research, including: Ambient Ionization Mass Spectrometry: For direct and non-destructive analysis of samples. Liquid Chromatography-Mass Spectrometry (LC-MS): For separating and analyzing complex mixtures. Ion Mobility Spectrometry: An essential technique for studying the physical properties of ions. In Situ Derivatization: Used to enhance sensitivity and specificity in mass spectrometric analysis.  These technical skills underpin his development of cutting-edge solutions to real-world problems in areas like food safety and medical diagnostics.

🎓 Teaching Experience

Dr. Li’s teaching experience is highlighted by his 2024 Excellence in Undergraduate Teaching award from Nanjing Normal University. He is committed to providing high-quality education and mentorship to students, especially those pursuing careers in analytical chemistry and mass spectrometry. His courses and hands-on research guidance have inspired many students to pursue further studies in scientific research.

🚀 Legacy and Future Contributions

Looking ahead, Dr. Li aims to continue his work in expanding the applications of mass spectrometry in diverse fields such as environmental health, pharmaceuticals, and food analysis. He is particularly excited about the potential of his real-time analysis techniques and hopes to influence further breakthroughs in non-invasive diagnostic methods. As a dedicated researcher and educator, Dr. Li is focused on leaving a lasting legacy of innovation in analytical chemistry while continuing to shape the future of mass spectrometry.

📖Notable Publications

Direct Identification of Disaccharide Structural Isomers Using Ambient Ionization Tandem Mass Spectrometry with In Situ Methylation

Authors: Ren, R., Yuan, M., Li, H., Chen, D.D.Y.
Journal: Analytical Chemistry, 2023, 95(4), pp. 2213–2220

High-resolution mass spectrometry exhalome profiling with a modified direct analysis in real-time ion source

Authors: Xu, L., Zhang, K., Geng, X., Li, H., Chen, D.D.Y.
Journal: Rapid Communications in Mass Spectrometry, 2022, 36(24), e9406

Determination of 18 photoinitiators in food paper packaging materials by FastPrep-based extraction combined with GC–MS

Authors: Liang, Q., Wang, Z., Du, W., Lu, H., Li, H.
Journal: Food Chemistry, 2022, 377, 131980

Tee-Shaped Sample Introduction Device Coupled with Direct Analysis in Real-Time Mass Spectrometry for Gaseous Analytes

Authors: Geng, X., Zhao, Z., Li, H., Chen, D.D.Y.
Journal: Analytical Chemistry, 2021, 93(50), pp. 16813–16820

Rapid fingerprint analysis for herbal polysaccharides using direct analysis in real-time ionization mass spectrometry

Authors: Wang, X., Jiang, Q., Li, H., Chen, D.D.Y.
Journal: Rapid Communications in Mass Spectrometry, 2021, 35(16), e9139

 

Nasarul Islam | Computational Chemistry | Best Researcher Award

Assist. Prof. Dr. Nasarul Islam | Computational Chemistry | Best Researcher Award

HKM Degree College Bandipora, India

👨‍🎓Profiles

🏫 Early Academic Pursuits

He embarked on his academic journey with a passion for Theoretical Inorganic and Organic Chemistry. His research during his Ph.D. focused on developing OLED and nonlinear device materials using computational methods. He delved into the electronic structure and spectral properties of chiro-optic systems and explored structure-property relationships for materials with applications in optical, magnetic, and electrical domains. These foundational experiences shaped his expertise in theoretical chemistry and material design.

💼 Professional Endeavors

He serves as an Assistant Professor in the Department of Chemistry at HKM-Govt. Degree College, Bandipora, J&K, India, since April 11, 2017. Alongside his teaching duties, he is an Academic Counsellor for Indira Gandhi National Open University (IGNOU). His collaborative work extends to notable institutions, including the National Institute of Technology, Jalandhar, where he investigates reaction mechanisms and molecular dynamics of ionic liquids in collaboration with Dr. Vikramjeet Singh.  Previously, Dr. Islam contributed significantly to research under the mentorship of Prof. (Dr.) S. S. Chimni at Guru Nanak Dev University, Amritsar. His work focused on enantioselective product formation from organocatalyzed processes and transition-state mechanisms.

🔬 Contributions and Research Focus

His research interests are rooted in computational chemistry. He employs quantum mechanical methods to design and investigate materials for energy storage and conversion, OLED devices, and transport systems. His work bridges theoretical models and practical applications, synthesizing theoretically designed charge transport materials for experimental validation. His focus spans: The electronic and optical properties of chiro-optic systems, Energy storage and conversion materials, Quantum mechanical studies on molecular dynamics and ionic liquids.

🌟 Impact and Influence

His contributions have earned him international recognition. He is an MRSC fellow of the Royal Society of Chemistry, UK, and has been acknowledged with numerous awards, including: The DSK Postdoctoral Fellowship (UGC-India), Recognition for outstanding contributions in reviewing from Spectrochimica Acta Part A, Multiple awards for oral and poster presentations at conferences. He also serves on the editorial boards of Frontiers in Applied Chemistry and the Journal of Computational Chemistry & Molecular Modelling, influencing research dissemination in his field.

📚 Academic Citations and Publications

He has an extensive portfolio of research publications cited globally. His work on OLED materials and ionic liquids is highly regarded, reflecting his impact in theoretical and applied chemistry.

🛠️ Technical Skills

He is proficient in a variety of computational and analytical techniques, including: Quantum mechanical modeling, Molecular dynamics simulations, Spectral analysis and transport property evaluation.

👩‍🏫 Teaching and Mentorship

As an educator, He is committed to advancing chemical education. His teaching philosophy integrates research with pedagogy, inspiring students to explore complex chemical systems. His guidance extends to research projects and academic counseling, fostering a culture of scientific curiosity.

🌍 Legacy and Future Contributions

His legacy lies in bridging computational insights with real-world applications, particularly in energy systems and material design. Moving forward, he aims to expand his research on sustainable materials and enhance collaborations to address global challenges in energy and materials science.

🌟 Key Highlights

His work stands as a testament to his dedication to advancing computational chemistry, fostering innovation, and mentoring the next generation of scientists. His endeavors reflect a balanced blend of theoretical exploration, practical synthesis, and impactful teaching.

📖Notable Publications

Advancements in ionic liquid-based corrosion inhibitors for sustainable protection strategies: from experimental to computational insights

Authors: Kumar, P.; Holmberg, K.; Soni, I.; Sillanpää, M.; Chauhan, V.
Journal: Advances in Colloid and Interface Science
Year: 2024

Quantitative structure-activity relationship and ADME prediction studies on series of spirooxindoles derivatives for anti-cancer activity against colon cancer cell line HCT-116

Authors: Kaur, S.; Kaur, J.; Zarger, B.A.; Islam, N.; Mir, N.
Journal: Heliyon
Year: 2024

Unveiling the potential of NiFe layered double hydroxide (LDH)/CuWO4 S-scheme heterojunction for sulfamethoxazole photodegradation and nitrobenzene photoreduction to aniline

Authors: Sharma, R.; Sambyal, S.; Mandyal, P.; Chauhan, V.; Shandilya, P.
Journal: Journal of Environmental Chemical Engineering
Year: 2024

Fabrication of dual S-scheme based CuWO4/NiFe/WO3 heterojunction for visible-light-induced degradation and reduction applications

Authors: Sharma, R.; Islam, N.; Priye, A.; Chauhan, V.; Shandilya, P.
Journal: Journal of Environmental Chemical Engineering
Year: 2024

Cu2O/WO3: A promising S-scheme heterojunction for photocatalyzed degradation of carbamazepine and reduction of nitrobenzene

Authors: Mandyal, P.; Sharma, R.; Sambyal, S.; Chauhan, V.; Shandilya, P.
Journal: Journal of Water Process Engineering
Year: 2024

An Updated Overview on the Synthesis and Anticancer Evaluation of Quinazoline Derivatives

Authors: Kaur, J.; Kaur, S.; Anand, A.; Singh, S.; Singh, A.
Journal: ChemistrySelect
Year: 2023

 

Kwangnak Koh | Analytical Chemistry | Best Researcher Award

Prof. Dr. Kwangnak Koh | Analytical Chemistry | Best Researcher Award

Pusan national University, South Korea

👨‍🎓Profiles

🎓 Early Academic Pursuits

He embarked on his academic journey by obtaining a Master of Science degree in 1992 from Pusan National University. Pursuing his passion for molecular sciences, he further specialized in supramolecular engineering and earned a Ph.D. in 1995 from Kyushu University, Japan. His early academic achievements laid a strong foundation for his distinguished career in multidisciplinary scientific research.

💼 Professional Endeavors

Currently, He serves as a Professor at the Institute of General Education at Pusan National University, South Korea. His professional trajectory has been characterized by a deep commitment to fostering interdisciplinary learning and research. Over the years, he has become a respected figure in both academic and scientific communities for his innovative approaches to education and research.

🔬 Contributions and Research Focus

His research interests span several cutting-edge fields, including: Biochips: Developing innovative platforms for biological and medical applications, Supramolecular Engineering: Exploring molecular assembly techniques to design advanced materials, Bioanalytical Nanochemistry: Utilizing nanoscale chemical processes to address biological challenges, Bionanomaterials: Creating materials that bridge biological and nanotechnological applications, These areas of focus highlight his contributions to advancing the integration of nanotechnology and biotechnology.

🌍 Impact and Influence

His work in supramolecular engineering and bioanalytical nanochemistry has significantly influenced the fields of bionanotechnology and chemical engineering. His innovative biochip designs and materials research have not only impacted academia but also found applications in medical diagnostics and therapeutic technologies.

📈 Academic Citations and Recognition

He has been widely cited for his pioneering research in his specialized fields. His work is recognized for its scientific rigor and practical applications, contributing to the global academic discourse on nanotechnology and biotechnology.

💡 Technical Skills

With expertise in nanochemistry, molecular assembly, and analytical techniques, Dr. Koh combines theoretical knowledge with hands-on skills in designing and implementing advanced experimental frameworks. His technical acumen is pivotal in translating scientific discoveries into practical applications.

🎓 Teaching Experience

He is also an experienced educator, dedicated to inspiring the next generation of scientists and researchers. Through his role at the Institute of General Education, he has cultivated a culture of curiosity and innovation among students, emphasizing the importance of interdisciplinary collaboration.

🏆 Legacy and Future Contributions

His legacy lies in his impactful research and mentorship. Moving forward, he aims to further advance the applications of bionanomaterials and biochips in healthcare and environmental science. His commitment to bridging the gap between technology and biology continues to inspire new avenues of exploration.

📖Notable Publications