Zhaodi Xia | Analytical Techniques | Best Researcher Award

Ms. Zhaodi Xia | Analytical Techniques | Best Researcher Award

Northwest University, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Born in Longxi, Gansu, Ms. Zhaodi Xia has shown exceptional academic prowess throughout her educational journey. She completed her Bachelor’s degree in Chinese Herbal Medicine at the Shanxi Institute of Traditional Chinese Medicine, followed by a Master’s in Modern Chinese Medicine. Currently, she is pursuing her Ph.D. in Chinese Medicine at Northwest University, with a specialized focus on Biotechnology, Metabolomics, and Transcriptomics. Her consistent academic performance earned her several prestigious honors, including First Class Academic Scholarships and National Encouragement Scholarships throughout her studies.

👩‍🔬 Professional Endeavors

Zhaodi Xia is actively engaged in numerous scientific projects and institutional collaborations. She has contributed to the Enterprise Innovation Platform and participated in various projects funded by the Shaanxi Provincial Key R&D Program and the National Administration of Traditional Chinese Medicine. Her roles have included project application, experimental task execution, and conclusive reporting. She is also familiar with drug development processes such as GCP certification, clinical trials, and animal modeling, specifically in studying conditions like sepsis and Alzheimer’s disease.

🧪 Contributions and Research Focus

Her research delves deep into the pharmacological and chemical characterization of traditional Chinese medicines, particularly Codonopsis pilosula, Panax ginseng, and Bupleurum chinense. Zhaodi has co-authored multiple publications, notably on immunomodulatory effects, multi-omics analysis, and comparative chemical profiling using UHPLC-Q-TOF-MS. Her expertise also extends to molecular techniques such as WB, QPCR, and immunohistochemistry, and she is proficient in analytical methods including HPLC and UPLC-MS.

📈 Impact and Influence

Zhaodi’s academic impact is evident from her multiple peer-reviewed publications in reputed journals like Biomedical Chromatography and Journal of Ethnopharmacology. She has helped uncover the pathogenesis of diseases such as Alzheimer’s and proposed novel models and compounds for their treatment. Her research has contributed significantly to the standardization and modernization of Chinese herbal medicine, especially in areas like quality evaluation, metabolomics, and prescription optimization.

📚 Academic Citations

Her notable articles include: “Immunomodulatory effects and multi-omics analysis of Codonopsis pilosula”, “Comparison of chemical constituents of Bupleurum marginatum and Bupleurum chinense using UHPLC-Q-TOF-MS”, and “Identification of Bupleurum and its confused products using ITS2 barcode”. These works have been cited in academic circles focusing on Traditional Chinese Medicine (TCM), clinical pharmacology, and medicinal chemistry.

💻 Technical Skills

Ms. Xia possesses a solid foundation in both laboratory and computational skills. She is certified with the National Computer Level 2 and adept at using statistical and graphing tools like SPSS, GraphPad Prism, and Origin. She also has hands-on experience with commonly used research software, as well as AI-assisted search and integration technologies. Her technical capacity makes her a valuable contributor to data-intensive and cross-disciplinary research environments.

👩‍🏫 Teaching Experience

Though primarily focused on research, Zhaodi Xia has demonstrated strong mentoring and presentation skills. She has received accolades such as the First Prize at the Postgraduate Innovation and Development Forum and Third Prize at the Shanghai Postgraduate Academic Forum. Her active involvement in academic conferences, including the Chinese Society of Traditional Chinese Medicine Information Annual Meeting, reflects her ability to communicate complex scientific concepts effectively.

🌟 Legacy and Future Contributions

Ms. Xia stands as a promising young scholar in the field of Traditional Chinese Medicine and Pharmaceutical Preparations. Her innovative work bridges classical ethnopharmacology and modern analytical techniques. She is well on her way to establishing a legacy in precision herbal therapy, personalized medicine, and multi-omics-driven drug discovery. With her strong foundation, excellent research record, and collaborative spirit, she is poised to make long-lasting contributions to the global advancement of herbal pharmacology and integrative medicine.

📖Notable Publications

  • Immunomodulatory effects and multi-omics analysis of Codonopsis pilosula
    Authors: Zhaodi Xia, Xia Liu, Liguo Tong, Han Wang, Mali Feng, Xiaohu Xi, Pan He, Xuemei Qin
    Journal: Biomedical Chromatography
    Year: 2021

 

  • Comparison of chemical constituents of Bupleurum marginatum var. stenophyllum and Bupleurum chinense DC. using UHPLC–Q‐TOF–MS based on a metabonomics approach
    Authors: Zhaodi Xia, et al.
    Journal: Biomedical Chromatography
    Year: 2021

 

  • Research progress on metabolomics in the quality evaluation and clinical study of Panax ginseng
    Authors: Zhaodi Xia, et al.
    Journal: Biomedical Chromatography
    Year: 2023

 

Stella Girousi | Analytical Chemistry | Analytical Chemistry Award-1884

Prof. Dr. Stella Girousi | Analytical Chemistry | Analytical Chemistry Award

Aristotle University of Thessaloniki, Greece

👨‍🎓Profiles

🎓 Academic and Professional Background

Prof. Dr. Girousi Stella is a distinguished researcher in Analytical Chemistry, currently based at the Analytical Chemistry Laboratory, Chemistry Department, Aristotle University of Thessaloniki, Greece. With extensive experience in electroanalytical methods, biosensor development, and chemical analysis, she has made significant contributions to biomedical, environmental, and food sample analysis.

🔬 Research Activity and Interests

Prof. Dr. Stella specializes in developing and applying electroanalytical methods for detecting and analyzing biological, environmental, and food samples, with a particular focus on genotoxic compounds and pharmacologically active substances. Her research encompasses electrochemical biosensors and DNA analysis, including the development of enzymic and electrochemical DNA biosensors for studying drug-DNA interactions, DNA methylation detection, and epigenetic control. She also explores the application of screen-printing technology and nanomaterials to innovate biosensor designs. In the field of voltammetric determination of metals, she utilizes mercury, carbon, and bismuth thin-film electrodes to develop analytical methods for metal ion detection. Additionally, she works on the chemical modification of electrode surfaces with metallic nanoparticles and advanced carbon materials to enhance sensitivity in electrochemical sensing applications. Her research also extends to the study of coordination compounds of biological concern, employing electroanalytical techniques to investigate biological and pharmacological interactions

🏆 Impact and Contributions

Prof. Dr. Stella has been at the forefront of electrochemical sensor technology, contributing to environmental monitoring, biomedical diagnostics, and pharmaceutical analysis. Her research has advanced the detection of trace biomolecules, pollutants, and therapeutic compounds, fostering new methodologies in chemical analysis and biosensing technologies.

Her work has influenced:
🔬 Biomedical diagnostics – Enhancing biosensor technology for disease detection and genetic analysis.
🌍 Environmental sustainability – Developing sensitive detection methods for toxic metals and pollutants.
💊 Pharmaceutical research – Investigating drug interactions with biomolecules for better therapeutic applications.

📚 Publications and Research Recognition

Prof. Dr. Stella’s research has been widely cited in scientific literature, with numerous contributions to high-impact journals. Her Scopus and ORCID profiles highlight her extensive work in analytical and electrochemical chemistry, reinforcing her position as a leading researcher in electroanalytical science.

🛠️ Technical Expertise

🔹 Electroanalytical Methods (Voltammetry, Potentiometry, Impedance Spectroscopy)
🔹 Biosensor Development (DNA, Enzymic, and Electrochemical Sensors)
🔹 Nanomaterials & Screen-Printed Electrodes for Analytical Applications
🔹 Metal Ion Detection using Mercury & Bismuth Thin-Film Electrodes
🔹 Coordination Chemistry & Epigenetic Studies via Electrochemical Methods

🎓 Teaching and Mentorship

As a leading academic, Prof. Dr. Stella has mentored numerous students and researchers, guiding them in advanced electrochemistry, biosensor technology, and chemical analysis techniques. Her expertise has helped shape the next generation of analytical chemists, bridging the gap between scientific research and real-world applications.

🔮 Future Contributions and Research Vision

Looking ahead, Prof. Dr. Stella aims to:
🌱 Expand biosensor applications in early disease detection and precision medicine.
🔬 Develop next-generation nanomaterials for enhanced sensing capabilities.
♻️ Advance sustainable chemical analysis methods to address environmental challenges.
📘 Collaborate internationally to drive innovation in electrochemical sensing and biomolecular diagnostics.

📖Notable Publications

Study of interactions between DNA-ethidium bromide (EB) and DNA-acridine orange (AO), in solution, using hanging mercury drop electrode (HMDE)

Authors: IC Gherghi, ST Girousi, AN Voulgaropoulos, R Tzimou-Tsitouridou

Journal: Talanta

Year: 2003

pH: Principles and measurement

Authors: S Karastogianni, S Girousi, S Sotiropoulos

Journal: Encyclopedia of Food and Health

Year: 2016

Determination of Cd, Co, Cr, Cu, Fe, Ni and Pb in milk, cheese, and chocolate

Authors: I Karadjova, S Girousi, E Iliadou, I Stratis

Journal: Microchimica Acta

Year: 2000

Sensitive detection of cyclophosphamide using DNA-modified carbon paste, pencil graphite and hanging mercury drop electrodes

Authors: P Palaska, E Aritzoglou, S Girousi

Journal: Talanta

Year: 2007

An Electrochemical Sensor Based on Reduced Graphene Oxide, Gold Nanoparticles and Molecular Imprinted Over‐oxidized Polypyrrole for Amoxicillin Determination

Authors: H Essousi, H Barhoumi, S Karastogianni, ST Girousi

Journal: Electroanalysis

Year: 2020

Susan Olesik | Analytical Chemistry | Best Researcher Award

Prof. Susan Olesik | Analytical Chemistry | Best Researcher Award

The Ohio State University, United States

👨‍🎓Profiles

🎓 Early Academic Pursuits

Susan V. Olesik’s academic journey began with a strong foundation in chemistry. She earned her A.S. degree in Chemistry from Vincennes University in 1975, followed by a B.S. in Chemistry from DePauw University in 1977. She pursued advanced studies in analytical chemistry and mass spectrometry at the University of Wisconsin-Madison, where she completed her Ph.D. in 1982. Postdoctoral research further honed her expertise, first at Indiana University in Analytical Separation Science (1982-1984) and later at the University of North Carolina-Chapel Hill in Mass Spectrometry (1984).

💼 Professional Endeavors

Dr. Olesik has held prestigious positions at The Ohio State University (OSU), where she is part of the College of Arts and Sciences faculty. She also serves as a member of the OSU Environmental Science Graduate Program (ESGP) and the OSU Institute for Materials Research (IMR). Her affiliations with leading organizations like the American Chemical Society (ACS) and American Society for Mass Spectrometry (ASMS) underscore her significant contributions to the field.

🔬 Contributions and Research Focus

A leading voice in analytical chemistry, Dr. Olesik’s research focuses on supercritical fluid chromatography, mass spectrometry, and separations science. Her contributions include advancing the understanding of separation methods, developing environmentally sustainable analytical techniques, and participating in national-level scientific panels, such as the NAS Committee on Separations Science.

🌍 Impact and Influence

Dr. Olesik’s influence extends beyond research, as she has shaped policies and strategies through her leadership roles. Notably, she chaired graduate program reviews for prestigious institutions like the University of Alberta and Iowa State University. Additionally, she served as the 2024 Program Chair of HPLC Denver, a globally recognized conference.

📚 Academic Citations

Dr. Olesik’s work is widely cited, reflecting her expertise in analytical chemistry. Her scholarly output has significantly impacted green chemistry, chromatography, and mass spectrometry research, ensuring her work remains relevant to both academia and industry.

🛠️ Technical Skills

Her technical expertise spans advanced analytical methods such as mass spectrometry, supercritical fluid chromatography, and environmentally sustainable solvent systems. Her interdisciplinary skills support innovations in materials research and separations science.

👩‍🏫 Teaching Experience

Dr. Olesik has been an inspiring educator, mentoring students and fostering innovation in analytical chemistry. Her involvement in NSF panels and academic reviews highlights her dedication to nurturing young scientists and improving graduate education standards.

🌟 Legacy and Future Contributions

Dr. Olesik's legacy lies in her pioneering work in sustainable analytical methods, contributions to separation science, and leadership in the scientific community. She remains committed to advancing analytical chemistry through her continued research and mentorship. As she engages with cutting-edge projects and international collaborations, her influence promises to shape the future of sustainable analytical technologies.

📖Notable Publications

  • "Investigating the Role of Plasmonics in Electrospun Fibers by Combined Photothermal Heterodyne Imaging and Raman Measurements"
  • Authors: Moon, Y.; Olesik, S.V.; Schultz, Z.D.
    Journal: Journal of Physical Chemistry C
    Year: 2024
  • "Life cycle analysis and sustainability comparison of reversed phase high performance liquid chromatography and carbon dioxide-containing chromatography of small molecule pharmaceuticals"
  • Authors: Fitch, B.N.; Gray, R.; Beres, M.; Aurigemma, C.; Olesik, S.V.
    Journal: Green Chemistry
    Year: 2022
  • "Improving the environmental hazard scores metric for solvent mixtures containing carbon dioxide for chromatographic separations"
  • Authors: Gray, R.; Fitch, B.; Aurigemma, C.; Farrell, W.; Olesik, S.V.
    Journal: Green Chemistry
    Year: 2022
  • "Evolution of packed column SFC as a greener analytical tool for pharmaceutical analysis"
  • Authors: Olesik, S.; Bennett, R.
    Book Chapter: Separation Science and Technology (New York)
    Year: 2022
  • "The important role of chemistry department chairs and recommendations for actions they can enact to advance black student success"
  • Authors: Collins, J.S.; Olesik, S.V.
    Journal: Journal of Chemical Education
    Year: 2021
  • "Analytical challenges encountered and the potential of supercritical fluid chromatography: A perspective of five experts"
  • Authors: Olesik, S.; West, C.; Guillarme, D.; Mangelings, D.; Novakova, L.
    Journal: Analytical Science Advances
    Year: 2021

Martín Fernández Baldo | Bioanalítica | Best Researcher Award

Dr. Martín Fernández Baldo | Bioanalítica | Best Researcher Award 

Universidad Nacional de San Luis, Argentina

👨‍🎓 Profile

🎓 Early Academic Pursuits

He pursued a solid academic journey, beginning with his primary education at Justo José de Urquiza in Maipú, Mendoza, where he graduated in December 1989. He later attended Liceo Militar General Espejo for his secondary education, graduating as a Bachiller and Subteniente de Reserva del Arma de Infantería in December 1994.

🏛 Higher Education

Fernández Baldo pursued his Bachelor's degree in Biochemistry from the Universidad Nacional de San Luis, completing his studies in 2007. He later obtained his Doctorate in Biochemistry, with his thesis titled "Control Biológico en Postcosecha: Desarrollo de Metodologías para la Detección y Cuantificación de Mohos Fitopatógenos y Micotoxinas". His thesis work was guided by Dr. María Isabel Sanz Ferramola (Director) and Dr. Germán Messina (Co-Director).

💼 Professional Endeavors

Currently, Martín Fernández Baldo is based in San Luis, Argentina, where he works at the Universidad Nacional de San Luis. He holds positions in both the Facultad de Química, Bioquímica y Farmacia in the Department of Chemistry and the Department of Bioquímica y Ciencias Biológicas. He is associated with CONICET and works in the Instituto de Química de San Luis (INQUISAL), contributing to the Laboratorio de Bioanalítica.

🔬 Contributions and Research Focus

Fernández Baldo's research is centered around bioanalytical chemistry and nanotechnology. He has expertise in synthesizing nanomaterials using both chemical and biological methods (such as microorganisms like fungi and bacteria). His work includes the use of these nanomaterials in biosensors with electrochemical detection or laser-induced fluorescence (LIF) for the determination of various biochemical, environmental, and agro-food analytes.

In recent years, his research has expanded to focus on the early diagnosis of epithelial cancers (breast, colorectal, lung, prostate) through the determination of specific tumor markers. He is also dedicated to the diagnosis of infectious diseases like parasitic, viral, and fungal infections.

🌍 Impact and Influence

Fernández Baldo's work in the field of bioanalytical chemistry and nanotechnology is making significant strides in improving diagnostic tools for both cancer and infectious diseases. His interdisciplinary approach, combining nanotechnology with bioanalytical methods, has had a notable impact on public health diagnostics, especially in low-resource settings where early and accurate detection is critical.

🛠️ Technical Skills

His technical expertise spans a variety of advanced techniques, including: Nanomaterial synthesis (chemical and biological methods). Characterization of nanomaterials using: UV-vis, XRD, XRF, FTIR, DLS, SEM, EDS, TEM. Biosensor development for: Electrochemical detection, Laser-induced fluorescence (LIF) detection.

🏅 Teaching Experience

Throughout his career, Martín Fernández Baldo has also been involved in teaching and mentorship. He contributes to postgraduate courses, such as the course on "Instrumental Analysis Methods: Biological Applications", offered by the Universidad Nacional de Cuyo. His participation in academia extends to supervising students and guiding research projects in the fields of analytical chemistry and bioanalysis.

📚 Legacy and Future Contributions

Looking forward, Martín Fernández Baldo aims to further his research in bioanalytical chemistry and nanotechnology, specifically focusing on the early diagnosis of cancers and infectious diseases. His goal is to develop more efficient, cost-effective diagnostic tools that can be applied globally. His work will likely continue to influence the fields of public health, analytical chemistry, and nanotechnology, contributing to the betterment of global diagnostic practices.

📖  Notable Publications

Copper nanoparticles as a potential emerging pollutant: Divergent effects in the agriculture, risk-benefit balance and integrated strategies for its use

Authors: Tortella, G., Rubilar, O., Fincheira, P., Fernandez-Baldo, M., Seabra, A.B.
Journal: Emerging Contaminants
Year: 2024

Metal nanoparticles and pesticides under global climate change: Assessing the combined effects of multiple abiotic stressors on soil microbial ecosystems

Authors: Fernández-Triana, I., Rubilar, O., Parada, J., Seabra, A.B., Tortella, G.R.
Journal: Science of the Total Environment
Year: 2024

Electrochemical microfluidic immunosensor with graphene-decorated gold nanoporous for T-2 mycotoxin detection

Authors: Fernandez Solis, L.N., Silva Junior, G.J., Bertotti, M., Fernández-Baldo, M.A., Regiart, M.
Journal: Talanta
Year: 2024

Advances in Nanomaterials and Composites Based on Mesoporous Materials as Antimicrobial Agents: Relevant Applications in Human Health

Authors: Gomez, G.E., Hamer, M., Regiart, M.D., Soler Illia, G.J.A.A., Fernández-Baldo, M.A.
Journal: Antibiotics
Year: 2024

Use of Mechanochemical Methodology to Explore the Formation of a New Crystalline Phase in the Curcumin-Quercetin System

Authors: D'Vries, R.F., Pastrana-Dávila, A., Pantoja, K.D., Gomez, G.E., Fernández-Baldo, M.A.
Journal: ChemistrySelect
Year: 2024

Five years of advances in electrochemical analysis of protein biomarkers in lung cancer: a systematic review

Authors: Regiart, M., Fernández-Baldo, M.A., Navarrete, B.A., Valero, T., Ortega, F.G.
Journal: Frontiers in Chemistry
Year: 2024

Origami Paper-Based Electrochemical Immunosensor with Carbon Nanohorns-Decorated Nanoporous Gold for Zearalenone Detection

Authors: Laza, A., Pereira, S.V., Messina, G.A., Regiart, M.D., Bertolino, F.A.
Journal: Chemosensors
Year: 2024