Ivan Yu. Sakharov | Analytical Chemistry | Best Researcher Award

Dr. Ivan Yu. Sakharov | Analytical Chemistry | Best Researcher Award

Lomonosov Moscow State University, Russia

👨‍🎓Profiles

🏛️ Early Academic Pursuits

Ivan Yu. Sakharov began his academic journey at Lomonosov Moscow State University (LMSU), where he earned his M.Sc. in Chemical and Enzyme Kinetics in 1976. His keen interest in chemical kinetics and catalysis led him to pursue postgraduate studies, working as a senior assistant, engineer, and junior scientist at LMSU between 1976 and 1982. He was awarded a Ph.D. in Chemical Kinetics and Catalysis in 1982, setting the stage for a distinguished career in bioanalytical chemistry and biotechnology.

🏢 Professional Endeavors

Dr. Sakharov’s professional journey spans multiple prestigious institutions and international collaborations. After completing his Ph.D., he worked as a Junior Scientist at the USSR Research Cardiology Center (1982-1984). His career progressed as he became a Senior Scientist and later Head of the Protein Chemistry Division at the Laboratory of Biologically Active Substances of Hydrobionts (1984-1987). By 1992, he had earned his D.Sc. in Biotechnology, solidifying his expertise in enzyme applications. His international experience includes serving as an Associate Professor at the Industrial University of Santander, Colombia (1994-1999), and as a Full Professor at the Russian Economic Academy (2001-2011). Since 1991, he has held senior positions at LMSU, where he currently serves as Chief Scientist.

🔬 Research Focus and Innovations

Dr. Sakharov has dedicated his research to bioanalytical chemistry, with a strong focus on nucleic acid detection, chemiluminescent sensing systems, and peroxidase-catalyzed chemiluminescence. His studies in enzyme isolation and application have led to breakthroughs in medical diagnostics and bioanalytical technologies. His ongoing research has developed highly sensitive chemiluminescent assays for detecting microRNA in cancer cells, paving the way for advancements in early cancer detection and personalized medicine.

🌍 Impact and Influence

With a research career spanning over four decades, Dr. Sakharov has significantly influenced bioanalytical chemistry. His work on enzyme-based biosensors and chemiluminescent detection systems has been recognized globally. He has successfully completed 26 research projects, with one still ongoing, and has published 189 papers indexed in Scopus. His contributions have led to advancements in medical diagnostics, forensic science, and environmental monitoring.

📊 Academic Citations and Recognition

Dr. Sakharov’s research has been widely cited, with a citation index of 3,311 and an impressive h-index of 33. His influence in the scientific community is reflected in his role as a reviewer for renowned journals, including Talanta, Analytical Chemistry, Sensors & Actuators: B. Chemical, and ACS Omega. Additionally, he has authored four books with ISBN registration, further solidifying his academic presence.

🛠️ Technical Skills and Patents

Dr. Sakharov’s expertise extends beyond theoretical research; he has a robust technical background in chemiluminescence, biosensing, and enzyme kinetics. He has published 37 patents, covering innovations in bioanalytical chemistry and diagnostic technologies. His technical knowledge has enabled him to bridge the gap between research and industrial applications, leading to consultancy projects and collaborations with international research institutes.

🎓 Teaching Experience and Mentorship

As an educator, Dr. Sakharov has played a pivotal role in shaping the next generation of chemists and biotechnologists. His teaching experience includes tenure at the Industrial University of Santander, Colombia, and the Russian Economic Academy, Russia. His mentorship has guided numerous students and researchers, fostering innovation and scientific excellence.

🔗 International Collaborations and Networks

Dr. Sakharov’s research has been enriched by collaborations with esteemed institutions worldwide. He has worked closely with Guangxi Normal University (China), Chung Shan Medical University (Taiwan), Lund University (Sweden), Aarhus University (Denmark), and the University of Hawaii (USA), among others. These partnerships have facilitated cross-border advancements in bioanalytical chemistry and molecular diagnostics.

🌟 Legacy and Future Contributions

Dr. Sakharov’s legacy is built on his pioneering work in bioanalytical chemistry and enzyme-based diagnostics. His research has set new benchmarks in chemiluminescent assays and biosensing. Moving forward, his work will continue to influence medical diagnostics, biotechnology, and environmental monitoring. His ongoing projects and international collaborations ensure that his scientific contributions will have a lasting impact on research and industry.

📖Notable Publications

  • Publication: An ultrasensitive bunge bedstraw herb type DNA machine for absolute quantification of mRNA in single cell

    • Authors: C. Xu, J. Zhao, S. Chen, S. Hu, S. Zhao
    • Journal: Biosensors & Bioelectronics
    • Year: 2022
  • Publication: Comparative study of magnetic beads and microplates as supports in heterogeneous amplified assay of miRNA-141 by using mismatched catalytic hairpin assembly reaction

    • Authors: I.V. Safenkova, K.M. Burkin, O.L. Bodulev, B.B. Dzantiev, I.Y. Sakharov
    • Journal: Talanta
    • Year: 2022
  • Publication: Comparison of chemiluminescent heterogeneous and homogeneous-heterogeneous assays coupled with isothermal circular strand-displacement polymerization reaction amplification for the quantification of miRNA-141

    • Authors: A.M. Solovjev, I.I. Galkin, A.V. Medved’ko, S. Zhao, I.Y. Sakharov
    • Journal: Analyst
    • Year: 2022
  • Publication: Quantitation of MicroRNA-155 in Human Cells by Heterogeneous Enzyme-Linked Oligonucleotide Assay Coupled with Mismatched Catalytic Hairpin Assembly Reaction

    • Authors: O.L. Bodulev, I.I. Galkin, S. Zhao, O.Y. Pletjushkina, I.Y. Sakharov
    • Journal: Biosensors
    • Year: 2022
  • Publication: Modern Methods for Assessment of microRNAs

    • Authors: O.L. Bodulev, I.Y. Sakharov
    • Journal: Biochemistry (Moscow)
    • Year: 2022

Frank Efe | Nanotechnology | Material Chemistry Award

Mr. Frank Efe | Nanotechnology | Material Chemistry Award

Morgan State University, United States

👨‍🎓Profiles

🎓 Early Academic Pursuits

Frank Efe's academic journey began at Ibadan Grammar School in Nigeria, where he built a strong foundation in the sciences. His passion for physics and materials science led him to pursue a Bachelor of Science in Physics with Electronics at Ekiti State University, where he graduated with a commendable CGPA of 4.1/5.0. His thirst for knowledge drove him further, leading him to Obafemi Awolowo University for a Master of Science in Material Physics, focusing on semiconductor and ferromagnetic thin-film materials.

His academic excellence and research potential brought him to the United States, where he earned another Master of Science in Physics at Morgan State University, achieving an impressive CGPA of 3.9/4.0. His research in thin-film materials and nanotechnology positioned him as a rising scholar in the field.

👨‍🔬 Professional Endeavors

Frank Efe's professional career blends both research and data analytics. As a materials scientist, he specializes in the synthesis and characterization of semiconductor and ferromagnetic thin films, which have applications in cutting-edge technologies such as spintronics, solar cells, and sensors. His expertise includes using advanced characterization techniques like X-ray diffractometry, scanning electron microscopy, Raman spectroscopy, and atomic force microscopy.

Beyond research, he also worked on a National Science Foundation (NSF)-funded project as a data analyst, where he assessed students' motivation, curiosity, and success rates. This interdisciplinary experience showcases his ability to bridge scientific research with educational development.

🔬 Contributions and Research Focus

Frank’s research centers on thin-film materials, particularly iron-platinum nanomaterials, which have extensive applications in magnetic storage devices, reflective coatings, and high-power electronic devices. His recent focus is on the development of 2D semiconductor materials that exhibit superior high-temperature and high-power performance, making them ideal for next-generation electronics and energy devices.

His ability to synthesize, analyze, and optimize materials for industrial applications demonstrates his deep expertise in nanotechnology and material physics.

🌍 Impact and Influence

Frank’s work has gained recognition both in academic circles and professional communities. His contributions in thin-film research and semiconductor materials are paving the way for advancements in energy-efficient electronics and durable electronic components.

His leadership and contributions have earned him numerous awards, including:
✅ Award of Recognition, Morgan State University, Physics Department (2023)
✅ Sigma Pi Sigma Award for high scholarship and service in Physics & Astronomy (2023)
✅ Academic Achievement Trailblazer Award, Morgan State University (2023)
✅ Best Paper Award, ASEE Conference, Baltimore Convention Centre (2023)

📚 Academic Citations and Publications

Frank’s research outputs are gaining traction within the scientific community. His work has been cited in multiple journals and conferences, particularly in the areas of thin-film materials, nanotechnology, and semiconductor physics. His recognition at ASEE and Morgan State University symposiums further underscores his impact as a researcher.

🛠️ Technical Skills

Frank possesses a diverse set of technical skills, including expertise in:
✔ Material synthesis & thin-film deposition techniques
✔ X-ray diffractometry (XRD) & Scanning Electron Microscopy (SEM)
✔ Vibrating Sample Magnetometry (VSM) & Atomic Force Microscopy (AFM)
✔ UV-Vis Spectrophotometry & Raman Spectroscopy
✔ Four-point probe measurements for electrical characterization
✔ Differential Thermal Analysis (DTA)
✔ Data analysis & statistical modeling (NSF-funded research experience)

🎓 Teaching and Mentorship Experience

Frank has not only contributed to research but has also mentored students and assisted in laboratory experiments at Morgan State University. His involvement in physics education and mentoring younger scientists ensures the transfer of knowledge and the nurturing of future materials scientists.

🌟 Legacy and Future Contributions

Frank Efe is committed to pushing the boundaries of nanomaterial research and advancing semiconductor technology. His long-term goal is to contribute to the development of high-performance, sustainable electronic materials that will shape the future of energy storage, computing, and advanced electronics.

📖Notable Publications

Microstructure and Corrosion Resistance of Pyrolyzed Mg – ZnO Thin Film Coatings on Mild Steel

Authors: Victor Adewale Owoeye, Mojisola Olubunmi Nkiko, Frank O. Efe, Abiodun Eyitayo Adeoye, Enoch Debayo Ogunmola, Ayodele Nicholas Orelusi

Journal: Chemistry of Inorganic Materials

Year: 2025

Synthesis and Characterization of Zinc Cobalt Sulphide Nanofilms for Optoelectronic Applications

Authors: Joseph Onyeka Emegha, Kenneth Onyenike, Rita Omamuyovwi Jolayemi, Chioma Adaku Ejelonu, Frank Efe, Odunayo Tope Ojo

Journal: Chemistry of Inorganic Materials

Year: 2024

Engaging University Students in Practical Physics Labs through Motivational Active Learning

Authors: Oluwapemiisin Akingbola, Pelumi Abiodun, Oludare Owolabi, Frank Efe, Hannah Abedoh

Journal: Conference Paper

Year: 2024

Deposition of Stoichiometry-Tailored Amorphous Cu-S Thin Films by MOCVD Technique

Authors: Olofinjana Bolutife, Fabunmi Tobiloba Grace, Efe Frank Ochuko, Fasakin Oladepo, Adebisi Adebowale Clement, Eleruja Marcus Adebola, Akinwunmi Olumide Oluwole, Ajayi Ezekiel Oladele Bolarinwa

Journal: Phase Transitions

Year: 2023

Magnetic Relaxation in Epitaxial Films with In-Plane and Out-of-Plane Anisotropies

Authors: Abdellah Lisfi, Frank Efe, Manfred Wuttig

Journal: Applied Physics A

Year: 2023

 

Jeremie Zaffran | Theoretical Chemistry | Best Researcher Award

Prof. Dr. Jeremie Zaffran | Theoretical Chemistry | Best Researcher Award

Professor at CNRS- (Centre National de la Recherche Scientifique),  France

Profile

🌟 Early Academic Pursuits

Jeremie Zaffran’s academic journey began with distinction, marked by a Bachelor’s degree in Chemistry from Université Paris Diderot-Paris 7, where he graduated cum laude and ranked among the top of his class. He continued his studies with a Master of Science in Materials Science, specializing in Nanosciences, where his exceptional performance earned him a summa cum laude distinction. His doctoral studies at the Ecole Normale Supérieure de Lyon solidified his expertise, culminating in a PhD in Chemistry awarded with the highest distinction. His thesis laid the groundwork for fast predictions of catalytic reactivity in biomass valorization, merging quantum calculations with statistical analysis.

🧑‍🔬 Professional Endeavors

Jeremie’s professional path reflects a global and multidisciplinary perspective. Starting with his postdoctoral fellowship at the Technion in Israel, he delved into computational design for solar water-splitting catalysts, forging collaborations with experimentalists worldwide. As a Research Assistant Professor at ShanghaiTech University, he expanded his expertise in computational catalysis, designing electrocatalysts for renewable energy applications. Currently, as a tenured research fellow at CNRS and part of the E2P2L lab in Shanghai, he focuses on integrating machine learning with computational chemistry to accelerate catalyst design for sustainable industrial processes.

🏗️ Contributions and Research Focus

Jeremie’s contributions span heterogeneous catalysis modeling, renewable energy applications, and advanced computational techniques like DFT and microkinetic simulations. His projects address critical challenges in biomass transformation, solar water splitting, and CO₂ valorization. He has developed machine learning models to predict catalytic activity and mechanisms, reducing the need for exhaustive computational resources. Jeremie’s interdisciplinary approach bridges theoretical insights and practical applications, resulting in innovative solutions for green chemistry.

🏆 Accolades and Recognition

Jeremie’s work has been recognized through numerous awards and honors, such as the prestigious Lady Davis Fellowship and the Grand Technion Energy Program Fellowship. His academic excellence is underscored by distinctions at every level of his education. Furthermore, his leadership in securing competitive grants has brought substantial funding to projects focused on sustainable chemistry, totaling millions in financial support.

🌍 Impact and Influence

Through collaborations with experimental and theoretical groups, Jeremie has shaped the landscape of computational catalysis. His research has influenced industrial partners, such as Solvay, and academic communities alike. With a robust portfolio of high-impact publications, he has contributed to fields ranging from photocatalytic hydrogen production to CO₂ utilization. His leadership in combining artificial intelligence with chemical research positions him as a pioneer in the digital transformation of catalysis.

🔮 Legacy and Future Contributions

Jeremie’s work continues to inspire innovation in green chemistry. By mentoring the next generation of scientists and fostering interdisciplinary collaborations, he is laying the groundwork for a sustainable future. His legacy includes not only his scientific advancements but also his commitment to bridging academic and industrial research, ensuring that his contributions endure for decades to come.

Publication Top Notes

  • “Unveiling the phenol direct carboxylation reaction mechanism at ZrO2 surface”

    • Authors: Kaihua Zhang, Changru Ma, Sebastien Paul, Jeremie Zaffran*
    • Journal: Molecular Catalysis
    • Year: 2024
  • “Photocatalytic dihydroxylation of light olefins to glycols by water”

    • Authors: Chunyang Dong, Yinghao Wang, Ziqi Deng, et al., Jeremie Zaffran, Andrei Y. Khodakov*, Vitaly V. Ordomsky*
    • Journal: Nature Communications
    • Year: 2024
  • “Upgrading the density functional theory with machine learning for the fast prediction of polyaromatic reactivity at bimetallic catalysts”

    • Authors: Jérémie Zaffran*, Minyang Jiao, Raphaël Wischert, Stéphane Streiff, Sébastien Paul
    • Journal: The Journal of Physical Chemistry C
    • Year: 2024
  • “Deoxydehydration of glycerol to allyl alcohol catalyzed by ceria-supported rhenium oxide”

    • Authors: Karen Silva Vargas, Marcia Araque, Jeremie Zaffran, Benjamin Katryniok*, Masahiro Sadakane*
    • Journal: Molecular Catalysis
    • Year: 2023
  • “Direct Photocatalytic Synthesis of Acetic Acid from Methane and CO at Ambient Temperature using Water as Oxidant”

    • Authors: Chunyang Dong, Maya Marinova, Karima Ben Tayeb, et al., Jeremie Zaffran, Andrei Y. Khodakov*, Vitaly V. Ordomsky*
    • Journal: The Journal of the American Chemical Society
    • Year: 2023
  • “Identifying Metal-Halogen bonding for Hydrogen Induced Acid Generation in Bifunctional Catalysis”

    • Authors: Yong Zhou, Martine Trentesaux, Jean-Charles Morin, et al., Jérémie Zaffran*, Vitaly Ordomsky*
    • Journal: ACS Catalysis
    • Year: 2023
  • “Catalytic selective oxidation of isobutane in a decoupled redox-process”

    • Authors: Li Zhang, Jeremie Zaffran, Franck Dumeignil, Sébastien Paul*, Axel Lofberg, Benjamin Katryniok*
    • Journal: Applied Catalysis A: General
    • Year: 2022
  • “Theoretical Insights into the Formation Mechanism of Methane, Ethylene, and Methanol in Fischer-Tropsch Synthesis at Co2C Surfaces”

    • Authors: Jeremie Zaffran*, Bo Yang*
    • Journal: ChemCatChem
    • Year: 2021
  • “First-Principles-Based Microkinetic Simulations of CO2 Hydrogenation to Methanol over Intermetallic GaPd2”

    • Authors: Panpan Wu, Jeremie Zaffran, Bo Yang*
    • Journal: The Journal of Physical Chemistry C
    • Year: 2020
  • “Fast Prediction of Oxygen Reduction Reaction Activity on Carbon Nanotubes with a Localized Geometric Descriptor”

    • Authors: Kunran Yang†, Jeremie Zaffran†, Bo Yang*
    • Journal: Physical Chemistry Chemical Physics
    • Year: 2020

Donghyuk Kim | Materials Chemistry | Best Researcher Award

Dr. Donghyuk Kim | Materials Chemistry | Best Researcher Award

Korea Institute of Industrial Technology, South Korea

👨‍🎓Profiles

📈 Early Academic Pursuits

He began his academic journey with a strong foundation in Materials Engineering. He completed his Master's degree at Sungkyunkwan University (2002-2004) under the supervision of Professor Young-Jik Kim, where he specialized in New Materials Engineering. His passion for metallurgical advancements led him to pursue a Ph.D. at Kyungpook National University (2013-2018). Under the guidance of Professor Byeong-Jun Ye, his doctoral research culminated in the thesis titled "Study on the Austenite Formation and Oxidation Resistance of AGI (Austempered Gray Cast Iron) According to Aluminum Content". This foundational research paved the way for his expertise in cast iron materials and oxidation resistance, laying a solid groundwork for his professional journey.

💼 Professional Endeavors

He currently holds the position of Senior Researcher in the Mobility Components Group at the Korea Institute of Industrial Technology (KITECH). With a strong background in materials science, he actively contributes to innovative research and development projects focusing on mobility technologies and industrial applications. His role involves leading projects, fostering collaboration, and advancing key components that enhance industrial mobility solutions. Located in Daegu, Republic of Korea, He plays a pivotal role in strengthening Korea's technological edge in manufacturing and materials research.

🔬 Research Focus and Contributions

His research focuses on the microstructure evolution, austenite formation, and oxidation resistance of advanced cast iron materials. His doctoral work on Austempered Gray Cast Iron (AGI) highlighted the critical role of aluminum content in improving material properties, including high-temperature oxidation resistance and enhanced mechanical performance. His contributions extend to: Investigating advanced metallurgical processes, Improving the durability and strength of mobility components, Developing materials with enhanced resistance to environmental factors, His work has broad applications in automotive, aerospace, and industrial manufacturing, addressing challenges in material sustainability and performance optimization.

🔍 Impact and Influence

Through his pioneering research, He has significantly contributed to advancements in metallurgical engineering. His insights into cast iron's microstructure behavior have influenced the development of next-generation materials for industrial applications. As a Senior Researcher at KITECH, he actively mentors junior researchers and collaborates with industry leaders, fostering an environment of innovation. His research not only impacts academic circles but also drives industrial practices, particularly in the mobility and manufacturing sectors.

📅 Academic Citations

His scholarly works are well-recognized in the field of materials engineering. His research findings have been cited in multiple peer-reviewed journals, demonstrating the academic value and practical relevance of his studies. Notably, his contributions to Austempered Gray Cast Iron research remain a reference point for researchers focusing on oxidation resistance and microstructure formation.

🛠️ Technical Skills

He is highly proficient in various technical domains, including: Metallurgical Analysis: Austenite and ferrite formation studies, Materials Characterization: XRD, SEM, TEM, and mechanical testing techniques, Oxidation Resistance Testing: Evaluating material stability at high temperatures, Industrial Application Development: R&D for mobility components and advanced alloys, His technical expertise bridges the gap between theoretical research and practical applications, enabling the development of robust materials.

💼 Teaching and Mentorship

Throughout his academic and professional career, He has been dedicated to mentoring students and junior researchers. His ability to explain complex metallurgical phenomena in practical terms has earned him respect as an effective mentor. By guiding research projects and fostering innovation, he has inspired the next generation of materials scientists to explore sustainable and high-performance materials.

✨ Legacy and Future Contributions

His legacy lies in his impactful research on cast iron materials and their applications in industrial mobility. Moving forward, he remains committed to: Developing eco-friendly and sustainable materials for industrial applications. Enhancing the performance of mobility components through advanced metallurgical processes. Contributing to global collaborations that drive innovation in materials science. As a Senior Researcher, he continues to bridge academic research with industrial advancements, ensuring that his work shapes the future of material engineering and mobility technologies.

📏 Conclusion

His career reflects a seamless blend of academic excellence and professional expertise. From his early academic pursuits to his current role as a Senior Researcher at KITECH, he has consistently contributed to the field of metallurgical engineering. His research, technical skills, and mentorship have left an enduring mark on both academia and industry, positioning him as a leader in advanced materials development and innovation.

📖Notable Publications

 

Kang Wang | Quantitative Analysis of Spectroscopy | Best Researcher Award

Ms. Kang Wang | Quantitative Analysis of Spectroscopy | Best Researcher Award

Tianjin University, China

👨‍🎓Profile

🎓 Early Academic Pursuits

Ms. Kang Wang is currently a student at Tianjin University, majoring in Biomedical Engineering. Her academic focus is on exploring the intersection of engineering principles and medical science, laying a strong foundation in quantitative analysis and advanced biomedical techniques. Her dedication to research at an early stage in her academic journey highlights her passion for making a significant contribution to the field.

💼 Professional Endeavors and Research Focus

Although at the start of her career, Kang has shown a keen interest in scientific exploration, especially in spectroscopy—the study of light properties that offers profound insights into medical imaging and diagnostics. Her work emphasizes quantitative analysis, demonstrating her proficiency in applying technical knowledge to complex biomedical phenomena.

🔬 Research Contributions and Publications

Kang has contributed to two notable journals in the field: the Journal of the Optical Society of America A - Optics, Image Science, and Vision and Measurement. Publishing in these reputable outlets as a student showcases her commitment to pushing boundaries and disseminating knowledge to the broader scientific community.

📊 Technical Skills and Methodologies

In her research, Kang has honed technical skills that are critical for biomedical engineering, such as quantitative data analysis and spectroscopy. These competencies are essential for her current work and provide a solid foundation for future projects, aligning well with modern advancements in medical imaging and diagnostics.

🌐 Impact and Influence in Biomedical Engineering

Though at an early stage in her career, Kang’s contributions through her publications indicate her potential to influence the biomedical engineering domain. Her focus on quantitative analysis of spectroscopic data is crucial for refining imaging techniques, which can ultimately contribute to more accurate diagnostic tools and patient outcomes.

📈 Future Aspirations and Legacy

As she progresses in her academic journey, Kang aims to expand her expertise in biomedical imaging and contribute further to the field of biomedical engineering. Her early accomplishments demonstrate her determination to establish a meaningful legacy and make lasting contributions to healthcare technology, emphasizing innovation and scientific excellence.

📖Notable Publications

Quantitative analysis of human blood glucose by dynamic optical rotation angle of multiple wavelengths based on the polarization camera

Authors: Wang, K.; Li, G.; Sang, M.; Zhao, Z.; Lin, L.
Journal: Measurement: Journal of the International Measurement Confederation
Year: 2025

Pickering emulsions stabilized by soy protein/proanthocyanidins nanocomplexes: Physicochemical properties and in vitro release properties

Authors: Hui, Y.; Zhang, L.; Zhang, J.; Su, R.; Qi, W.
Journal: Colloids and Surfaces A: Physicochemical and Engineering Aspects
Year: 2024

Monolithic Nitrogen-Doped Carbon Electrode with Hierarchical Porous Structure for Efficient Electrochemical CO2 Reduction

Authors: Zhang, J.; Wang, K.; Wang, X.; Li, X.
Journal: ACS Applied Materials and Interfaces
Year: 2024

Dynamic spectral extraction method with approximately the same optical path length of non-invasive quantitative analysis of human blood components

Authors: Wang, K.; Li, G.; Wang, S.; Lin, L.
Journal: Measurement: Journal of the International Measurement Confederation
Year: 2024

High-precision spectra captured by a spectral camera and suppression of their nonlinearity

Authors: Wang, K.; Li, G.; Cheng, L.; Wang, S.; Lin, L.
Journal: Journal of the Optical Society of America A: Optics and Image Science, and Vision
Year: 2024

Catalytic dehydration of sorbitol to isosorbide over sulfonated phenolic resins with surface hydrophobic modification

Authors: Zhang, K.; Wang, K.; Wang, X.
Journal: New Journal of Chemistry
Year: 2024

Cu-(Ga0.2Cr0.2Mn0.2Ni0.2Zn0.2)3O4 heterojunction derived from high entropy oxide precursor and its photocatalytic activity for CO2 reduction with water vapor

Authors: Zhang, Y.; Jiang, Z.; Zhang, R.; Wang, K.; Wang, X.
Journal: Applied Surface Science
Year: 2024

 

Martín Fernández Baldo | Bioanalítica | Best Researcher Award

Dr. Martín Fernández Baldo | Bioanalítica | Best Researcher Award 

Universidad Nacional de San Luis, Argentina

👨‍🎓 Profile

🎓 Early Academic Pursuits

He pursued a solid academic journey, beginning with his primary education at Justo José de Urquiza in Maipú, Mendoza, where he graduated in December 1989. He later attended Liceo Militar General Espejo for his secondary education, graduating as a Bachiller and Subteniente de Reserva del Arma de Infantería in December 1994.

🏛 Higher Education

Fernández Baldo pursued his Bachelor's degree in Biochemistry from the Universidad Nacional de San Luis, completing his studies in 2007. He later obtained his Doctorate in Biochemistry, with his thesis titled "Control Biológico en Postcosecha: Desarrollo de Metodologías para la Detección y Cuantificación de Mohos Fitopatógenos y Micotoxinas". His thesis work was guided by Dr. María Isabel Sanz Ferramola (Director) and Dr. Germán Messina (Co-Director).

💼 Professional Endeavors

Currently, Martín Fernández Baldo is based in San Luis, Argentina, where he works at the Universidad Nacional de San Luis. He holds positions in both the Facultad de Química, Bioquímica y Farmacia in the Department of Chemistry and the Department of Bioquímica y Ciencias Biológicas. He is associated with CONICET and works in the Instituto de Química de San Luis (INQUISAL), contributing to the Laboratorio de Bioanalítica.

🔬 Contributions and Research Focus

Fernández Baldo's research is centered around bioanalytical chemistry and nanotechnology. He has expertise in synthesizing nanomaterials using both chemical and biological methods (such as microorganisms like fungi and bacteria). His work includes the use of these nanomaterials in biosensors with electrochemical detection or laser-induced fluorescence (LIF) for the determination of various biochemical, environmental, and agro-food analytes.

In recent years, his research has expanded to focus on the early diagnosis of epithelial cancers (breast, colorectal, lung, prostate) through the determination of specific tumor markers. He is also dedicated to the diagnosis of infectious diseases like parasitic, viral, and fungal infections.

🌍 Impact and Influence

Fernández Baldo's work in the field of bioanalytical chemistry and nanotechnology is making significant strides in improving diagnostic tools for both cancer and infectious diseases. His interdisciplinary approach, combining nanotechnology with bioanalytical methods, has had a notable impact on public health diagnostics, especially in low-resource settings where early and accurate detection is critical.

🛠️ Technical Skills

His technical expertise spans a variety of advanced techniques, including: Nanomaterial synthesis (chemical and biological methods). Characterization of nanomaterials using: UV-vis, XRD, XRF, FTIR, DLS, SEM, EDS, TEM. Biosensor development for: Electrochemical detection, Laser-induced fluorescence (LIF) detection.

🏅 Teaching Experience

Throughout his career, Martín Fernández Baldo has also been involved in teaching and mentorship. He contributes to postgraduate courses, such as the course on "Instrumental Analysis Methods: Biological Applications", offered by the Universidad Nacional de Cuyo. His participation in academia extends to supervising students and guiding research projects in the fields of analytical chemistry and bioanalysis.

📚 Legacy and Future Contributions

Looking forward, Martín Fernández Baldo aims to further his research in bioanalytical chemistry and nanotechnology, specifically focusing on the early diagnosis of cancers and infectious diseases. His goal is to develop more efficient, cost-effective diagnostic tools that can be applied globally. His work will likely continue to influence the fields of public health, analytical chemistry, and nanotechnology, contributing to the betterment of global diagnostic practices.

📖  Notable Publications

Copper nanoparticles as a potential emerging pollutant: Divergent effects in the agriculture, risk-benefit balance and integrated strategies for its use

Authors: Tortella, G., Rubilar, O., Fincheira, P., Fernandez-Baldo, M., Seabra, A.B.
Journal: Emerging Contaminants
Year: 2024

Metal nanoparticles and pesticides under global climate change: Assessing the combined effects of multiple abiotic stressors on soil microbial ecosystems

Authors: Fernández-Triana, I., Rubilar, O., Parada, J., Seabra, A.B., Tortella, G.R.
Journal: Science of the Total Environment
Year: 2024

Electrochemical microfluidic immunosensor with graphene-decorated gold nanoporous for T-2 mycotoxin detection

Authors: Fernandez Solis, L.N., Silva Junior, G.J., Bertotti, M., Fernández-Baldo, M.A., Regiart, M.
Journal: Talanta
Year: 2024

Advances in Nanomaterials and Composites Based on Mesoporous Materials as Antimicrobial Agents: Relevant Applications in Human Health

Authors: Gomez, G.E., Hamer, M., Regiart, M.D., Soler Illia, G.J.A.A., Fernández-Baldo, M.A.
Journal: Antibiotics
Year: 2024

Use of Mechanochemical Methodology to Explore the Formation of a New Crystalline Phase in the Curcumin-Quercetin System

Authors: D'Vries, R.F., Pastrana-Dávila, A., Pantoja, K.D., Gomez, G.E., Fernández-Baldo, M.A.
Journal: ChemistrySelect
Year: 2024

Five years of advances in electrochemical analysis of protein biomarkers in lung cancer: a systematic review

Authors: Regiart, M., Fernández-Baldo, M.A., Navarrete, B.A., Valero, T., Ortega, F.G.
Journal: Frontiers in Chemistry
Year: 2024

Origami Paper-Based Electrochemical Immunosensor with Carbon Nanohorns-Decorated Nanoporous Gold for Zearalenone Detection

Authors: Laza, A., Pereira, S.V., Messina, G.A., Regiart, M.D., Bertolino, F.A.
Journal: Chemosensors
Year: 2024