Xianhe Huang | Analytical Chemistry | Best Researcher Award

Prof. Xianhe Huang | Analytical Chemistry | Best Researcher Award

School of Automation Engineering China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Prof. Xianhe Huang began his academic journey with a Bachelor of Science in Physics from Sichuan University, completed in July 1985. Demonstrating a strong aptitude for the physical sciences, he pursued further education and earned a Master of Engineering from the University of Electronic Science and Technology of China (UESTC) in March 1988. His educational background laid a robust foundation for his future research in frequency control technologies and precision instrumentation.

🧑‍🔬 Professional Endeavors

After completing his master’s degree, Prof. Huang commenced his professional career at the Southwest Institute of Electronics Technology, where he held key roles for over a decade. From 1988 to 1991, he served as an Engineer, followed by a tenure as Senior Engineer until 2001, and later as a Researcher until April 2002. In April 2002, he joined the University of Electronic Science and Technology of China as a Professor in the School of Automation Engineering, a position he has held ever since. His transition into academia marked a significant phase in combining research with higher education.

🔬 Contributions and Research Focus

Prof. Huang’s research has led to impactful advancements in frequency stability of quartz crystal devices, quartz crystal microbalance (QCM) sensors, and atomic clock systems. His work on the thermal and aging behavior of quartz oscillators has been critical for improving precision in timing circuits. He has also significantly contributed to the development of QCM sensors for ultra-sensitive detection in chemical and biological contexts. Additionally, his expertise in atomic clock technologies supports innovations in ultra-precise timekeeping systems, essential for satellite communications and navigation technologies.

🌍 Impact and Influence

Prof. Huang is recognized internationally for his leadership in the frequency control community. As an IEEE Senior Member affiliated with the Ultrasonics, Ferroelectrics, and Frequency Control (UFFC) Society, and a Technical Program Committee Member of the IEEE International Frequency Control Symposium (IFCS), he plays a vital role in guiding global discourse on time-frequency technologies. His collaborations and contributions continue to shape strategic advancements in automation, metrology, and sensor systems.

📚 Academic Citations

While specific citation metrics are not listed here, Prof. Huang’s scholarly work is well-respected and cited in the academic literature surrounding quartz-based oscillators, atomic precision timing systems, and microbalance sensor technologies. His contributions have informed both foundational studies and real-world applications in timekeeping and detection.

🛠️ Technical Skills

Prof. Huang brings to the field a wealth of technical proficiency, including:

  • Design and optimization of quartz crystal resonators

  • QCM sensor development and calibration

  • Atomic clock integration and performance analysis

  • High-frequency signal stability assessment

  • Electronic circuit design for frequency-sensitive applications
    These skills are instrumental in both his research and mentoring of postgraduate students.

👨‍🏫 Teaching Experience

At UESTC, Prof. Huang is not only a researcher but also a dedicated educator. He has supervised numerous graduate theses and student research projects, bridging the gap between theoretical knowledge and industrial application. His teaching emphasizes a solid understanding of physical principles, electronics, and measurement science, with a strong focus on innovation and critical thinking.

🧭 Legacy and Future Contributions

Prof. Xianhe Huang has established a respected legacy as a pioneer in precision frequency control and sensing technologies. His influence extends from research labs to classrooms, contributing to China’s development in electronic systems and precision engineering. Looking ahead, his research continues to evolve toward next-generation atomic clocks, nano-sensor networks, and AI-assisted time-frequency analysis, promising to contribute to cutting-edge advancements in global communication and measurement technologies.

📖Notable Publications

1. Investigating the Mass Sensitivity of Quartz Crystal Microbalances with Circularly Symmetric Electrodes in the Third Overtone Mode
Authors: M. Wang, Minghao; X. Huang, Xianhe; Q. Huang, Qirui
Journal: Analytical Chemistry
Year: 2024

2. Nanodiamond/Ti₃C₂ MXene-coated Quartz Crystal Microbalance Humidity Sensor with High Sensitivity and High Quality Factor
Authors: Y. Yao, Yao; Q. Chen, Qiao; Y. Li, Yanqi; J. Wang, Jiaqi; C. Chen, Changming
Journal: Rare Metals
Year: 2024

3. Nanochitin/MXene Composite Coated on Quartz Crystal Microbalance for Humidity Sensing
Authors: Y. Li, Yanqi; X. Huang, Xianhe; Q. Chen, Qiao; Y. Yao, Yao; W. Pan, Wei
Journal: Nanomaterials
Year: 2023

4. High-Sensitivity Chitin Nanofiber-Coated Series Piezoelectric Quartz Crystal Humidity Sensors
Authors: Q. Chen, Qiao; K. Tan, Ke; X. Huang, Xianhe; G. Yang, Gang; D. Liu, Dong
Journal: IEEE Sensors Journal
Year: 2023

5. Study of Force-Frequency Characteristics in AT-Cut Strip Quartz Crystal Resonators with Different Rotation Angles
Authors: G. Yang, Gang; X. Huang, Xianhe; K. Tan, Ke; Q. Chen, Qiao; W. Pan, Wei
Journal: Sensors (Switzerland)
Year: 2023

Safwan Ashour | Analytical Chemistry | Best Researcher Award

Prof. Safwan Ashour | Analytical Chemistry | Best Researcher Award

Gaziantep University, Turkey

👨‍🎓Profiles

🎓 Early Academic Pursuits

Prof. Safwan Ashour began his distinguished academic journey at the University of Aleppo, Syria, where he earned his B.Sc. in Applied Chemistry in 1978. Demonstrating exceptional promise, he pursued a Postgraduate Diploma in Chemistry (1980), solidifying his foundational knowledge in the field. He made national academic history by completing Syria’s first master’s thesis in chemistry in 1982, titled “The Effect of Non-Aqueous Media on the Analysis of Semiconductors by Conductometric Method.” His commitment to pioneering research continued with a Ph.D. in Analytical Chemistry in 1992, also from Aleppo University. His doctoral thesis, “Spectrophotometric Analysis in Non-Aqueous and Mixed Media,” laid the groundwork for his future contributions to advanced analytical methods.

🧪 Professional Endeavors

Following his academic achievements, Prof. Ashour built an illustrious career, ultimately securing a position at Gaziantep University in Turkey. His career reflects a rich blend of international experience and regional influence, as he transitioned from Syrian academic institutions to Turkey’s higher education landscape. At Gaziantep University, he has served not only as a professor but also as a mentor and contributor to curriculum development in analytical chemistry and related disciplines.

🔬 Contributions and Research Focus

Prof. Ashour’s research has been centered on analytical chemistry, particularly in non-aqueous and mixed media—a niche yet critical area for enhancing accuracy and sensitivity in chemical analysis. His work in spectrophotometric and conductometric methods has paved new pathways in the analysis of semiconductors and complex chemical systems. His findings have addressed practical problems in chemistry, contributing to the development of improved materials, sensor technologies, and solvent systems for chemical detection.

🌍 Impact and Influence

Prof. Ashour’s scientific impact resonates beyond academia. By pioneering the first master’s thesis in Syria’s chemistry field, he not only set a historical benchmark but also inspired a generation of chemists. His transition to Turkey and contributions at Gaziantep University reflect his role as a bridge between Arab and Turkish scientific communities, encouraging collaboration and knowledge exchange across borders.

📚 Academic Citations and Recognition

Over the decades, Prof. Ashour’s research has been cited in numerous journals and academic platforms, underscoring his scholarly influence. While exact citation numbers aren’t listed here, his foundational work in non-aqueous analytical chemistry continues to be referenced in studies involving electrochemistry, environmental monitoring, and advanced material analysis.

🛠️ Technical and Analytical Skills

Prof. Ashour is proficient in a wide range of chemical analysis techniques including spectrophotometry, conductometry, and chemical method development in non-aqueous systems. His expertise extends to semiconductor analysis, solution chemistry, and the application of these methods in interdisciplinary research.

👨‍🏫 Teaching Experience and Academic Leadership

As an educator, Prof. Ashour has mentored countless students through undergraduate, master’s, and doctoral programs. His teaching style is marked by clarity, rigor, and a commitment to fostering independent research skills. He is known for encouraging innovative thinking and bridging theoretical chemistry with real-world applications. His tenure at Gaziantep University further signifies his leadership in shaping future chemists and researchers.

🧭 Legacy and Future Contributions

Prof. Safwan Ashour’s legacy lies in his trailblazing role in Syria’s chemistry education, his scientific leadership in Turkey, and his contributions to analytical chemistry that continue to guide new research. Looking forward, his work sets a strong foundation for green analytical methods, innovative solvent systems, and international scientific collaboration. As a veteran academic, he remains an influential voice in the chemistry community, committed to expanding the horizons of analytical science.

📖Notable Publications

  • Simple extractive colorimetric determination of levofloxacin by acid–dye complexation methods in pharmaceutical preparations
    Authors: S. Ashour, R. Al-Khalil
    Journal: Il Farmaco
    Year: 2005

  • Simultaneous determination of miconazole nitrate and metronidazole in different pharmaceutical dosage forms by gas chromatography and flame ionization detector (GC-FID)
    Authors: S. Ashour, N. Kattan
    Journal: International Journal of Biomedical Science: IJBS
    Year: 2010

  • Spectrophotometric determination of alfuzosin HCl in pharmaceutical formulations with some sulphonephthalein dyes
    Authors: S. Ashour, M.F. Chehna, R. Bayram
    Journal: International Journal of Biomedical Science
    Year: 2006

  • Direct spectrophotometric determination of metformin hydrochloride in pure form and in drug formulations
    Authors: S. Ashour, R. Kabbani
    Journal: Analytical Letters
    Year: 2003

  • Development and validation of sensitive kinetic spectrophotometric method for the determination of moxifloxacin antibiotic in pure and commercial tablets
    Authors: S. Ashour, R. Bayram
    Journal: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
    Year: 2015

Yi Zhang | Physical Chemistry | Best Researcher Award

Prof. Dr. Yi zhang | Physical chemistry | Best Researcher Award

Nanjing University, china

👨‍🎓Profiles

Early Academic Pursuits

Professor Yi Zhang's academic journey began with a Bachelor of Science degree in Physics from the prestigious Peking University (2002–2006). Demonstrating early promise, he pursued a Ph.D. in Condensed Matter Physics at the Institute of Physics, Chinese Academy of Sciences (2006–2011), under the supervision of Prof. Qi-Kun Xue. His formative academic years were marked by a deep immersion in solid-state physics, particularly focusing on advanced material growth techniques and surface science.

Professional Endeavors

After earning his doctorate, Prof. Zhang embarked on a globally collaborative postdoctoral fellowship (2011–2015), jointly hosted by the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory and the Stanford Institute for Materials and Energy Sciences (SIMES), under the mentorship of renowned physicist Prof. Zhi-Xun Shen. In 2015, he returned to China as a full Professor at the School of Physics, Nanjing University, where he began to lead his own independent research group.

Contributions and Research Focus

Prof. Zhang's research is at the forefront of experimental condensed matter physics. His work combines molecular beam epitaxy (MBE) and angle-resolved photoemission spectroscopy (ARPES) to explore the electronic properties of two-dimensional (2D) materials, topological insulators, and magnetic materials. Notable achievements include the MBE growth and ARPES characterization of topological Dirac semimetals (Na₃Bi), topological crystalline insulators (SnTe (111)), and 2D transition metal dichalcogenides (MoSe₂, WSe₂, NbSe₂). His pioneering studies on the band structure transitions in 2D materials and topological systems have significantly advanced our understanding of quantum materials at the atomic scale.

Impact and Influence

Professor Zhang is widely recognized for his influential scientific output. He was named a Clarivate Highly Cited Researcher in 2023, a testament to the global impact of his publications across multiple disciplines. In 2011, his research was ranked among the Top 100 Most Cited Chinese Papers Published in International Journals, highlighting his early influence in the field. His role as Principal Scientist in China's National Key R&D Program further cements his leadership in cutting-edge materials science.

Academic Cites and Honors

His prolific output has earned numerous prestigious honors:

  • 2023 Clarivate Highly Cited Researcher (Cross-Field)

  • 2015 National Program for Thousand Young Talents of China

  • 2020 & 2017 Jiangsu Province High-Level Talent Programs

  • 2011 Top 100 Most Cited Chinese Papers

  • Chinese Academy of Sciences & Institute of Physics Student Excellence Awards (2010)

These accolades reflect both the depth and breadth of his academic influence.

Technical Skills

Prof. Zhang is an expert in molecular beam epitaxy (MBE), mastering the growth of complex thin-film materials with atomic precision. His skill in angle-resolved photoemission spectroscopy (ARPES) enables him to probe electronic band structures and surface states with remarkable clarity. Additionally, his early work included scanning tunneling microscopy (STM) studies, demonstrating his versatility across multiple surface science techniques.

Teaching and Mentorship

As a professor at Nanjing University, Prof. Zhang is dedicated to nurturing the next generation of physicists. He combines rigorous training in experimental methods with a forward-thinking perspective on quantum materials, offering students and postdocs a rich, interdisciplinary research environment. Many of his mentees go on to pursue successful academic and research careers.

Legacy and Future Contributions

Prof. Yi Zhang stands at the intersection of innovation and impact. His research group continues to push the boundaries of quantum materials science, with a strong emphasis on emerging 2D magnetic and topological systems. As materials physics enters an era of quantum information and next-gen electronics, Prof. Zhang’s ongoing and future work promises to shape fundamental understanding and inspire transformative technologies.

Notable Publications

  • Title: Discovery of a Three-Dimensional Topological Dirac Semimetal, Na₃Bi
    Authors: Z.K. Liu, B. Zhou, Y. Zhang, Z.J. Wang, H.M. Weng, D. Prabhakaran, S.-K. Mo, et al.
    Journal: Science
    Year: 2014


  • Title: Giant Bandgap Renormalization and Excitonic Effects in a Monolayer Transition Metal Dichalcogenide Semiconductor
    Authors: M.M. Ugeda, A.J. Bradley, S.F. Shi, H. Felipe, Y. Zhang, D.Y. Qiu, W. Ruan, et al.
    Journal: Nature Materials
    Year: 2014​

  • Title: Crossover of the Three-Dimensional Topological Insulator Bi₂Se₃ to the Two-Dimensional Limit
    Authors: Y. Zhang, K. He, C.-Z. Chang, C.-L. Song, L.-L. Wang, X. Chen, J.-F. Jia, et al.
    Journal: Nature Physics
    Year: 2010


  • Title: Direct Observation of the Transition from Indirect to Direct Bandgap in Atomically Thin Epitaxial MoSe₂
    Authors: Y. Zhang, T.-R. Chang, B. Zhou, Y.-T. Cui, H. Yan, Z. Liu, F. Schmitt, et al.
    Journal: Nature Nanotechnology
    Year: 2014

  • Title: Topological Quantum Compiling with Reinforcement Learning
    Authors: Yuan-Hang Zhang, Pei-Lin Zheng, Yi Zhang*, Dong-Ling Deng*
    Journal: Physical Review Letters
    Year: 2020​

 

Yong Jyun Wang | Materials Chemistry | Best Researcher Award

Mr. Yong Jyun Wang | Materials Chemistry | Best Researcher Award

National Tsing Hua University, Taiwan

👨‍🎓Profiles

🎓 Early Academic Pursuits

Mr. Yong Jyun Wang embarked on his academic journey in the field of Materials Science, and he is currently a Ph.D. candidate at the Department of Materials Science and Engineering, National Tsing Hua University, Taiwan, expecting to graduate in 2025. His early academic foundation laid the groundwork for his deep engagement in the synthesis and property analysis of advanced functional materials, particularly focusing on oxide thin films.

💼 Professional Endeavors

Throughout his doctoral studies, Mr. Wang has actively participated in significant national research projects, including the MOST-113-2639-M-007-001–ASP, which centers on the development and future application of high-entropy epitaxial films. He has gained valuable experience in cutting-edge material fabrication techniques, with an emphasis on physical vapor deposition (PVD). His professional training is complemented by collaborative efforts within interdisciplinary research teams aiming to push the boundaries of electronic material design.

🔬 Contributions and Research Focus

Mr. Wang’s primary research has revolved around two-dimensional bismuth oxychalcogenides, particularly Bi₂O₂Se, targeting its integration into next-generation electronic and memory devices. Through compositional engineering and non-volatile modulation techniques, he has pioneered the development of p-type Bi₂O₂Se with high mobility, making it feasible for integration with its native n-type counterpart. This paves the way for complementary circuits, enhancing the material’s potential in versatile electronic systems. Furthermore, his innovative approach to non-volatile control enables memory functionalities, expanding the application horizon of Bi₂O₂Se in advanced backend electronics.

🌍 Impact and Influence

Despite being at an early stage in his career, Mr. Wang has already made notable contributions to the materials science community. His work has been featured in prestigious journals such as Nature Communications and Advanced Materials, indicating strong recognition from the academic community. His insights into high-mobility semiconducting materials have opened new research avenues for low-power electronics and neuromorphic computing.

🛠️ Technical Skills

Mr. Wang is proficient in advanced thin-film fabrication methods, especially physical vapor deposition, and skilled in material characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and electrical transport measurements. His technical versatility allows for comprehensive investigations into both structural and electronic properties of novel materials.

👨‍🏫 Teaching Experience

While pursuing his Ph.D., Mr. Wang has actively mentored undergraduate and junior graduate students, assisting them in lab training and project supervision. His role as a peer mentor has not only contributed to the academic growth of his colleagues but also strengthened his capabilities in scientific communication and leadership.

🌱 Legacy and Future Contributions

Mr. Wang’s work on Bi₂O₂Se has established a strong foundation for complementary logic and memory device platforms, essential for the advancement of low-dimensional nanoelectronics. Looking ahead, he aspires to continue his research into functional oxide materials, explore heterogeneous integration, and contribute to the development of energy-efficient and intelligent device systems. His vision includes bridging fundamental material science with practical applications in flexible electronics, smart sensors, and neuromorphic systems.

📖Notable Publications

ZrO₂-HfO₂ Superlattice Ferroelectric Capacitors With Optimized Annealing to Achieve Extremely High Polarization Stability
Authors: Y.K. Liang, W.L. Li, Y.J. Wang, L.C. Peng, C.C. Lu, H.Y. Huang, S.H. Yeong, …
Journal: IEEE Electron Device Letters
Year: 2022

Electric-field control of the nucleation and motion of isolated three-fold polar vertices
Authors: M. Li, T. Yang, P. Chen, Y. Wang, R. Zhu, X. Li, R. Shi, H.J. Liu, Y.L. Huang, …
Journal: Nature Communications
Year: 2022

High entropy nonlinear dielectrics with superior thermally stable performance
Authors: Y.J. Wang, H.C. Lai, Y.A. Chen, R. Huang, T. Hsin, H.J. Liu, R. Zhu, P. Gao, C. Li, …
Journal: Advanced Materials
Year: 2023

Flexible magnetoelectric complex oxide heterostructures on muscovite for proximity sensor
Authors: Y.J. Wang, J.W. Chen, Y.H. Lai, P.W. Shao, Y. Bitla, Y.C. Chen, Y.H. Chu
Journal: npj Flexible Electronics
Year: 2023

Quasi-static modulation of multiferroic properties in flexible magnetoelectric Cr₂O₃/muscovite heteroepitaxy
Authors: Y.H. Lai, P.W. Shao, C.Y. Kuo, C.E. Liu, Z. Hu, C. Luo, K. Chen, F. Radu, …
Journal: Acta Materialia
Year: 2023