Eduard Tokar | Analytical Chemistry | Best Researcher Award

Mr. Eduard Tokar | Analytical Chemistry | Best Researcher Award

Sakhalin State University, Russia

👨‍🎓Profiles

🎓 Education and Academic Journey

Mr. Eduard Tokar’ has built a solid academic foundation in chemistry and industrial ecology. He earned his Bachelor’s (2011-2015) and Master’s (2015-2017) degrees in Chemistry from Far Eastern Federal University (FEFU), Russia. His passion for research led him to postgraduate studies (2017-2021) in Industrial Ecology and Biotechnology, where he specialized in the environmental impact of industrial processes. In 2022, he was awarded the title of Candidate of Chemical Sciences (PhD) in Physical Chemistry and Ecology, solidifying his expertise in both chemical sciences and environmental sustainability.

🏛️ Professional Experience and Teaching

Eduard Tokar’ has an extensive background in both academic research and teaching, with a focus on nuclear technology and environmental safety. His career at Far Eastern Federal University began in 2015 as a laboratory research assistant and leading engineer in the Department of General Inorganic and Organoelement Chemistry. From 2019 to 2021, he served as a Junior Researcher in the Academic Department of Nuclear Technology, contributing to advancements in radiation safety and nuclear materials.

Currently, he is a Senior Lecturer at the Department of Nuclear Technology (2021 – Present) at Sakhalin State University. In this role, he is actively involved in student supervision, curriculum development, and research projects. He manages the educational process for undergraduate and graduate students in courses such as:

🔬 Research Interests and Contributions

Mr. Tokar’ specializes in nuclear and radiation safety at nuclear power facilities, working on methods to reduce environmental hazards associated with nuclear energy. His research extends to radiochemistry, materials science, and water purification techniques for removing radionuclides. His expertise in industrial ecology contributes to the development of sustainable solutions for managing nuclear waste and minimizing environmental contamination.

🏆 Impact and Influence in Nuclear and Environmental Chemistry

With a strong focus on nuclear technology and radiation safety, Mr. Tokar’ plays a crucial role in preparing students for careers in nuclear power, radiochemistry, and environmental protection. His work ensures that future scientists and engineers are equipped with the knowledge and skills necessary to maintain nuclear safety and develop sustainable energy solutions.

🛠️ Technical Expertise

Mr. Tokar’ has in-depth knowledge of chemical and nuclear technologies, with expertise in: Radiochemistry and Radioecology, Water purification and environmental remediation, Mathematical modeling and statistical analysis in experiments, Materials chemistry for nuclear energy applications, Chemical safety and risk assessment in nuclear power plants.

🎓 Teaching and Mentorship

A dedicated educator and mentor, Mr. Tokar’ has guided numerous students in chemical technology and nuclear safety, supervising theses on modern energy materials. His ability to integrate theoretical knowledge with practical applications helps students gain real-world expertise in nuclear power facility management and environmental protection.

🌍 Legacy and Future Contributions

Eduard Tokar’ continues to make significant contributions to nuclear and environmental chemistry, aiming to develop safer and more sustainable nuclear energy technologies. His expertise in radiation safety and water purification is critical for minimizing the environmental impact of nuclear energy production. As the world moves towards cleaner and more efficient energy solutions, his research will remain at the forefront of ensuring safety and sustainability in the nuclear industry.

📖Notable Publications

Sorbents Based on Polyacrylonitrile Fiber for Complex Recovery of Artificial 137Cs and Natural Radionuclides from Natural Media
Authors: Iuliia G. Shibetskaia, Viktoriia A. Razina, N. A. Bezhin, Sofia B. Yarusova, Ivan Gundarovich Tananaev
Journal: Water (Switzerland)
Year: 2025

Composite Sorbents Based on Chitosan Polymer Matrix and Derivatives of 4-Amino-N′-hydroxy-1,2,5-oxadiazole-3-carboximidamide for Uranium Removal from Liquid Mineralized Media
Authors: Anna I. Matskevich, Konstantin V. Maslov, Veronika A. Prokudina, Nikita S. Markin, E. A. Tokar’
Journal: Gels
Year: 2025

Composite Sorbents Based on Polymeric Se-Derivative of Amidoximes and SiO2 for the Uranium Removal from Liquid Mineralized Media
Authors: Anna I. Matskevich, Konstantin V. Maslov, Veronika A. Prokudina, Evgenij A. Eliseenko, E. A. Tokar’
Journal: Gels
Year: 2025

Decontamination of Spent Ion-Exchange Resins from the Nuclear Fuel Cycle Using Chemical Decontamination and Direct Current
Authors: Anna I. Matskevich, Nikita S. Markin, Marina Palamarchuk, E. A. Tokar’, Andrei Mikhailovich Egorin
Journal: Journal of Cleaner Production
Year: 2024

Distribution of Np, Pu, and Am in Water, Suspended Matter, and Bottom Sediments of Peter the Great Bay
Authors: Natalia V. Kuzmenkova, Vladimir G. Petrov, Alexandra K. Rozhkova, S. N. Kalmykov, Xiaolin Hou
Journal: Radiochemistry
Year: 2024

New Sorbents Based on Polyacrylonitrile Fiber and Transition Metal Ferrocyanides for 137Cs Recovery from Various Composition Solutions
Authors: Iuliia G. Shibetskaia, Viktoriia A. Razina, N. A. Bezhin, Victoria S. Yankovskaya, Ivan Gundarovich Tananaev
Journal: Applied Sciences (Switzerland)
Year: 2024

Manish Kumar | Analytical Chemistry | Best Researcher Award -1763

Dr. Manish Kumar | Analytical Chemistry | Best Researcher Award

Indian Institute of Technology, India

👨‍🎓Profiles

🎓 Academic Journey

Dr. Manish Kumar is a dedicated researcher with a strong background in chemistry, nanomaterials, and environmental sensing. He earned his Ph.D. in Chemistry from the Indian Institute of Technology (IIT) Ropar in February 2024. His research focused on organic cation receptors and metal nanocomposite-based chemical sensors for environmental monitoring under the supervision of Prof. Narinder Singh. Prior to this, he completed his Master of Science (M.Sc.) in Chemistry from Maharshi Dayanand University, Rohtak in 2018, securing 66.87% marks. His Bachelor of Science (B.Sc.) in Chemistry (Hons.) from Pt. Neki Ram Government College, Rohtak in 2016 was completed with an impressive 74.50% score, showcasing his strong academic foundation in chemistry and material sciences.

🏢 Research and Professional Experience

Dr. Manish Kumar has amassed significant research experience through his involvement in multiple prestigious institutions. Currently, since November 2024, he is a Postdoctoral Researcher at the Department of Biosciences and Technologies for Agriculture, Food, and Environment, University of Teramo, Italy. His ongoing project, "Hybrid Devices and Machine Learning for Food and Environmental Safety (HYDEAL4SAFETY)", is supervised by Prof. Dario Compagnone, a leading expert in analytical chemistry and the Deputy Rector for Research at the university.

Prior to his postdoctoral role, he worked as a Research Associate at the Department of Chemistry, Indian Institute of Technology (IIT) Delhi from March 2024 to June 2024. Under the guidance of Prof. Ritu Gupta, he contributed to the development of functionalized metal oxides and layered materials for environmental sensors, further expanding his expertise in nanomaterials and sensor technology.

🔬 Research Expertise

Dr. Manish Kumar's research spans a wide array of domains, with a particular focus on nanomaterials, chemical sensors, and environmental monitoring. His core research expertise includes:

  • Design and Development of Nanomaterials-based Sensors for detecting environmental pollutants.
  • Synthesis of Ionic Liquids and Alloy Nanocomposites to enhance sensor efficiency.
  • Supramolecular and Material Chemistry, specifically for sensing applications.
  • Environmental Analysis and Water Purification using advanced filtration techniques.
  • Chromogenic and Electrochemical Sensor Development for real-time monitoring of hazardous substances.
  • Machine Learning-assisted Array Sensors for the detection and discrimination of multiple analytes, bridging the gap between computational intelligence and experimental chemistry.

🖥️ Technical Skills

Dr. Manish Kumar is proficient in both experimental techniques and computational tools, making him a versatile researcher in analytical chemistry and material science. His technical skills include:

  • Synthesis Techniques: Expertise in designing cation receptors, ionic liquids, and their nanocomposites with graphene oxide, alloy nanoparticles, and multi-walled carbon nanotubes (MWCNTs). He has also developed supramolecular sensors, electrochemical sensors, and filtration membranes for environmental applications.
  • Instrumentation Handling: Skilled in operating advanced analytical instruments such as NMR, HRMS, FTIR, PXRD, DLS, SEM, FESEM, UV-Vis Absorption Spectrometer, Fluorescence Spectrometer, Cyclic Voltammetry, Ion-Channel Chromatography, Time-Resolved Fluorescence Spectrometer, and Gas Chromatography.
  • Software Proficiency: Experienced in using computational tools like M-Nova, ChemDraw, Origin, XP Speak 4.1, Gwyddion, Avantage, and MS Office for data analysis, spectral interpretation, and scientific visualization.

🌍 Personal and Professional Attributes

Dr. Manish Kumar, born on August 20, 1997, is a passionate and detail-oriented scientist with a strong commitment to advancing chemical sensor technology for environmental safety. He is fluent in English and Hindi and belongs to the OBC category. His ability to integrate nanomaterials, machine learning, and environmental chemistry has positioned him as a promising researcher in analytical and material sciences.

📖Notable Publications

Pyrene functionalized organic cation receptor-based “turn-on” fluorescence approach for monitoring of chlorpyrifos in food, soil, and water samples

Authors: Manish Kumar, Aman Dhiman, Gagandeep Singh, Navneet Kaur, Narinder Singh

Journal: Analytica Chimica Acta

Year: 2025-01-22

Colorimetric Nanozyme Sensor Array Based on Metal Nanoparticle-Decorated CNTs for Quantification of Pesticides in Real Water and Soil Samples

Authors: Manish Kumar, Navneet Kaur, Narinder Singh

Journal: ACS Sustainable Chemistry & Engineering

Year: 2024-01-15

NiCr₂O₄ nanozyme based portable sensor kit for on-site quantification of nerve agent mimic for environment monitoring

Authors: Manish Kumar, Navneet Kaur, Narinder Singh

Journal: Sensors and Actuators B: Chemical

Year: 2023-10

Detection and detoxification of imidacloprid in food samples through ionic liquid-stabilized CuNi alloy nanoparticle-decorated multiwall carbon nanotubes

Authors: Manish Kumar

Journal: Environmental Science: Nano

Year: 2022

Machine Learning-Based Analytical Systems: Food Forensics

Authors: Ranbir, Manish Kumar, Gagandeep Singh, Jasvir Singh, Navneet Kaur, Narinder Singh

Journal: ACS Omega

Year: 2022-12-27

Organic Cation Receptor for Colorimetric Lateral Flow Device: Detection of Zearalenone in Food Samples

Authors: Manish Kumar

Journal: ACS Applied Materials & Interfaces

Year: 2022-01-03

Aadarsh Parashar | Analytical Chemistry | Best Researcher Award

Mr. Aadarsh Parashar | Analytical Chemistry | Best Researcher Award

Colorado School of Mines, United States

👨‍🎓Profiles

🎓 Early Academic Pursuits

Aadarsh Parashar began his academic journey at the Indian Institute of Technology Bombay, where he pursued a Bachelor and Master of Technology in Energy Science and Engineering. With a commendable GPA of 8.69/10.00, he built a strong foundation in energy systems, computational modeling, and experimental research. His academic excellence led him to further his studies at the Colorado School of Mines, where he is currently a Ph.D. candidate in Mechanical Engineering with a perfect GPA of 4.0/4.0. Expected to graduate in August 2025, he has focused his research on reversible fuel cell technology and hydrogen systems, striving to innovate clean energy solutions.

🏭 Professional Endeavors

Aadarsh has a rich professional background, having worked with esteemed institutions and companies. During his time as a Research Associate at IIT Bombay, he transitioned complex algorithms from C++ to Python for electrode optimization, improving computational efficiency. He also conducted numerical studies on microstructure characterization for better material design. As a Summer Intern at Cummins India Limited, he contributed to sustainable mobility by performing life cycle analysis of Li-ion batteries and integrating MATLAB Simulink models to optimize fuel cell-battery hybrid vehicles. Currently, as a Graduate Researcher at Colorado School of Mines, he has led groundbreaking projects in reversible solid oxide fuel cells (rSOFCs), developing high-temperature, high-pressure systems and collaborating on DOE-funded projects to validate system performance.

🔬 Contributions and Research Focus

Aadarsh’s research is centered around hydrogen production and reversible fuel cell technology. He successfully designed and constructed a $125,000 test facility for kW-scale reversible fuel cell experiments, pushing operational limits up to 800°C and 6.5 bar. His work has led to a breakthrough in reducing hydrogen production costs below $2/kg, a significant milestone in making hydrogen energy more commercially viable. Collaborating with industry leaders like Nexceris and Northwestern University, he has played a key role in scaling up hydrogen-based energy solutions.

🌍 Impact and Influence

His research holds great promise for the future of clean energy and grid-scale storage solutions. By improving the efficiency and economic feasibility of reversible solid oxide cell (rSOC) systems, Aadarsh’s contributions could accelerate the global transition toward sustainable hydrogen-based energy systems. His innovations in techno-economic modeling and high-fidelity validation of energy systems are critical in making renewable energy more scalable and cost-effective.

📚 Academic Citations and Publications

Aadarsh’s impactful research has been documented in renowned journals and conferences, including:

  • "Performance analysis of a 1 MW reversible solid oxide system for flexible hydrogen and electricity production" (International Journal of Hydrogen Energy, 2025).
  • "Scenarios for Hydrogen Production from a Full-Scale Reversible Solid Oxide System with Electrolyte-Supported Stacks" (Electrochemical Society Meeting Abstracts, 2023).
  • "Assessing reversible solid oxide cell systems for grid-energy storage based on H2/H2O and CH4/H2O-CO2 chemistries" (European Fuel Cell Forum, 2022).

These contributions serve as key references in the field of hydrogen energy, solidifying his standing as a thought leader in reversible fuel cell systems.

💻 Technical Skills

Aadarsh is proficient in a diverse range of software and programming tools essential for energy system modeling and simulation:

  • Programming: Python, MATLAB, C++, Bash
  • Energy System Simulation: COMSOL, gPROMS Process, LabVIEW
  • Data Analysis & Modeling: High-fidelity system validation, techno-economic analysis
  • Experimental Techniques: High-temperature and high-pressure system design, safety protocol development

His multidisciplinary expertise allows him to bridge the gap between computational modeling and real-world experimental validation, enhancing the reliability of clean energy technologies.

👨‍🏫 Teaching and Mentorship

Beyond research, Aadarsh has contributed to academic mentorship and knowledge dissemination. He has actively guided junior researchers and students, helping them develop experimental techniques and computational modeling skills. His commitment to education and research collaboration strengthens the pipeline of future engineers and scientists in the hydrogen and clean energy domain.

🚀 Legacy and Future Contributions

Aadarsh’s work is paving the way for next-generation hydrogen technologies that are both economically viable and scalable. His research has already contributed to a significant cost reduction in hydrogen production, and his future work is expected to further optimize fuel cell efficiency, durability, and grid-scale deployment. By integrating high-fidelity modeling, experimental validation, and industry collaboration, he aims to revolutionize renewable energy storage and hydrogen economy applications.

📖Notable Publications

"Performance analysis of a 1 MW reversible solid oxide system for flexible hydrogen and electricity production"

Authors: A Parashar, A Vaeth, OB Rizvandi, SL Swartz, RJ Braun

Journal: International Journal of Hydrogen Energy

Year: 2025

"Scenarios for Hydrogen Production from a Full-Scale Reversible Solid Oxide System with Electrolyte-Supported Stacks"

Authors: A Parashar, RJ Braun

Journal: Electrochemical Society Meeting Abstracts

Year: 2023

"Assessing reversible solid oxide cell systems for grid-energy storage based on H2/H2O and CH4/H2O-CO2 chemistries"

Authors: A Parashar, J Hosseinpour, E Reznicek, RJ Braun

Journal: European Fuel Cell Forum

Year: 2022

Ahmed M. Senan | Analytical Chemistry | Analytical Chemistry Award

Assist. Prof. Dr. Ahmed M. Senan | Analytical Chemistry | Analytical Chemistry Award

Al-Mahweet University, Yemen

👨‍🎓Profiles

🎓 Early Academic Pursuits

Ahmed M. Senan, Ph.D., embarked on his academic journey in chemistry with a strong focus on organic synthesis, modification, and analysis. His passion for biotechnology and biochemistry led him to explore catalytic oxidation and reaction mechanisms in organic synthesis. Through rigorous research, he honed his expertise in characterizing functional molecular groups and analyzing their applications in bio-processes.

💼 Professional Endeavors

In 2017, Ahmed joined Nanjing Agricultural University as an Associate Researcher/Assistant Professor in Biochemistry, Food Science, and Technology. His role involved supervising graduate students in biochemistry, carbohydrate synthesis, and organic compound analysis. His ability to mentor and guide students demonstrated his strong teaching and advisory skills. In 2022, Ahmed expanded his research and academic influence by joining Suleyman Demirel University, Türkiye, as a Visiting Scientist in Chemistry. His focus shifted towards exploring ionic liquids (ILs) and their applications in discovering potential anti-pathogenic molecules, including antivirals, antimicrobials, and anti-cancer agents.

🔬 Contributions and Research Focus

Ahmed has made significant contributions to the field of catalytic oxidation and reaction mechanisms within experimental organic synthesis. His research in biotechnology has provided valuable insights into developing functional molecules with high activity in bio-process applications. Additionally, his work on ionic liquids (ILs) has opened new avenues in drug discovery and pharmaceutical applications.

🌍 Impact and Influence

His expertise extends beyond research, as he has demonstrated strong communication and teamwork skills. Ahmed has collaborated with international research teams, enhancing knowledge exchange in organic and pharmaceutical chemistry. His ability to work both individually and collaboratively has positioned him as a key contributor in his field.

📚 Academic Citations and Recognitions

Ahmed's research has been well-cited in international journals, showcasing the impact of his findings on the scientific community. His work has influenced advancements in biotechnology, food science, and pharmaceutical chemistry, making him a respected name in these fields.

🛠️ Technical Skills

Ahmed has mastered various analytical techniques essential for chemical research, including: NMR Spectroscopy, UV Spectroscopy, Gas Chromatography (GC), High-Performance Liquid Chromatography (HPLC), MALDI-TOF Mass Spectrometry.

👨‍🏫 Teaching and Mentorship Experience

Ahmed has demonstrated exceptional teaching and mentorship abilities throughout his academic career. His role as a supervisor for graduate students in biochemistry and carbohydrate synthesis highlights his ability to guide students toward research excellence. He effectively communicates complex concepts, ensuring students gain practical and theoretical knowledge.

🔮 Legacy and Future Contributions

Ahmed M. Senan continues to push the boundaries of organic chemistry and biochemistry. His research on ionic liquids aims to develop novel pharmaceutical applications with potential breakthroughs in antiviral, antimicrobial, and anti-cancer treatments. His commitment to education and scientific discovery ensures his influence will extend to future generations of researchers.

📖Notable Publications

  1. Attenuation mechanisms of arsenic-induced toxicity and its accumulation in plants by engineered nanoparticles: A review
  2. Authors: Ulhassan, Z., Bhat, J.A., Zhou, W., Alam, P., Ahmad, P.
    Journal: Environmental Pollution
    Year: 2022
  3. Mesoporous nano-sized BiFeVOx.y phases for removal of organic dyes from wastewaters by visible light photocatalytic degradation
  4. Authors: Al-Areqi, N.A.S., Umair, M., Senan, A.M., Alokab, R.A., Cacciotti, I.
    Journal: Nanomaterials
    Year: 2022
  5. LC-ESI-QTOF/MS characterization of antimicrobial compounds with their action mode extracted from vine tea (Ampelopsis grossedentata) leaves
  6. Authors: Umair, M., Sultana, T., Xiaoyu, Z., Al-Areqi, N.A.S., Zhaoxin, L.
    Journal: Food Science and Nutrition
    Year: 2022
  7. Dielectric barrier discharge cold atmospheric plasma treatment of egg white protein: Insights into the functional, rheological, and structural properties
  8. Authors: Nasiru, M.M., Boateng, E.F., Alnadari, F., Zhuang, H., Zhang, J.
    Journal: Food and Bioprocess Technology
    Year: 2024
  9. Binding mechanism, photo-induced cleavage, and computational studies of interaction of cefepime drug with human serum albumin
  10. Authors: Al-Asbahy, W.M., Shamsi, M., Senan, A., Al-Areqi, N.
    Journal: Journal of Biomolecular Structure and Dynamics
    Year: 2024
  11. Synthesis, structure characterization, DFT calculations, and computational anticancer activity investigations of 1-phenyl ethanol derivatives
  12. Authors: Senan, A.M., Muhammed, M.T., Al-Shuraym, L.A., Al-Areqi, N.A.S., Akkoç, S.
    Journal: Journal of Molecular Structure
    Year: 2023