Xuteng Zhao | Catalysis | Best Researcher Award

Dr. Xuteng Zhao | Catalysis | Best Researcher Award

Shanghai Jiao Tong University, China

👨‍🎓Profiles

👨‍🎓 Early Academic Pursuits

Dr. Xuteng Zhao began his academic journey with a strong foundation in materials science, earning his Bachelor’s degree in Polymer Materials and Engineering from Northeast Forestry University (2012.09–2016.06). His early exposure to polymer science laid the groundwork for his multidisciplinary approach to energy and catalysis. Motivated by a deep interest in chemical processes, he pursued a Master’s degree in Chemical Engineering and Technology at Harbin Engineering University (2016.09–2019.03), where he gained hands-on experience in process engineering and catalysis. His academic pursuits culminated in a Doctoral degree in Power Engineering and Engineering Thermophysics from Shanghai Jiao Tong University (2019.04–2022.12), marking a transition into the emerging field of electrochemical energy conversion.

👨‍🔬 Professional Endeavors

Dr. Zhao continued his association with Shanghai Jiao Tong University as a Postdoctoral Fellow (2022.12–2024.11), contributing to cutting-edge research in electrochemical catalysis and thermophysical engineering. His commitment and research excellence led to his promotion as an Associate Researcher in March 2025, where he remains active in both scientific research and academic mentorship. His current role situates him at the forefront of hydrogen production technologies, particularly focusing on alcohol–ammonia-based hydrogen evolution systems.

🔬 Contributions and Research Focus

Dr. Zhao’s research is deeply rooted in the development and optimization of electrochemical catalysis technologies for sustainable energy. His primary research focus includes alcohol-ammonia hydrogen production, a promising route for clean hydrogen generation. By integrating principles of thermophysics and catalysis, he has worked on improving the energy efficiency and catalytic performance of these systems. His work bridges materials engineering with chemical process innovation, contributing to the next generation of green hydrogen production technologies.

🌍 Impact and Influence

Through his innovative research, Dr. Zhao has significantly contributed to the global discourse on renewable energy and hydrogen economy. His studies on novel catalytic materials and ammonia-fueled hydrogen systems are expected to influence future industrial hydrogen production models. By collaborating within interdisciplinary teams at Shanghai Jiao Tong University, he supports both academic development and practical technology deployment for carbon-neutral energy solutions.

📊 Academic Citations and Recognition

Though still early in his career, Dr. Zhao’s research has begun to attract attention in scholarly circles, particularly in electrochemical and energy materials communities. His articles are cited in studies related to electrocatalysis, fuel processing, and ammonia decomposition, contributing to an expanding body of literature in sustainable energy production.

🧪 Technical Skills and Expertise

Dr. Zhao has mastered a wide array of experimental and analytical techniques essential to catalysis and thermophysical studies. These include Electrochemical Impedance Spectroscopy (EIS), Linear Sweep Voltammetry (LSV), Tafel Polarization and Reaction Kinetics, Gas Chromatography for hydrogen quantification, and material characterization techniques such as SEM, XRD, BET, and FT-IR. He is also adept at designing custom experimental systems for lab-scale hydrogen production and catalytic performance evaluation.

👨‍🏫 Teaching Experience and Mentorship

As an associate researcher, Dr. Zhao actively participates in academic mentorship at Shanghai Jiao Tong University. He has guided graduate students in experimental design, data analysis, and manuscript preparation. His teaching approach emphasizes both theoretical understanding and hands-on experimentation, fostering the next generation of researchers in energy engineering.

🧭 Legacy and Future Contributions

Looking ahead, Dr. Zhao aims to establish himself as a leading researcher in hydrogen energy and catalysis. His future research will likely delve into scalable hydrogen production techniques, advanced electrocatalyst design, and integration of renewable resources with chemical fuel synthesis. He aspires to develop systems that are not only energy-efficient but also economically viable for real-world deployment. His dedication to clean energy solutions and academic excellence positions him as a promising contributor to the global clean-tech landscape.

📖Notable Publications

Electrically Driven Gaseous Ammonia Decomposition for Hydrogen Production over SiC-Mediated Catalyst without External Heating
Authors: Xiaochao Wang, Xuteng Zhao, Guangzhao Zhou, Ting Chen, Qi Chen, Nicolas Alonso-Vante, Zhen Huang, Yiran Zhang, He Lin
Journal: ACS Catalysis
Year: 2025

The influence of phosphorus and CO poisoning on Pd/SSZ-13 with different Al distributions as passive NOx adsorbers
Authors: Yinan Wang, Jiaqi Feng, Ting Chen, Xuteng Zhao, Rijing Zhan, He Lin
Journal: Separation and Purification Technology
Year: 2024

Nonthermal-Plasma-Catalytic Ammonia Synthesis Using Fe₂O₃/CeO₂ Mechanically Mixed with Al₂O₃: Insights into the Promoting Effect of Plasma Discharge Enhancement on the Role of Catalysts
Authors: Guangzhao Zhou, Ziyu Wang, Xiaochao Wang, Yiran Zhang, Xuteng Zhao, Qi Chen, Ting Chen, Zhen Huang, He Lin
Journal: ACS Sustainable Chemistry & Engineering
Year: 2024

The interaction between Pd/CeO₂ crystal surface and electric field: Application to complete oxidation of methane
Authors: Xuteng Zhao, Yinan Wang, Zuwei Zheng, Xuehong Chen, Ting Chen, He Lin
Journal: Separation and Purification Technology
Year: 2024

Enhancing the NOx storage and hydrothermal stability of Pd/SSZ-13 passive NOx adsorbers by regulating the Al distributions
Authors: Yinan Wang, Xuteng Zhao, Ting Chen, Zuwei Zheng, Rijing Zhan, He Lin
Journal: Fuel
Year: 2024

Tianchao Niu | Surface Chemistry | Best Researcher Award

Prof. Dr. Tianchao Niu | Surface Chemistry | Best Researcher Award

Beihang University, China

👨‍🎓Profiles

Prof. Dr. Tianchao Niu is a distinguished researcher in the field of low-dimensional materials, with expertise in scanning tunneling microscopy (STM), molecular beam epitaxy (MBE), and surface/interface physicochemical properties. His research focuses on the controllable preparation of semiconductor materials and optimization of device-related interface properties, making significant contributions to nanotechnology and materials science.

🎓 Early Academic Pursuits

Dr. Niu began his academic journey at Ludong University, where he earned his Bachelor’s degree in Chemistry Education (2002-2006). He then pursued a Master’s degree (2006-2009) at Suzhou University, focusing on electrochemical and surface-enhanced Raman spectroscopy studies of ionic liquid/metal interface structures. His passion for surface science and nanomaterials led him to the National University of Singapore (2009-2013), where he obtained a Ph.D. in Physical Chemistry under the supervision of Prof. Chen Wei. His doctoral research, centered on low-temperature scanning tunneling microscopy studies of molecular dipole self-assembly on surfaces, laid the foundation for his future work in nanomaterials and interface engineering.

🏛️ Professional Endeavors

Dr. Niu has built an impressive career, holding academic and research positions in renowned institutions across China and the United States. His professional journey includes a postdoctoral fellowship (2016-2017) at the Brookhaven National Laboratory, USA, where he worked at the Center for Functional Nanotechnology. From 2013 to 2016, he was an Assistant Researcher at the Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, contributing to research in superconductivity and surface science. He later joined Nanjing University of Science and Technology (2017-2020) as a Professor in the School of Materials Science and Engineering before becoming a Tenured Associate Professor at Shanghai Jiao Tong University (2020-2021). Currently, he serves as an Associate Professor at the International Innovation Institute, Beihang University (since 2021), where he continues his pioneering research on low-dimensional materials and nanotechnology.

🔬 Contributions and Research Focus

Dr. Niu’s research is centered on the growth mechanisms, characterization, and application of low-dimensional semiconductor materials. His work integrates STM characterization, chemical vapor deposition (CVD), and MBE techniques to investigate the surface and interface properties of two-dimensional (2D) materials. Additionally, he specializes in vacuum system design, interconnection, and construction, contributing to the development of high-performance nanodevices. His studies have led to advancements in next-generation electronics, optoelectronics, and quantum materials, with a strong emphasis on device optimization and novel material synthesis.

📚 Impact and Influence

As a leading scientist in materials research, Dr. Niu has authored over 40 research papers and review articles as the first or corresponding author in high-impact journals such as Journal of the American Chemical Society (JACS), Nano Today, Advanced Materials, ACS Nano, Progress in Surface Science, and 2D Materials. His publications provide groundbreaking insights into nanomaterial growth and interface engineering, influencing researchers and industries in nanoelectronics, energy storage, and advanced material applications. His high citation index reflects the significant impact of his research in the global scientific community.

🛠️ Technical Expertise

Dr. Niu has mastered a wide range of cutting-edge experimental techniques essential for nanomaterial research. His expertise includes low-temperature to high-pressure scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS) for surface chemical analysis, and molecular beam epitaxy (MBE) for thin-film growth. He is also skilled in vacuum system design and integration, allowing for precise control over material fabrication processes. His technical proficiency has enabled the development of high-quality, application-oriented nanomaterials.

👨‍🏫 Teaching and Mentorship

Beyond his research, Dr. Niu is an active educator and mentor at Beihang University. He is dedicated to training the next generation of material scientists and engineers, emphasizing hands-on experimentation, interdisciplinary collaboration, and innovation in nanotechnology. He has supervised numerous doctoral and postdoctoral researchers, guiding them in advanced materials research and applications. His teaching approach bridges theoretical knowledge with real-world applications, fostering scientific curiosity and technical excellence among his students.

🚀 Legacy and Future Contributions

Dr. Niu’s future research endeavors aim to expand the capabilities of semiconductor materials for flexible electronics and quantum computing. He continues to develop novel methodologies for precise control of 2D material properties, which could lead to breakthroughs in nanoscale device performance and functionality. His vision includes strengthening global collaborations in nanoscience to accelerate technological advancements and push the boundaries of materials innovation. His pioneering work not only enhances scientific understanding but also paves the way for transformative applications in next-generation technology.

📖Notable Publications

One-dimensional topological phase and tunable soliton states in atomic nanolines on Si(001) surface
Authors: B. Song, Biyu; G. Zhi, Guoxiang; C. Hua, Chenqiang; T. Li, Tianzhao; T. Niu, Tianchao
Journal: npj Quantum Materials
Year: 2024

Epitaxial Growth of 2D Binary Phosphides
Authors: W. Gao, Wenjin; W. Dou, Wenzhen; D. Zhou, Dechun; C. Hua, Chenqiang; A.T. Wee, Andrew T.S.
Journal: Small Methods
Year: 2024

Atomically Precise Bottom-Up Fabrication of Ultra-Narrow Semiconducting Zigzag BiP Nanoribbons
Authors: D. Zhou, Dechun; Y. Feng, Yisui; L. Zhang, Lei; H. Li, Hui; T. Niu, Tianchao
Journal: Advanced Functional Materials
Year: 2024

Growth of Single Crystalline 2D Materials beyond Graphene on Non-metallic Substrates
Authors: W. Gao, Wenjin; G. Zhi, Guoxiang; T. Niu, Tianchao
Journal: Small
Year: 2024

Room-temperature magnetic higher-order topological states in two-dimensional transition metal dichalcogenides and dihalogenides
Authors: C. Hua, Chenqiang; D. Shao, Dexi; W. Wu, Weikang; T. Niu, Tianchao; S.A. Yang, Shengyuan A.
Journal: Physical Review B
Year: 2024

Anisotropic Strain-Mediated Growth of Monatomic Co Chains on Unreconstructed Regions of the Au(111) Surface
Authors: B. Song, Biyu; W. Gao, Wenjin; G. Zhi, Guoxiang; M. Wu, Meimei; T. Niu, Tianchao
Journal: Chemistry of Materials
Year: 2024

Aurica Farcas | Polymer Chemistry | Best Researcher Award

Ms. Aurica Farcas | Polymer Chemistry | Best Researcher Award

Institute of Macromolecular Chemistry Petru Poni, Romania

👨‍🎓Profiles

🏛️ Early Academic Pursuits

Aurica Farcas embarked on her academic journey with a strong foundation in polymer chemistry. Her pursuit of excellence led to a Ph.D. in Polymer Chemistry in 1998, completed with honors at the prestigious "Petru Poni" Institute of Macromolecular Chemistry (ICMPP), Iasi, Romania. This early phase of her career laid the groundwork for her expertise in organic and polymer chemistry, supramolecular chemistry, and molecular recognition.

👩‍🔬 Professional Endeavors

Dr. Farcas has dedicated her career to advancing polymer and organic chemistry, focusing on innovative research that bridges fundamental science and industrial applications. As a researcher at ICMPP, she has played a pivotal role in the development of novel organic materials, specializing in encapsulated π-conjugated monomers, oligomers, and polymers. Her work also extends to surface characterization, electrochemistry, and the study of organic semiconductors' optical, electrical, and doping properties.

🧪 Contributions and Research Focus

Her research is centered on the control and tailoring of intermolecular interactions in organic semiconductor materials, particularly through molecular encapsulation. These advancements hold promise for the next generation of electronic materials, opening doors to new applications in optoelectronics, flexible electronics, and molecular recognition-based technologies.

Dr. Farcas has contributed significantly to:
✅ The synthesis and characterization of novel organic and polymeric materials.
✅ Development of supramolecular assemblies for enhanced electronic properties.
✅ Exploration of encapsulation techniques to improve material stability and efficiency.

🌍 Impact and Influence

With a research career spanning over two decades, Dr. Farcas has secured more than 40 national and international research grants, a testament to her scientific impact and leadership. Her work has led to 21 laboratory technologies, including three industrial applications, demonstrating her commitment to translating fundamental research into real-world solutions.

Her research findings have shaped contemporary understanding of organic semiconductor materials, influencing advancements in organic electronics and molecular recognition systems.

📖 Academic Contributions and Citations

Dr. Farcas has an extensive publication record, showcasing her dedication to disseminating scientific knowledge. Her academic contributions include:
📚 2 authored books & 6 book chapters
📝 80+ papers published in ISI-indexed journals
📄 40+ articles in non-ISI journals
🎤 21 invited lectures at national and international scientific conferences

Her impact in the scientific community is further reflected in her Web of Science ResearcherID: C-2512-2011.

🛠️ Technical Skills

Dr. Farcas possesses expertise in various cutting-edge techniques and methodologies, including:
🔬 Polymer synthesis and characterization techniques.
⚛️ Supramolecular chemistry and molecular encapsulation.
📊 Surface characterization and electrochemical analysis.
💡 Optical and electronic property evaluation of organic semiconductors.

These technical proficiencies have been instrumental in developing new organic materials with tailored properties for advanced applications.

🎓 Teaching and Mentorship

Beyond research, Dr. Farcas has been actively involved in mentoring young scientists and researchers, guiding them through complex chemical and materials science concepts. Her contributions to education and knowledge transfer have played a crucial role in shaping the next generation of researchers in polymer and organic chemistry.

🔮 Legacy and Future Contributions

As a seasoned researcher, Dr. Farcas continues to push the boundaries of material science. Her future contributions are expected to:
✨ Drive innovations in organic electronic materials.
✨ Expand the practical applications of molecular encapsulation techniques.
✨ Contribute to the development of more sustainable and efficient polymer-based technologies.

📖Notable Publications

  • A thiophene-based bisazomethine and its inclusion complex with permethylated β-cyclodextrin: Exploring structural characteristics and computational chemistry models

    • Authors: A.M. Resmerita, Ana Maria; C. Cojocaru, Corneliu; M.D. Dǎmǎceanu, Mariana Dana; A.E. El Haitami, Alae E.; A. Farcaş, Aurica
    • Journal: Dyes and Pigments
    • Year: 2025
  • Aromatic Co-Polyazomethine Polyrotaxane with Enhanced Solubility Applied as a Hole Carrier in a p-n Heterojunction Diode

    • Authors: C. Ursu, Cristian; A.M. Resmerita, Ana Maria; R.I. Tigoianu, Radu Ionut; A. Farcaş, Aurica
    • Journal: ACS Applied Polymer Materials
    • Year: 2024
  • Composite materials based on slide-ring polyrotaxane structures for optoelectronics

    • Authors: A.M. Resmerita, Ana Maria; M. Asandulesa, Mihai; A. Farcaş, Aurica
    • Journal: Journal of Polymer Science
    • Year: 2024
  • Thermal Transitions and Structural Characteristics of Poly(3,4-ethylenedioxythiophene/cucurbit[7]uril) Polypseudorotaxane and Polyrotaxane Thin Films

    • Authors: B. Hajduk, Barbara; P. Jarka, Pawel; H. Bednarski, H.; P. Kumari, Pallavi; A. Farcaş, Aurica
    • Journal: Materials
    • Year: 2024
  • Synthesis, Properties and Adsorption Kinetic Study of New Cross-Linked Composite Materials Based on Polyethylene Glycol Polyrotaxane and Polyisoprene/Semi-Rotaxane

    • Authors: A.M. Resmerita, Ana Maria; A. Bargan, Alexandra; C. Cojocaru, Corneliu; A. Farcaş, Aurica
    • Journal: Materials
    • Year: 2023
  • Novel Insight into the Photophysical Properties and 2D Supramolecular Organization of Poly(3,4-ethylenedioxythiophene)/Permodified Cyclodextrins Polyrotaxanes at the Air–Water Interface

    • Authors: A.E. El Haitami, Alae E.; A.M. Resmerita, Ana Maria; E.L. Ursu, Elena Laura; S. Cantin, Sophie; A. Farcaş, Aurica
    • Journal: Materials
    • Year: 2023
  • The straightforward approach of tuning the photoluminescence and electrical properties of encapsulated PEDOT end-capped by pyrene

    • Authors: A. Farcaş, Aurica; M. Damoc, Madalin; M. Asandulesa, Mihai; R.I. Tigoianu, Radu Ionut; E.L. Ursu, Elena Laura
    • Journal: Journal of Molecular Liquids
    • Year: 2023

Martin Gilar | Chromatography | Best Researcher Award

Dr. Martin Gilar | Chromatography | Best Researcher Award

Waters Corporation, United States

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Martin Gilar completed his Ph.D. in Analytical Chemistry in 1996 from the Institute of Chemical Technology in Prague. His thesis, focused on the chiral separation of dihydropyridine calcium antagonists, established his early interest in complex analytical challenges. With an MSc in Chemistry from the same institution, Dr. Gilar also gained expertise in organic technology, further refining his skills with a certificate in Pharmaceutical Analytical Methods from the Institute of Medical Postgraduate Education, Charles University.

💼 Professional Endeavors

He began his career as a Senior Staff Scientist at the Faculty Hospital of Charles University, Prague, where he led clinical studies and developed methods for drug monitoring and enantioseparation. His subsequent work at the National Institute of Health in Prague saw him pioneering capillary gas chromatography and high-performance liquid chromatography methods to phenotype cytochrome P450 markers. He joined Waters Corporation in Milford, Massachusetts, where he continues to serve as a Research Fellow. Over more than two decades at Waters, he has made transformative advancements, from LC-MS analysis of oligonucleotides to multi-dimensional separations of complex proteins and peptides. He also contributed to the commercialization of impactful products like RapiGest and HILIC SPE plates, underscoring his contributions to both academia and industry.

🔬 Contributions and Research Focus

His research is deeply rooted in separation science, particularly in liquid chromatography (LC), ultra-performance liquid chromatography (UPLC), and LC-MS methods. He has explored diverse biomolecules, from oligonucleotides to glycopeptides, establishing techniques that have refined the precision of these separations. His pioneering work includes the development of multi-dimensional protein separation techniques with MS detection and contributions to capillary electrophoresis instrumentation.

🌍 Impact and Influence

With over 80 publications in peer-reviewed journals, Dr. Gilar has made a significant impact on analytical chemistry, particularly in chromatography and oligonucleotide analysis. His methodologies are widely adopted in fields spanning pharmaceutical sciences, biotechnology, and clinical diagnostics. His expertise is further recognized by prestigious accolades such as the Jaroslav Janak Medal from the Czech Academy of Science and the Chromatographic Society Jubilee Medal, underscoring his lasting influence in chromatography.

📈 Academic Citations and Patents

His innovations are not only influential in publications but also in patents. He holds several U.S. and international patents, including patents for solid-phase extraction devices and mass-spectrometric purification methods for biopolymers. These innovations have facilitated efficient sample preparation and complex biopolymer purification, enabling more accurate and high-throughput analyses. His work continues to be highly cited in academic circles, reflecting its foundational impact on modern analytical techniques.

🛠️ Technical Skills

His technical expertise spans LC, UPLC, HPLC, and capillary electrophoresis for both qualitative and quantitative analysis. He has a deep knowledge of ion-pairing techniques, hydrophilic interaction chromatography (HILIC), and two-dimensional liquid chromatography (2D-LC). His extensive experience with mass spectrometry (MS) and advanced detection systems has also supported his development of industry-leading techniques in protein, peptide, and oligonucleotide analysis.

🧑‍🏫 Teaching Experience and Mentorship

Throughout his career, Dr. Gilar has been committed to teaching and mentoring the next generation of scientists. His early role as a Staff Scientist at Northeastern University included supervising Ph.D. students and developing analytical instrumentation. His ongoing work at Waters Corporation has also involved leading and managing research teams, fostering a collaborative environment that drives innovative research.

🌟 Legacy and Future Contributions

His contributions have established a legacy in chromatography, particularly in innovative separation techniques and practical applications in biotechnology. His continued research at Waters Corporation promises to advance analytical chemistry, driving the field toward more precise, efficient, and reliable methods. As he remains active in both research and mentorship, His influence is set to endure, shaping the analytical landscape for years to come.

📖Notable Publications