Frank Efe | Nanotechnology | Material Chemistry Award

Mr. Frank Efe | Nanotechnology | Material Chemistry Award

Morgan State University, United States

👨‍🎓Profiles

🎓 Early Academic Pursuits

Frank Efe's academic journey began at Ibadan Grammar School in Nigeria, where he built a strong foundation in the sciences. His passion for physics and materials science led him to pursue a Bachelor of Science in Physics with Electronics at Ekiti State University, where he graduated with a commendable CGPA of 4.1/5.0. His thirst for knowledge drove him further, leading him to Obafemi Awolowo University for a Master of Science in Material Physics, focusing on semiconductor and ferromagnetic thin-film materials.

His academic excellence and research potential brought him to the United States, where he earned another Master of Science in Physics at Morgan State University, achieving an impressive CGPA of 3.9/4.0. His research in thin-film materials and nanotechnology positioned him as a rising scholar in the field.

👨‍🔬 Professional Endeavors

Frank Efe's professional career blends both research and data analytics. As a materials scientist, he specializes in the synthesis and characterization of semiconductor and ferromagnetic thin films, which have applications in cutting-edge technologies such as spintronics, solar cells, and sensors. His expertise includes using advanced characterization techniques like X-ray diffractometry, scanning electron microscopy, Raman spectroscopy, and atomic force microscopy.

Beyond research, he also worked on a National Science Foundation (NSF)-funded project as a data analyst, where he assessed students' motivation, curiosity, and success rates. This interdisciplinary experience showcases his ability to bridge scientific research with educational development.

🔬 Contributions and Research Focus

Frank’s research centers on thin-film materials, particularly iron-platinum nanomaterials, which have extensive applications in magnetic storage devices, reflective coatings, and high-power electronic devices. His recent focus is on the development of 2D semiconductor materials that exhibit superior high-temperature and high-power performance, making them ideal for next-generation electronics and energy devices.

His ability to synthesize, analyze, and optimize materials for industrial applications demonstrates his deep expertise in nanotechnology and material physics.

🌍 Impact and Influence

Frank’s work has gained recognition both in academic circles and professional communities. His contributions in thin-film research and semiconductor materials are paving the way for advancements in energy-efficient electronics and durable electronic components.

His leadership and contributions have earned him numerous awards, including:
✅ Award of Recognition, Morgan State University, Physics Department (2023)
✅ Sigma Pi Sigma Award for high scholarship and service in Physics & Astronomy (2023)
✅ Academic Achievement Trailblazer Award, Morgan State University (2023)
✅ Best Paper Award, ASEE Conference, Baltimore Convention Centre (2023)

📚 Academic Citations and Publications

Frank’s research outputs are gaining traction within the scientific community. His work has been cited in multiple journals and conferences, particularly in the areas of thin-film materials, nanotechnology, and semiconductor physics. His recognition at ASEE and Morgan State University symposiums further underscores his impact as a researcher.

🛠️ Technical Skills

Frank possesses a diverse set of technical skills, including expertise in:
✔ Material synthesis & thin-film deposition techniques
✔ X-ray diffractometry (XRD) & Scanning Electron Microscopy (SEM)
✔ Vibrating Sample Magnetometry (VSM) & Atomic Force Microscopy (AFM)
✔ UV-Vis Spectrophotometry & Raman Spectroscopy
✔ Four-point probe measurements for electrical characterization
✔ Differential Thermal Analysis (DTA)
✔ Data analysis & statistical modeling (NSF-funded research experience)

🎓 Teaching and Mentorship Experience

Frank has not only contributed to research but has also mentored students and assisted in laboratory experiments at Morgan State University. His involvement in physics education and mentoring younger scientists ensures the transfer of knowledge and the nurturing of future materials scientists.

🌟 Legacy and Future Contributions

Frank Efe is committed to pushing the boundaries of nanomaterial research and advancing semiconductor technology. His long-term goal is to contribute to the development of high-performance, sustainable electronic materials that will shape the future of energy storage, computing, and advanced electronics.

📖Notable Publications

Microstructure and Corrosion Resistance of Pyrolyzed Mg – ZnO Thin Film Coatings on Mild Steel

Authors: Victor Adewale Owoeye, Mojisola Olubunmi Nkiko, Frank O. Efe, Abiodun Eyitayo Adeoye, Enoch Debayo Ogunmola, Ayodele Nicholas Orelusi

Journal: Chemistry of Inorganic Materials

Year: 2025

Synthesis and Characterization of Zinc Cobalt Sulphide Nanofilms for Optoelectronic Applications

Authors: Joseph Onyeka Emegha, Kenneth Onyenike, Rita Omamuyovwi Jolayemi, Chioma Adaku Ejelonu, Frank Efe, Odunayo Tope Ojo

Journal: Chemistry of Inorganic Materials

Year: 2024

Engaging University Students in Practical Physics Labs through Motivational Active Learning

Authors: Oluwapemiisin Akingbola, Pelumi Abiodun, Oludare Owolabi, Frank Efe, Hannah Abedoh

Journal: Conference Paper

Year: 2024

Deposition of Stoichiometry-Tailored Amorphous Cu-S Thin Films by MOCVD Technique

Authors: Olofinjana Bolutife, Fabunmi Tobiloba Grace, Efe Frank Ochuko, Fasakin Oladepo, Adebisi Adebowale Clement, Eleruja Marcus Adebola, Akinwunmi Olumide Oluwole, Ajayi Ezekiel Oladele Bolarinwa

Journal: Phase Transitions

Year: 2023

Magnetic Relaxation in Epitaxial Films with In-Plane and Out-of-Plane Anisotropies

Authors: Abdellah Lisfi, Frank Efe, Manfred Wuttig

Journal: Applied Physics A

Year: 2023

 

Wei Zhao | Electrochemistry | Best Researcher Award

Mr. Wei Zhao | Electrochemistry | Best Researcher Award

Shenzhen University, China

👨‍🎓Profiles

Early Academic Pursuits 🎓

Dr. Wei Zhao's academic journey began with a strong foundation in physical sciences. He completed his B.Sc. in Applied Physics at the University of Science and Technology of China (USTC) in 2006. He then continued his studies at USTC, earning an M.Sc. in Physical Chemistry in 2009, where he worked under the guidance of Prof. Junfa Zhu at the National Synchrotron Radiation Laboratory. His pursuit of further knowledge led him to Germany, where he earned a Ph.D. in Physical Chemistry at the University of Erlangen-Nuremberg in 2013. His doctoral research, supervised by Prof. Hans-Peter Steinrueck, was focused on advanced topics in physical chemistry, setting the stage for his future research endeavors.

Professional Endeavors 💼

Dr. Zhao's professional career is marked by his significant contributions to academic research and teaching. In 2014, he began a postdoctoral fellowship at the Hong Kong University of Science and Technology, where he worked under Prof. Nian Lin. This experience helped refine his research skills in the area of physical chemistry and materials science. By 2015, Dr. Zhao moved to the University of Washington as a Research Associate in the Chemistry Department, collaborating with Prof. Charles T. Campbell. His work there led to numerous discoveries in surface chemistry and nanomaterials. In 2018, Dr. Zhao transitioned to Shenzhen University, first as an Assistant Professor and later as an Associate Professor. At the Institute for Advanced Study, he is now a Principal Investigator (PI), leading his research group in exploring innovative solutions in physical chemistry and nanomaterials.

Contributions and Research Focus 🔬

Dr. Zhao’s research focuses on the study of surface reactions, nanomaterials, and catalysis, with an emphasis on their potential applications in energy conversion and storage. His research uses a combination of theoretical and experimental techniques to investigate the fundamental processes that govern material behaviors at the nanoscale. His work aims to develop novel materials that can enhance the efficiency of various chemical processes, such as hydrogen production and carbon dioxide reduction. His innovative approaches in surface chemistry and nanomaterials design have contributed to advancing the field of sustainable energy technologies.

Impact and Influence 🌍

Dr. Zhao’s work has had a profound impact on both the scientific community and industry. Through his research, he has contributed to the development of new materials and technologies that hold promise for addressing global challenges such as energy sustainability and environmental protection. His studies have been widely cited in leading scientific journals, indicating the relevance and importance of his work. Dr. Zhao is recognized not only for his research contributions but also for his role in shaping the future of chemical and material sciences.

Academic Cites 📚

Dr. Zhao’s research output has been well-received by the academic community, with his work frequently cited in high-impact publications. His innovative findings in the fields of surface chemistry and nanomaterials have earned him recognition from scholars worldwide. As of 2024, his work has been cited numerous times, further cementing his position as a leading researcher in his field.

Technical Skills ⚙️

Dr. Zhao is highly skilled in a variety of experimental and computational techniques. His expertise includes surface science, spectroscopy, electron microscopy, and synchrotron radiation techniques. These skills allow him to conduct in-depth analyses of materials at the atomic and molecular level, providing valuable insights into their properties and behaviors. His technical proficiency is essential to the success of his research projects, which often involve complex experimental setups and cutting-edge technologies.

Teaching Experience 👩‍🏫

As an Associate Professor and Principal Investigator, Dr. Zhao is actively involved in teaching and mentoring students at Shenzhen University. He is known for his dedication to educating the next generation of scientists and researchers. Dr. Zhao offers courses on physical chemistry, nanomaterials, and surface science, and he supervises both undergraduate and graduate students. His mentorship extends beyond the classroom, as he actively guides students in their research projects, helping them develop the skills necessary to succeed in academia and industry.

Legacy and Future Contributions 🔮

Looking forward, Dr. Zhao aims to continue his pioneering work in the field of physical chemistry and nanomaterials. His research will likely lead to further advancements in energy storage and conversion technologies, with a focus on sustainability and efficiency. He envisions his work contributing to the development of green technologies that can address pressing global challenges. Dr. Zhao’s dedication to scientific inquiry and innovation positions him as a key figure in the future of material science and energy research.

📖Notable Publications

Ayush Amod | Nanotechnology | Best Researcher Award

Mr. Ayush Amod | Nanotechnology | Best Researcher Award

Indian Institute of Information Technology, India

👨‍🎓Profiles

🎓 Early Academic Pursuits

Ayush Amod began his academic journey with a strong foundation in Life Sciences, earning both his Bachelor's and Master's degrees from the University of Allahabad (UoA), India. His keen interest in interdisciplinary sciences led him to pursue a Master of Technology (M.Tech) in Bioinformatics from the Indian Institute of Information Technology, Allahabad (IIIT-A). With a passion for research, he secured a prestigious Junior Research Fellowship (JRF) by ICMR (All India Rank-18) and also qualified the National Eligibility Test (NET) by CSIR (All India Rank-50), showcasing his excellence in the field of medical and computational biology.

🏅 Professional Endeavors

Currently serving as an ICMR-SRF Research Scholar at IIIT-Allahabad, Ayush Amod is in the final phase of his doctoral studies at the Department of Applied Sciences. His research is primarily centered on understanding bacterial biofilm infections, nanobiotechnology, and bioinformatics. His collaborative efforts with Central Drug Research Institute (CDRI), Lucknow have further enhanced the translational impact of his work.

🔬 Contributions and Research Focus

Ayush Amod’s research contributions have been instrumental in advancing bioinformatics and computational biology, particularly in drug discovery and disease therapeutics. His work on strigolactone analogues focused on investigating the role of HDAC1 and HDAC2 inhibitors in hepatocellular carcinoma, leading to a significant publication in Biotechnology Letters (2022). During the COVID-19 pandemic, he contributed to drug discovery by evaluating the phytoconstituents of Tinospora cordifolia against SARS-CoV-2 K417N and N501Y mutant spike glycoprotein and its main protease, providing valuable insights into potential antiviral therapeutics. Additionally, he played a key role in the development of the Anti-Ebola Peptide Database (AEPDB), a specialized and comprehensive resource of antiviral peptides against the Ebola virus, making a meaningful impact on computational virology and peptide-based drug discovery.

📊 Impact and Influence

Ayush has made remarkable progress in the field of bioinformatics, contributing to 7 SCI-indexed research papers and maintaining an h-index of 4 and i10-index of 2, reflecting the significance of his work. His research bridges the gap between computational biology and medical sciences, aiding drug discovery and therapeutic development.

📚 Academic Citations & Publications

With a total of 7 SCI-indexed publications, his work is gaining widespread recognition in the scientific community. His research has been referenced by fellow scholars working in drug discovery, computational biology, and nanobiotechnology.

🛠 Technical Skills

Ayush possesses expertise in a diverse range of computational and laboratory techniques, enabling him to make significant contributions to bioinformatics and drug discovery. His proficiency in molecular docking and dynamics simulations allows for the detailed analysis of biomolecular interactions, crucial for understanding drug-target mechanisms. He is skilled in computational drug discovery, utilizing advanced algorithms and modeling techniques to identify potential therapeutic compounds. Additionally, his experience in bioinformatics database development has contributed to the creation of specialized resources for antiviral research. With a strong background in high-performance computing for biological data analysis, he efficiently processes large-scale genomic and proteomic datasets, enhancing the accuracy and speed of computational biology applications.

🎓 Teaching Experience & Knowledge Sharing

As a dedicated researcher, Ayush has mentored junior scholars in bioinformatics and computational biology. He has actively engaged in scientific discussions and workshops to help budding researchers develop skills in molecular modeling, drug discovery, and bioinformatics tools.

🌟 Legacy and Future Contributions

With an interdisciplinary research approach, Ayush Amod is poised to make groundbreaking contributions in computational biology and nanobiotechnology. His ongoing research on bacterial biofilm infections and drug resistance will play a crucial role in developing novel therapeutic strategies. Looking ahead, he aims to expand his work in AI-driven drug discovery and personalized medicine, contributing towards a better understanding of infectious diseases and their treatment.

📖Notable Publications

  1. A Specialized and Comprehensive Resource of Antiviral Peptides against Ebola Virus
    • Authors: Mondal, R.K., Anand, A.A., Amod, A., Pal, O., Samanta, S.K.
    • Journal: International Journal of Peptide Research and Therapeutics
    • Year: 2025
  2. A comprehensive guide on screening and selection of a suitable AMP against biofilm-forming bacteria
    • Authors: Anurag Anand, A., Amod, A., Anwar, S., Sethi, G., Samanta, S.K.
    • Journal: Critical Reviews in Microbiology
    • Year: 2024
  3. Finding Novel AMPs Secreted from the Human Microbiome as Potent Antibacterial and Antibiofilm Agents and Studying Their Synergistic Activity with Ag NCs
    • Authors: Singh, A., Amod, A., Mulpuru, V., Sahoo, A.K., Samanta, S.K.
    • Journal: ACS Applied Bio Materials
    • Year: 2023
  4. Evaluation of phytoconstituents of Tinospora cordifolia against K417N and N501Y mutant spike glycoprotein and main protease of SARS-CoV-2- an in silico study
    • Authors: Choudhary, P., Singh, T., Amod, A., Singh, S.
    • Journal: Journal of Biomolecular Structure and Dynamics
    • Year: 2023
  5. Network pharmacological evaluation of strigolactones efficacy as potential inhibitors against therapeutic targets of hepatocellular carcinoma
    • Authors: Amod, A., Pahal, S., Choudhary, P., Gupta, A., Singh, S.
    • Journal: Biotechnology Letters
    • Year: 2022
  6. Bacterial biofilm infections, their resistance to antibiotics therapy and current treatment strategies
    • Authors: Singh, A., Amod, A., Pandey, P., Sahoo, A.K., Samanta, S.K.
    • Journal: Biomedical Materials (Bristol)
    • Year: 2022

Halil Ibrahim Efkere | Photochemistry | Best Researcher Award -1666

Mr. Halil Ibrahim Efkere | Photochemistry | Best Researcher Award

Gazi University, Turkey

👨‍🎓Profiles

🎓 Early Academic Pursuits

Halil Ibrahim Efkere’s academic journey began with a Bachelor's degree in Physics from Selçuk University in 2009. His passion for materials science and physics led him to pursue a Master's degree in Physics (with thesis) from Erciyes University, which he completed on January 7, 2014. Demonstrating exceptional dedication to research and innovation, he further advanced his studies with a Ph.D. in Metallurgical and Materials Engineering at Gazi University, completing his thesis in 2013. His doctoral research, supervised by Süleyman Özçelik and Tuncay Karaaslan, focused on the growth and characterization of InGaAs/GaAs superlattice structures using the Molecular Beam Epitaxy (MBE) technique, showcasing his expertise in advanced material synthesis.

🏢 Professional Endeavors

In 2020, Mr. Efkere was appointed as a Lecturer at the Gazi University Photonics Application and Research Center, where he significantly contributed to cutting-edge advancements in photonics and materials engineering. He has also played a key role in multiple research projects, such as: Leading the study on CeO2 thin films produced via RF Magnetron Sputtering for photocatalytic water purification applications. Collaborating on a project investigating TiO2 films produced using ultrasonic chemical spray methods for photocatalytic water splitting and cleaning applications. These endeavors reflect his commitment to addressing real-world challenges in water purification and renewable energy using innovative material solutions.

🧪 Contributions and Research Focus

Mr. Efkere’s research centers on thin-film materials and their application in photocatalysis, water purification, and photonics. His contributions include: Developing CeO2 and TiO2 thin films with enhanced photocatalytic activity for environmental applications. Utilizing advanced deposition techniques like RF Magnetron Sputtering and ultrasonic chemical spray to optimize material properties for energy and water treatment applications. Investigating the interaction of thin-film structures for practical industrial and scientific applications. His groundbreaking research not only contributes to the scientific community but also has significant environmental and technological implications.

🌍 Impact and Influence

Mr. Efkere’s work on molecular beam epitaxy, thin films, and photocatalytic applications has created a profound impact in the fields of materials science and photonics. His projects aim to advance sustainable energy solutions and water purification technologies, addressing some of the most pressing global challenges. His leadership in national-level projects further establishes him as a key figure in Turkey's scientific landscape.

📚 Academic Citations

Mr. Efkere’s research outputs are gaining traction in the academic community, with his published works being widely cited in areas such as thin-film technology, photocatalysis, and renewable energy materials. His meticulous approach to experimentation and publication ensures the reliability and reproducibility of his findings.

🛠️ Technical Skills

Mr. Efkere has honed several advanced technical skills, including: Material Synthesis Techniques: Molecular Beam Epitaxy (MBE), RF Magnetron Sputtering, Ultrasonic Chemical Spray. Characterization Methods: Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Atomic Force Microscopy (AFM), and UV-Vis Spectroscopy. Data Analysis and Optimization: Utilizing software and modeling techniques to analyze experimental results. These skills enable him to design, implement, and analyze complex experiments effectively.

🧑‍🏫 Teaching Experience

As a lecturer at Gazi University, Mr. Efkere is actively involved in mentoring students and training young researchers in advanced material synthesis and photonics. His approachable teaching style and expertise in state-of-the-art techniques inspire his students to pursue excellence in their academic and professional careers.

🌟 Legacy and Future Contributions

Looking forward, Mr. Efkere is poised to make significant contributions in sustainable materials for environmental and energy applications. His commitment to advancing photocatalytic technologies holds the potential to revolutionize water purification and clean energy generation. Through his ongoing research, teaching, and collaborations, he continues to build a legacy of innovation and scientific excellence.

📖Notable Publications

Effect of TiO2-Surfactant Interface on the Electrical and Dielectric Properties of a Metal–Insulator–Semiconductor (MIS) Structure
Authors: Azizian-Kalandaragh, Y.; Efkere, H.I.; Barkhordari, A.; Pirgholi-Givi, G.R.; Altındal, Ş.
Journal: Journal of Electronic Materials
Year: 2025

Analysis of Nb-doped and undoped TiO2 nanocoatings with varying dopant concentrations
Authors: Arslan, Ö.; Efkere, H.İ.; Çokduygulular, E.; İldeş, C.; Kınacı, B.
Journal: Journal of Materials Science: Materials in Electronics
Year: 2025

Structural, morphological, optical and electrical characterization of MgO thin films grown by sputtering technique on different substrates
Authors: Toprak, B.Ç.; Efkere, H.İ.; Aydın, S.Ş.; Tataroğlu, A.; Özçelik, S.
Journal: Journal of Materials Science: Materials in Electronics
Year: 2024

Electrical and dielectric behaviors of Al/SiO2-surfactant/n-Si Schottky structure in wide range of voltage and frequency
Authors: Efkere, H.İ.; Barkhordari, A.; Marmiroli, B.; Altındal, Ş.; Azizian-Kalandaragh, Y.
Journal: Physica Scripta
Year: 2024

Detailed analysis of the structural, morphological, optical, electrical, and dielectric properties of the reactively produced WO3 nanostructure
Authors: Efkere, H.İ.; Özçelik, S.
Journal: Journal of Materials Science: Materials in Electronics
Year: 2023

Evaluation of dielectric properties of Au/TZO/n–Si structure depending on frequency and voltage
Authors: Kınacı, B.; Bairam, C.; Yalçın, Y.; Efkere, H.İ.; Özçelik, S.
Journal: Journal of Materials Science: Materials in Electronics
Year: 2022

Premnath Kumar | Electrocatalyst | Best Researcher Award

Dr. Premnath Kumar | Electrocatalyst | Best Researcher Award

Chulalongkorn University, Thailand

👨‍🎓Profiles

🧑‍🎓 Early Academic Pursuits

Dr. Premnath Kumar's academic journey began with a strong foundation in chemistry, earning a B.Sc. and an M.Sc. from Thiruvalluvar University, Tamil Nadu. His postgraduate research involved the synthesis and characterization of BiOCl/α-Fe2O3 photocatalysts, marking his early interest in materials for energy applications. His academic excellence culminated in a Ph.D. in Chemistry from the same university, focusing on cost-effective, platinum-free electrocatalysts for hydrogen evolution reactions.

🧑‍🔬 Professional Endeavors

He expanded his expertise as an International Postdoctoral Research Fellow at Chulalongkorn University, Bangkok, Thailand, from 2022 to 2024. Collaborating with leading scientists, including his mentor, Dr. Piyasan Praserthdam, he contributed to cutting-edge advancements in electrocatalysis and nanomaterials for energy conversion.

🧪 Research Focus and Contributions

His research emphasizes sustainable energy solutions through nanomaterials, electrocatalytic processes, and supercapacitor technology. Key contributions include:

  • Development of platinum-free catalysts for hydrogen production.
  • Investigations into nanomaterials for enhanced energy storage and conversion.
  • Promoting photocatalysis for green energy applications.

🌍 Impact and Influence

His work directly supports global sustainability goals by advancing affordable and efficient green energy technologies. His research findings have gained recognition for their potential to revolutionize hydrogen production and energy storage systems, with implications across academia and industry.

📚 Academic Citations and Recognition

Dr. Kumar's publications have been cited extensively, reflecting the academic and practical value of his contributions to chemistry and renewable energy.

🛠️ Technical Expertise

His proficiency spans analytical and electrochemical techniques, including:

  • XRD, SEM, EDX, FT-IR, UV-Vis, PL, and XPS for material characterization.
  • Advanced electrochemical methodologies like cyclic voltammetry, impedance spectroscopy, and HER/OER analysis.

👨‍🏫 Teaching and Mentorship

He has played an instrumental role in mentoring students and junior researchers, sharing his knowledge in electrocatalysis and nanotechnology to inspire the next generation of chemists.

🌟 Legacy and Future Contributions

He aims to further his impact in renewable energy technologies by exploring innovative materials and processes. His dedication to green energy solutions positions him as a thought leader in chemistry and sustainable development.

📖Notable Publications

A comprehensive review and perspective of recent research developments, and accomplishments on structural-based catalysts; 1D, 2D, and 3D nanostructured electrocatalysts for hydrogen energy production

  • Authors: Kumar, P., García, A., Praserthdam, S., Praserthdam, P.
  • Journal: International Journal of Hydrogen Energy
  • Year: 2024

Nonylphenol polybenzoxazines-derived nitrogen-rich porous carbon (NRPC)-supported g-C3N4/Fe3O4 nanocomposite for efficient high-performance supercapacitor application

  • Authors: Selvaraj, K., Yu, B., Spontón, M.E., Sayed, S.R.M., Kannaiyan, D.
  • Journal: Soft Matter
  • Year: 2024

Renovated FeCoP-NC nanospheres wrapped by CoP-NC nanopetals: As a tremendously effectual and robust MOF-assisted electrocatalyst for hydrogen energy production

  • Authors: Kumar, P., Maia, G., Praserthdam, S., Praserthdam, P.
  • Journal: Environmental Research
  • Year: 2024

Double role of CTAB as a surfactant and carbon source in Ni-Mo2C/GA composite: As a highly active electrocatalyst for hydrogen evolution reaction

  • Authors: Kumar, P., Arumugam, M., Maia, G., Praserthdam, S., Praserthdam, P.
  • Journal: Electrochimica Acta
  • Year: 2023

Reduced nickel on cobalt sulphide with carbon supported (Ni-CoS/C) composite material as a low-cost and efficient electrocatalyst for hydrogen evolution reaction

  • Authors: Kumar, P., Arumugam, M., Jagannathan, M., Praserthdam, S., Praserthdam, P.
  • Journal: Electrochimica Acta
  • Year: 2022

Carbon supported nickel phosphide as efficient electrocatalyst for hydrogen and oxygen evolution reactions

  • Authors: Kumar, P., Murthy, A.P., Bezerra, L.S., Maia, G., Madhavan, J.
  • Journal: International Journal of Hydrogen Energy
  • Year: 2021