Liu Wenju | Catalysis | Best Researcher Award

Prof Liu Wenju | Catalysis | Best Researcher Award 

Henan University of Technology , china 

👨‍🎓Profiles

🎓 Early Academic Pursuits

Professor Liu Wenju embarked on his academic journey with a strong foundation in chemistry. He earned his B.Sc. in Applied Chemistry from Zhengzhou University in 2003, followed by an M.Sc. in Industrial Catalysis at the same institution, where he explored the catalytic oxidation of cooking oil fumes in microwave fields. His passion for advanced separation techniques and materials led him to pursue a Ph.D. in Chemical Engineering at Tianjin University, where he completed a groundbreaking thesis on the crystallization and polymorphism of Carbamazepine, a critical pharmaceutical compound. These early academic milestones laid the groundwork for a career dedicated to innovation in crystallization science and green chemical processes.

🧪 Professional Endeavors

Prof. Liu’s professional path is marked by impactful roles across academia and research institutions. He has served as a postdoctoral researcher at Tianjin University, leading pharmaceutical crystallization studies, and expanded his global perspective as a visiting scholar at the University of Cambridge, where he studied mechanochemical modifications of Salbutamol Sulfate. His role as a principal investigator on multiple funded research projects reflects his leadership in the field, especially within the National Natural Science Foundation of China (NNSFC).

🔬 Contributions and Research Focus

Prof. Liu has cultivated a distinguished research profile centered on chemical separation and crystallization, particularly within the pharmaceutical domain. His expertise includes industrial crystallization, polymorphism control, and green catalysis. Over the years, he has advanced critical insights into amorphization, polymorphic membrane crystallization, and impurity effects on crystal growth, aligning with sustainable chemistry goals. His research extends to eco-friendly material development, showcasing a commitment to environmentally conscious innovation.

🌍 Impact and Influence

The scope of Prof. Liu's research has significantly influenced pharmaceutical manufacturing practices and the development of greener catalytic systems. His work on crystal engineering and nucleation-growth dynamics has contributed to both academic understanding and practical applications. The international recognition gained through collaborations, such as with the University of Cambridge, highlights his role in bridging global research efforts and fostering knowledge exchange in the field of chemical engineering.

📚 Academic Citations & Scholarly Recognition

While specific citation metrics are not included, Prof. Liu's funded projects, especially by the NNSFC and other national and international bodies, signify his academic credibility and research influence. His work on pharmaceutical polymorphs, crystallization mechanisms, and green catalytic technologies continues to inspire new lines of inquiry and collaboration in chemical engineering research.

🛠️ Technical Skills

Prof. Liu brings advanced technical proficiency to his research. His core competencies include:

  • Pharmaceutical crystal engineering

  • Polymorph screening and control

  • Green catalytic process design
    He is adept with cutting-edge analytical tools such as:

  • PXRD (Powder X-ray Diffraction)

  • DSC (Differential Scanning Calorimetry)

  • SEM-EDS (Scanning Electron Microscopy – Energy Dispersive Spectroscopy)

  • HPLC-MS (High-Performance Liquid Chromatography – Mass Spectrometry)

  • In-situ Raman spectroscopy

👨‍🏫 Teaching & Mentoring Excellence

Although specific teaching roles are not detailed, Prof. Liu’s deep research involvement at Henan University of Technology suggests active engagement in mentoring graduate students and guiding thesis research, especially in crystallization and catalysis. His interdisciplinary knowledge positions him as an effective educator in both theoretical and applied chemistry fields.

🌱 Legacy and Future Contributions

Prof. Liu's early research into CO removal and microwave-assisted oxidation systems highlights a lifelong dedication to environmental sustainability. As he continues his academic journey, his future contributions are likely to deepen in the domains of eco-friendly crystallization technologies and pharmaceutical manufacturing innovations. His legacy will undoubtedly be one of bridging scientific rigor with practical environmental applications, shaping the next generation of chemical engineers.

📖Notable Publications

Title: Zr-doped CoZrOx solid solution catalysts with enhanced oxygen vacancy for trace ethylene removal under humid conditions
Authors: Zhang Qiaofei, Zhang Liwen, Liu Lei, Zhu Chunshan, Liu Wenju
Journal: Applied Surface Science
Year: 2025
Citations: 0

Title: Preparation of CunCo1Ox catalysts by co-precipitation method for catalytic oxidation of toluene
Authors: Hu Yanshao, Pan Da, Zhang Zheng, Dang Dan, Liu Wenju
Journal: Journal of Molecular Structure
Year: 2025
Citations: 0

Title: Multifunctional self-cleaning Zr-Porphyrin@PG membrane for wastewater treatment
Authors: Liu Wenju, Hou Yafang, Zhao Peixia, Zhang Yatao, D'Agostino Carmine
Journal: Applied Surface Science
Year: 2025
Citations: 0

Title: Equilibrium Solubility of Loxoprofen in 14 Monosolvents: Determination, Correlation, and Hansen Solubility Parameter
Authors: Shen Yanmin, Pan Shuting, Gao Yuqi, Wang Han, Liu Wenju
Journal: Journal of Chemical and Engineering Data
Year: 2025
Citations: 0

Zhiqaing Yang | Thermodynamics | Best Researcher Award

Prof. Dr. Zhiqaing Yang | Thermodynamics | Best Researcher Award

Xi’an Modern Chemistry Research Institute, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Yang’s academic journey began with a Bachelor’s degree in Chemistry and Chemical Engineering from Dalian University, where he developed a strong foundation in chemical sciences. He further pursued a Master’s degree in Applied Chemistry at MCRI, under the supervision of Prof. Lu Jian, focusing on catalysis and chemical processes related to fluorine-based compounds. Seeking to expand his expertise, he completed a Ph.D. in Power Engineering and Engineering Thermodynamics from Xi’an Jiaotong University, where he worked under Prof. Jiangtao Wu, specializing in thermodynamic properties and fluid behavior in industrial applications.

🏢 Professional Endeavors

Dr. Yang has been actively involved in research and development at MCRI, holding various positions. As an Engineer in the Department of Catalysis and Chemical Process, he focused on HFO synthesis and chemical separation techniques. Later, as an Associate Researcher, he played a crucial role in the development of thermodynamic equipment and the study of HFO properties. Expanding his research internationally, he served as a Visiting Scholar at Mines ParisTech-PSL, CTP, under the supervision of Prof. Christophe Coquelet, where he conducted experimental studies on phase equilibrium for high-temperature heat pump working fluids. Currently, as a Researcher at the State Key Laboratory of Fluorine & Nitrogen Chemicals, he leads projects focused on experimental measurement and thermodynamic predictions for insulating gases and their environmental impact.

🔬 Contributions and Research Focus

Dr. Yang’s research spans across various domains, including hydrofluoroolefin (HFO) synthesis and separation, thermodynamic property analysis, high-temperature heat pump working fluids, and environmentally friendly insulating gases. His work has significantly contributed to industrial refrigerants and insulation technologies, enhancing sustainability in chemical engineering and reducing the environmental footprint of industrial processes. His efforts in process simulation and modeling of multisystem thermodynamics during HFO preparation have improved efficiency and reliability in industrial applications.

💰 Funded Research Projects

Dr. Yang has secured multiple research grants, highlighting his leadership in high-impact projects. He is the Program Director of R&D and Application of New Environmentally Friendly Insulating Gases, funded by China Southern Power Grid Co. Ltd, with a funding of 5.5 million RMB. Additionally, he led the Technical Research on the Physical and Chemical Properties of Insulating Gases, supported by Sinochem Group Co. Ltd, with a funding of 194,000 RMB. His long-term project, Thermodynamic Properties and Process Simulation of Multisystem During Hydrofluoroolefin Preparation, received another 5.5 million RMB in funding from Sinochem Group Co. Ltd. Earlier in his career, he directed research on Thermophysical Properties of Low-GWP HFO and HFC Mixtures and Their Solubility in Lubricant, funded by the Industrial Ministry of Shaanxi Province for 200,000 RMB. He has also served as a key researcher in several national projects funded by the Industry and Ministry of Science and Technology of China.

📊 Impact and Influence

Dr. Yang’s research has had a profound impact on both academic and industrial sectors. His studies on low-GWP refrigerants and insulating gases contribute directly to global environmental efforts to reduce greenhouse gas emissions. By developing sustainable alternatives to traditional high-GWP chemicals, his work aligns with international climate policies and promotes energy-efficient chemical processes. His advancements in thermodynamic modeling and experimental research have improved industrial operations and enhanced the efficiency of chemical processes in refrigeration, insulation, and heat transfer applications.

📚 Academic Citations and Publications

Dr. Yang’s research findings have been published in renowned scientific journals and presented at leading international conferences. His work is frequently cited in chemical engineering, thermodynamics, and industrial chemistry, reinforcing his reputation as a thought leader in the field.

🛠️ Technical Skills

With extensive expertise in chemical process engineering, Dr. Yang specializes in HFO synthesis, separation techniques, and thermodynamic modeling. His skill set includes experimental measurements, phase equilibrium modeling, and high-temperature heat pump fluid analysis. He is proficient in advanced analytical techniques such as chromatography, spectroscopy, and calorimetry, which are essential for his research in chemical thermodynamics and process optimization.

🎓 Teaching and Mentorship

Dr. Yang has been actively involved in mentoring graduate students and early-career researchers, sharing his expertise in fluorine-based chemistry and thermodynamics. His collaborations with international institutions and industry partners have facilitated knowledge exchange and technological advancements, fostering the next generation of chemists and engineers.

🔮 Legacy and Future Contributions

As a pioneer in green chemistry solutions, Dr. Yang aims to continue his research in environmentally friendly gases and sustainable industrial applications. His work on thermodynamic modeling and heat transfer technologies will contribute to energy-efficient, eco-friendly industrial processes. With a passion for innovation, he remains dedicated to training future experts in chemistry and chemical engineering, ensuring that his contributions leave a lasting impact on scientific progress and environmental sustainability.

📖Notable Publications

  • Investigation of vapor liquid equilibria for HFO-1336mzz(E) + HFC-1234ze(E) binary system by a novel developed cyclic-analytical apparatus

    • Authors: Zhiqiang Yang, Yuanhao Liao, Hong Yuan, Xiaobo Tang, Christophe Coquelet, Jijun Zeng, Sheng Han, Wei Zhang, Jian Lu

    • Journal: Fluid Phase Equilibria

    • Year: 2025

  • Discovery of a novel binary azeotrope with positive synergistic insulation strength as eco-friendly SF6-alternative

    • Authors: Yuyang Yao, Zhiqiang Yang, Boya Zhang, Xingwen Li, Mai Hao, Nian Tang, Dongwei Sun, Jian Lu

    • Journal: Journal of Physics D: Applied Physics

    • Year: 2025

  • Experimental measurements and correlation of vapor–liquid equilibrium data for the difluoromethane (R32) + 1,3,3,3-tetrafluoropropene (R1234ze(E)) binary system from 254 to 348 K

    • Authors: Pierre Six, Alain Valtz, Yulong Zhou, Zhiqiang Yang, Christophe Coquelet

    • Journal: Fluid Phase Equilibria

    • Year: 2024

  • Synthesis, Characterization, and Physicochemical Properties of New [Emim][BF₃X] Complex Anion Ionic Liquids

    • Authors: Jijun, Bo Zhao, Yu An, Xiao-Bo Tang, Sheng Han, Zhi-Qiang Yang, Wei Zhang, Jian Lu

    • Journal: ACS Omega

    • Year: 2024

  • Synthesis of Perfluoro Alkyl/Alkenyl Aryl Sulfide: C−S Coupling Reaction Using Hexafluoropropylene Dimer (HFPD) as a Building Block

    • Authors: Yu An, Ji‐Jun Zeng, Xiao‐Bo Tang, Bo Zhao, Sheng Han, Zhi‐Qiang Yang, Wei Zhang, Jian Lu

    • Journal: European Journal of Organic Chemistry

    • Year: 2024

  • Isothermal Vapor–Liquid Equilibrium for the Binary System of Trans-1,3,3,3-tetrafluoropropene and 1,1,1,3,3-Pentafluoropropane

    • Authors: Nian Tang, Wenguo Gu, Dongwei Sun, Xiaobo Tang, Zhiqiang Yang, Jian Lu

    • Journal: International Journal of Thermophysics

    • Year: 2023

  • Critical properties and vapor-liquid equilibrium of two near-azeotropic mixtures containing HFOs

    • Authors: Zhiqiang Yang, Alain Valtz, Christophe Coquelet, Jiangtao Wu, Jian Lu

    • Journal: International Journal of Refrigeration

    • Year: 2022

 

Bo Song | Quantum Biology | Best Researcher Award

Prof. Bo Song | Quantum Biology | Best Researcher Award

University of Shanghai for Science and Technology, China

👨‍🎓Profiles

🌱 Early Academic Pursuits

Bo Song began his academic journey with a Ph.D. in condensed matter physics, which he earned in 2003 from the Institute of Physics and Chemistry at the prestigious Chinese Academy of Sciences (CAS). His doctoral research laid the foundation for his deep interest in quantum mechanics and its applications in interdisciplinary sciences.

💼 Professional Endeavors

After completing his Ph.D., Bo Song advanced his expertise through postdoctoral research at renowned institutions such as Peking University (China), the University of Regensburg, and the Technical University Dresden in Germany. From 2008 to 2016, he served as a professor at the Shanghai Institute of Applied Physics, CAS, before joining the University of Shanghai Science and Technology in 2016, where he continues to contribute to cutting-edge research.

🧪 Contributions and Research Focus

Bo Song’s groundbreaking work demonstrates quantum coherence in K+ ions confined in biological channels, providing an innovative perspective on high-flux ion transport with ultralow energy consumption. His interdisciplinary research spans neuroscience, chemistry, and physics, focusing on the quantum effects of THz photon-neuron coupling. These insights have substantial implications for understanding biological systems and advancing quantum biology.

🌍 Impact and Influence

With over 4,000 citations across 83 peer-reviewed publications, Bo Song has significantly influenced the fields of quantum biology and analytical chemistry. His collaboration with esteemed scientists, including Nobel Laureate Anthony J. Leggett, underscores the global recognition and relevance of his work.

📚 Academic Citations

Bo Song’s research has achieved remarkable visibility, with his contributions being widely cited in both experimental and theoretical studies. His citation index is accessible via ORCID (0000-0001-5600-106X), affirming his stature in the academic community.

🛠️ Technical Skills

Bo Song is proficient in advanced experimental and computational techniques essential for exploring quantum biological systems. His expertise includes quantum mechanics, THz spectroscopy, and neuron coupling analyses, which he has utilized to unravel complex biological phenomena.

🎓 Teaching Experience

Throughout his career, Bo Song has actively engaged in mentoring students and young researchers, fostering the next generation of scientists. His ability to integrate theoretical knowledge with practical applications has made him a respected educator.

🌟 Legacy and Future Contributions

Bo Song’s research is pioneering a new frontier in understanding biological processes through the lens of quantum mechanics. His work promises to inspire future breakthroughs in analytical chemistry and neuroscience. He remains committed to mentoring budding scientists and advancing the field of quantum biology, ensuring a lasting legacy in academia.

📖Notable Publications

 

Azadeh Hamedi | Medicinal Chemistry | Analytical Chemistry Award

Assoc Prof Dr. Azadeh Hamedi | Medicinal Chemistry | Analytical Chemistry Award

Shiraz University of Medical Sciences, Iran

 Profiles👨‍🎓

🎓 Early Academic Pursuits

Dr. Azadeh Hamedi embarked on her academic journey with a Pharmacy Doctorate (Pharm D) from the School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran (1997-2003). This foundation in pharmacy was further refined with her Ph.D. in Pharmacognosy from Shaheed Beheshti University of Medical Sciences, Tehran, Iran (2003-2008). Her dedication to pharmacognosy was evident early in her studies, setting the stage for her career.

💼 Professional Endeavors

Her career showcases a strong commitment to pharmacognosy and pharmaceutical research. She began as an Assistant Professor at Shiraz University of Medical Sciences, teaching and researching within the Department of Pharmacognosy from 2009 to 2015. Her position advanced to Associate Professor in 2015, where she continues to instruct and lead research initiatives. Additionally, She serves as a Research Leader at the Medicinal Processing Research Center since 2014, directing crucial projects in medicinal plant processing and application.

🔬 Contributions and Research Focus

Her research spans various aspects of pharmacognosy, with a focus on medicinal plants, glycomics, and their pharmacological applications. Her postdoctoral fellowship at Griffith University's Institute for Glycomics (2007-2008) highlights her expertise in glycoscience and collaborative research. Dr. Hamedi has authored 79 publications, which reflect her deep exploration into the therapeutic potentials of bioactive compounds in plants.

🌍 Impact and Influence

Her research has made substantial contributions to pharmacognosy and related disciplines, influencing the academic community and impacting practical medicinal applications. Her published work has fostered new directions in pharmacognosy, particularly within Iran’s pharmaceutical sciences, contributing to both national and international advancements in the understanding of medicinal plants.

📈 Academic Cites and Recognitions

Dr. Hamedi’s publications have garnered numerous citations, underscoring her work's influence. Her contributions are well-regarded in the academic community, and she continues to receive recognition for her impactful studies and findings in pharmacognosy.

🛠 Technical Skills

Dr. Hamedi possesses extensive skills in medicinal plant processing, analytical methods in pharmacognosy, and glycomics. Her background in these advanced techniques is instrumental in her research and allows her to make meaningful advancements in her field.

🏫 Teaching Experience

As a faculty member at Shiraz University of Medical Sciences, She has a rich teaching history. She has educated and mentored numerous students, passing on her expertise in pharmacognosy and related sciences. Her teaching contributions support the next generation of researchers and healthcare professionals.

🌟 Legacy and Future Contributions

Her legacy lies in her dedication to pharmacognosy and her contributions to medicinal plant research. With her continued focus on high-impact research and mentorship, her future contributions promise to further advance the field of pharmacognosy and inspire upcoming scientists. Her ongoing leadership in medicinal research initiatives positions her as an influential figure in the field.

📖Notable Publications