Jing Chen | Analytical Chemistry | Outstanding Scientist Award

Prof. Jing Chen | Analytical Chemistry | Outstanding Scientist Award

National Natural Science Foundation of China, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Prof. Jing Chen began his academic journey with a strong commitment to scientific excellence in the fields of life and environmental analysis. From the outset, he displayed a deep interest in applying multidisciplinary theories and methodologies to address real-world analytical challenges. This early foundation equipped him to transition seamlessly from theoretical concepts to practical applications, setting the stage for a stable and impactful research trajectory.

👨‍🔬 Professional Endeavors

Prof. Chen currently holds a distinguished position at the National Natural Science Foundation of China, where he leads pioneering research at both national and provincial levels. Over the years, he has directed numerous high-impact projects, including those funded by the Gansu Provincial Science Foundation. His professional efforts have focused not only on scientific innovation but also on cultivating research that supports regional development goals, particularly in environmental sustainability.

🔬 Research Focus and Innovations

Prof. Chen’s core research areas encompass electrochemistry, electroanalytical chemistry, and computational chemistry. His most innovative contributions involve the development of electrochemical sensors and biosensors, using advanced materials such as MXenes and bioactive porphyrins. These innovations have enabled the highly selective and efficient detection of life-active molecules and environmental pollutants, providing robust tools for water quality assessment and ecological monitoring.

💡 Key Contributions

Prof. Chen has made transformative contributions to the detection and monitoring of pollutants by integrating smart material science with sensor design. His work offers practical solutions for ecological conservation, public health, and environmental policymaking. His major funded research projects include: National Natural Science Foundation of China (22374121) – ongoing; Key Project of Natural Science Foundation of Gansu Province (22JR5RA132); Key R&D Project, Gansu Province (18YF1GA050); and NSFC Project on Bioelectrochemical Detection Methods (21565022). These projects underscore his leadership in national priority areas such as environmental protection, bioanalysis, and advanced sensor technology.

🌍 Impact and Influence

Prof. Chen’s work has had a direct and lasting impact on ecological research, public safety, and green chemistry initiatives. His sensor technologies have been adapted for regional water quality monitoring, aligning with broader environmental goals of the province. His efforts contribute to ecological civilization construction and the economic development of Western China, reinforcing the societal relevance of scientific research.

📚 Academic Citations and Recognition

His scientific outputs have earned recognition in top-tier journals, with frequent citations reflecting the relevance and utility of his research. His MXene-based and porphyrin-functionalized platforms have become reference points in the study of next-generation biosensors, bioanalytical chemistry, and nanomaterial applications.

🧪 Technical Skills and Expertise

Prof. Chen possesses advanced technical proficiency in electrochemical analysis, sensor development, nanomaterial synthesis, and computational modeling. His skill in bridging theoretical design with laboratory experimentation allows for rapid innovation in sensor technology, with enhanced accuracy and environmental relevance.

👨‍🏫 Teaching and Mentorship

As an educator, Prof. Chen has demonstrated a consistent passion for mentoring emerging scientists, providing guidance in both theoretical understanding and experimental technique. His teaching philosophy emphasizes interdisciplinary research, encouraging students to address real-world problems through innovation and collaboration.

🌟 Legacy and Future Contributions

Looking forward, Prof. Jing Chen aims to further advance the field of environmental sensing and analytical chemistry by developing next-gen biosensors powered by smart materials and AI-assisted analytical platforms. His long-term vision includes not only scientific breakthroughs but also the training of future leaders in chemistry and environmental sciences. His legacy will be defined by innovative research, institutional leadership, and a sustained commitment to solving global environmental challenges.

📖Notable Publications

Electrochemiluminescence sensor based on upconversion nanoparticles and Zr-based porphyrinic metal-organic frameworks with recognition sites for mercaptan detection

  • Journal: Talanta

  • Year: 2025

Ratiometric Electrochemical DNAzyme Biosensor for Sensitive Detection of Salmonella in Urban Water Source

  • Journal: Environmental Science and Technology

  • Year: 2025

Ratio Fluorescence Detection of Salicylic Acid Based on Ti₃C₂ Quantum Dots

  • Journal: ACS Applied Nano Materials

  • Year: 2025

Rapid detection and differentiation of chlortetracycline and tetracycline by N,P-Ti₃C₂ QDs

  • Journal: Microchemical Journal

  • Year: 2024

L-Lysine-Functionalized Nickel-Zinc Bis(Dithiolene) Metal-Organic Framework for Electrochemical Chiral Recognition of Tryptophan Enantiomers

  • Journal: Chemistry of Materials

  • Year: 2024

CoFe₂O₄ nanocubes derived by Prussian Blue analogs for detecting dopamine

  • Journal: Microchemical Journal

  • Year: 2024

Multiwalled carbon nanotubes modified with nickel-zinc bis(dithiolene) metal-organic frameworks for electrochemical detection of 5-hydroxytryptamine

  • Journal: Journal of Electroanalytical Chemistry

  • Year: 2023

Photoanode with enhanced performance achieved by a novel charge modulation strategy without sacrificial agents

  • Journal: Journal of Electroanalytical Chemistry

  • Year: 2023

Zhaodi Xia | Analytical Techniques | Best Researcher Award

Ms. Zhaodi Xia | Analytical Techniques | Best Researcher Award

Northwest University, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Born in Longxi, Gansu, Ms. Zhaodi Xia has shown exceptional academic prowess throughout her educational journey. She completed her Bachelor’s degree in Chinese Herbal Medicine at the Shanxi Institute of Traditional Chinese Medicine, followed by a Master’s in Modern Chinese Medicine. Currently, she is pursuing her Ph.D. in Chinese Medicine at Northwest University, with a specialized focus on Biotechnology, Metabolomics, and Transcriptomics. Her consistent academic performance earned her several prestigious honors, including First Class Academic Scholarships and National Encouragement Scholarships throughout her studies.

👩‍🔬 Professional Endeavors

Zhaodi Xia is actively engaged in numerous scientific projects and institutional collaborations. She has contributed to the Enterprise Innovation Platform and participated in various projects funded by the Shaanxi Provincial Key R&D Program and the National Administration of Traditional Chinese Medicine. Her roles have included project application, experimental task execution, and conclusive reporting. She is also familiar with drug development processes such as GCP certification, clinical trials, and animal modeling, specifically in studying conditions like sepsis and Alzheimer’s disease.

🧪 Contributions and Research Focus

Her research delves deep into the pharmacological and chemical characterization of traditional Chinese medicines, particularly Codonopsis pilosula, Panax ginseng, and Bupleurum chinense. Zhaodi has co-authored multiple publications, notably on immunomodulatory effects, multi-omics analysis, and comparative chemical profiling using UHPLC-Q-TOF-MS. Her expertise also extends to molecular techniques such as WB, QPCR, and immunohistochemistry, and she is proficient in analytical methods including HPLC and UPLC-MS.

📈 Impact and Influence

Zhaodi’s academic impact is evident from her multiple peer-reviewed publications in reputed journals like Biomedical Chromatography and Journal of Ethnopharmacology. She has helped uncover the pathogenesis of diseases such as Alzheimer’s and proposed novel models and compounds for their treatment. Her research has contributed significantly to the standardization and modernization of Chinese herbal medicine, especially in areas like quality evaluation, metabolomics, and prescription optimization.

📚 Academic Citations

Her notable articles include: “Immunomodulatory effects and multi-omics analysis of Codonopsis pilosula”, “Comparison of chemical constituents of Bupleurum marginatum and Bupleurum chinense using UHPLC-Q-TOF-MS”, and “Identification of Bupleurum and its confused products using ITS2 barcode”. These works have been cited in academic circles focusing on Traditional Chinese Medicine (TCM), clinical pharmacology, and medicinal chemistry.

💻 Technical Skills

Ms. Xia possesses a solid foundation in both laboratory and computational skills. She is certified with the National Computer Level 2 and adept at using statistical and graphing tools like SPSS, GraphPad Prism, and Origin. She also has hands-on experience with commonly used research software, as well as AI-assisted search and integration technologies. Her technical capacity makes her a valuable contributor to data-intensive and cross-disciplinary research environments.

👩‍🏫 Teaching Experience

Though primarily focused on research, Zhaodi Xia has demonstrated strong mentoring and presentation skills. She has received accolades such as the First Prize at the Postgraduate Innovation and Development Forum and Third Prize at the Shanghai Postgraduate Academic Forum. Her active involvement in academic conferences, including the Chinese Society of Traditional Chinese Medicine Information Annual Meeting, reflects her ability to communicate complex scientific concepts effectively.

🌟 Legacy and Future Contributions

Ms. Xia stands as a promising young scholar in the field of Traditional Chinese Medicine and Pharmaceutical Preparations. Her innovative work bridges classical ethnopharmacology and modern analytical techniques. She is well on her way to establishing a legacy in precision herbal therapy, personalized medicine, and multi-omics-driven drug discovery. With her strong foundation, excellent research record, and collaborative spirit, she is poised to make long-lasting contributions to the global advancement of herbal pharmacology and integrative medicine.

📖Notable Publications

  • Immunomodulatory effects and multi-omics analysis of Codonopsis pilosula
    Authors: Zhaodi Xia, Xia Liu, Liguo Tong, Han Wang, Mali Feng, Xiaohu Xi, Pan He, Xuemei Qin
    Journal: Biomedical Chromatography
    Year: 2021

 

  • Comparison of chemical constituents of Bupleurum marginatum var. stenophyllum and Bupleurum chinense DC. using UHPLC–Q‐TOF–MS based on a metabonomics approach
    Authors: Zhaodi Xia, et al.
    Journal: Biomedical Chromatography
    Year: 2021

 

  • Research progress on metabolomics in the quality evaluation and clinical study of Panax ginseng
    Authors: Zhaodi Xia, et al.
    Journal: Biomedical Chromatography
    Year: 2023

 

Tuba Çakıcı Can | Analytical Chemistry | Best Researcher Award

Assoc. Prof. Dr. Tuba Çakıcı Can | Analytical Chemistry | Best Researcher Award

Atatürk University,Turkey

👨‍🎓Profiles

🎓 Early Academic Pursuits

Assoc. Prof. Dr. Tuba Çakıcı Can began her academic journey with a deep-rooted interest in physics, culminating in a Ph.D. in Solid-State Physics from Atatürk University, Institute of Science, Turkey, between 2010 and 2014. Her doctoral dissertation focused on In₂S₃ thin films grown on InP substrates using chemical spray methods, analyzing how electrical properties of structures like Au/In₂S₃/n-InP/In vary with sample temperature. This early research laid the groundwork for her continued engagement with the physics of thin films and electronic interfaces.

💼 Professional Endeavors

Currently serving at Atatürk University, Vocational School of Technical Sciences, in the Department of Electronics and Automation, Dr. Çakıcı Can blends academic rigor with technical education. Her practical engagement with interdisciplinary physics and automation has established her as a key contributor in both education and applied research. Her involvement spans electronics, materials science, medical physics, and cutting-edge technological interfaces.

🏅 Awards and Achievements

Dr. Çakıcı Can has received multiple accolades for her research and innovation. Notably, she was honored with the Academic Incentive Award (Ekim Ayı Akademik Teşvik Ödülü) from Atatürk University in October 2022, and secured 1st place in the DAKAF 2022 AR-GE Project Competition for her innovative work on solar energy, titled “GÜNEŞİM ARABAMDA”. Additionally, she received funding from TÜBİTAK’s 2224-B National Scientific Events Participation Support Program in 2015, underscoring her active engagement in Turkey’s national research ecosystem.

🧪 Contributions and Research Focus

Dr. Çakıcı Can’s research traverses a diverse array of fields including solid-state physics, thin film technologies, electronic and optical properties of materials, interfaces, biophysics, and medical physics. She has contributed significant insights into low-dimensional structures and electrical characterization of advanced materials. Her interdisciplinary approach merges physics with real-world applications in biomedical and material science technologies, making her a notable figure in modern physics and engineering education.

🌍 Scientific Networks and Affiliations

A prolific collaborator, Dr. Çakıcı Can is affiliated with multiple prestigious research groups, including the Şahin Research Group at Erciyes University, the Prof. Dr. Selim Acar Research Group at Gazi University, and the Laboratory of Prof. Dr. Hakan Altan at Middle East Technical University (METU). Her national collaborations speak to her influence and connectivity in Turkey’s academic and scientific landscape.

✍️ Editorial and Scientific Contributions

Since 2021, Dr. Çakıcı Can has served as Editor and Scientific Committee Member for the journal The World of Biomedical Technology, and has taken on editorial responsibilities from 2023 onward. Her editorial work highlights her leadership in scholarly publishing and her role in guiding scientific dialogue in biomedical and applied physics.

💬 Technical and Interpersonal Skills

Her credentials extend beyond laboratory expertise. Dr. Çakıcı Can has completed several certifications, including IT and Cybersecurity Awareness Training by the Erzurum Chamber of Commerce and Industry (2021), and a Kaplan International Language Course certified by Cambridge University Assessments in 2017, enhancing her language and communication skills for international collaborations.

👩‍🏫 Teaching Experience and Mentorship

In her role at Atatürk University, she actively mentors vocational and undergraduate students, emphasizing hands-on learning in electronics, automation, and applied physics. Her commitment to integrating real-world relevance into physics education helps bridge the gap between academic theory and industry-ready skills.

🌱 Legacy and Future Contributions

Assoc. Prof. Dr. Tuba Çakıcı Can’s legacy is being built through her impactful contributions to electronic materials research, her mentorship of emerging scientists, and her proactive engagement with interdisciplinary science. As she continues to expand her research on the electrical and optical properties of low-dimensional structures, and participates in biomedical innovations, she stands as a beacon of interdisciplinary collaboration and scientific leadership in Turkey and beyond.

📖Notable Publications

Bacterial MgSe complex nanoparticle synthesis and electrical characterization of fabricated Ag/MgSe/p-Si hetero-structure under dark and illumination
Authors: T. Çakıcı, Ö. Gür Özdal, N. Almousa, F. Yıldız, E. Kavaz Perişanoğlu, H. Khalil, Antoaneta Ene, H.M.H. Zakaly
Journal: Heliyon
Year: 2023

Correction to: Investigation of optical, structural, and electrical properties of heterostructure Fe₂O₃ deposited by RF magnetron sputtering on ZnO layer by spray pyrolysis
Authors: Sevda Sarıtaş, Tuba Çakıcı, Günay Merhan Muğlu, Muhammet Yıldırım
Journal: Journal of Materials Science: Materials in Electronics
Year: 2023

The Trends in Nano Materials Synthesis and Applications
Author: Tuba Çakıcı
Publisher: Efe Academy Publishing
Year: 2022

Investigation of optical, structural, and electrical properties of heterostructure Fe₂O₃ deposited by RF magnetron sputtering on ZnO layer by spray pyrolysis
Authors: Sevda Sarıtaş, Tuba Çakıcı, Günay Merhan Muğlu, Muhammet Yıldırım
Journal: Journal of Materials Science: Materials in Electronics
Year: 2022

Investigation of Optical, Structural and Electrical Properties of Heterostructure Fe₂O₃ Deposited by RF Magnetron Sputtering on ZnO Layer by Spray Pyrolysis
Authors: Sarıtaş S., Çakıcı T., Muğlu G.M., Yıldırım M.
Platform: ResearchSquare
Year: 2021

SrO Effect on Photon/Particle Radiation Protection Characteristics of SrO–PbO–B₂O₃ Glasses
Authors: M.S. Al-Buriahi, E. Kavaz, U. Perişanoğlu, A. Alalawi, T. Çakıcı, S. Alomairy, Y.S. Rammah
Journal: Journal of Inorganic and Organometallic Polymers and Materials
Year: 2021

Xianli Song | Analytical Techniques| Best Researcher Award

Dr. Xianli Song | Analytical Techniques | Best Researcher Award 

Anhui polytechnic university, china

Profiles

Early Academic Pursuits

Xianli Song embarked on her academic journey in chemical sciences with a Bachelor of Engineering in Chemical Engineering and Technology from Taishan Medical College (2008–2012). Her enthusiasm for the field grew as she pursued her Master of Engineering in Chemistry at the University of Xinjiang (2013–2016), where she laid a solid foundation in materials and electrochemistry. Her pursuit of advanced scientific inquiry culminated in a Ph.D. in Applied Chemistry from the prestigious University of Chinese Academy of Sciences (2017–2021), Beijing, where she honed her research skills in solid-state electrolytes and lithium metal battery technologies.

Professional Endeavors & Research Focus

Dr. Song's research is primarily centered around electrochemical energy storage, particularly solid-state lithium metal batteries. She has significantly contributed to the development of composite gel polymer electrolytes, poly(ionic liquid)-based electrolytes, and hybrid solid-state systems. Her studies focus on enhancing ion transport mechanisms, improving interface compatibility, and ensuring thermal and electrochemical stability of next-generation battery materials. Her multidisciplinary approach integrates material synthesis, structural analysis, and performance evaluation—positioning her as an expert in applied electrochemistry.

Contributions and Publications

Dr. Song has authored and co-authored 10 peer-reviewed journal articles in high-impact publications such as Advanced Functional Materials, Electrochimica Acta, Solid State Ionics, and J. Mater. Chem. A. Her work has explored topics ranging from ionogel-in-ceramic hybrid electrolytes to freestanding carbon nanofiber composites for flexible supercapacitors. Notably, her 2021 paper on “synergistic coupling mechanism of Li⁺ transport” gained attention for its innovative hybrid solid electrolyte design.

Impact and Influence

Dr. Song’s research has contributed to advancing safe, high-performance lithium metal battery systems, addressing key issues in the development of solid-state energy storage. Her publications serve as references for ongoing work in electrolyte chemistry and battery materials, supporting sustainable energy goals globally. She was recognized with the 2020 Merit Student Award from the University of Chinese Academy of Sciences, acknowledging her academic excellence and research impact.

Academic Citations & Thought Leadership

Her scholarly contributions are widely cited by peers in the field of materials chemistry and battery technology, demonstrating the relevance and applicability of her findings. Through collaboration with seasoned scientists like Prof. Gongying Wang and Prof. Suojiang Zhang, she has become a valued voice in the energy storage research community.

Technical Skills & Expertise

Dr. Song exhibits a command over a wide array of laboratory instruments including tube furnaces, centrifuges, and autoclaves. She is adept at operating electrochemical workstations (Metrohm-Autolab, CHI 660E) and battery charge-discharge analyzers. Her material characterization proficiency spans XRD, SEM, TEM, and BET techniques. Additionally, she is skilled in scientific data analysis and visualization using software like Origin 8.0 and Jade 6.0, along with strong command of Microsoft Office tools.

Teaching Experience

Currently affiliated with the School of Chemical and Environmental Engineering at Anhui Polytechnic University, Dr. Song shares her knowledge with aspiring chemists. She emphasizes experimental techniques and electrochemical analysis in her lectures, helping shape the next generation of materials scientists.

Awards and Recognition

Dr. Song’s academic diligence and research excellence have earned her numerous accolades, including:

  • 2020 Merit Student Award, UCAS

  • 2016 Excellent Graduate Dissertation, Xinjiang University

  • 2011 Outstanding Student, Taishan Medical College

Legacy and Future Ctionontribus

As an accomplished researcher and educator, Dr. Xianli Song continues to push the boundaries of materials chemistry. Her ongoing work in solid-state electrolytes and sustainable energy solutions is expected to play a vital role in the evolution of next-generation batteries. With a clear vision for innovation and a commitment to academic rigor, she aims to leave a lasting impact on the field of applied chemistry and clean energy technology.

Notable Publications

  • Title: Construction of core@shell nanofiber membrane with enhanced interface compatibility for lithium-metal battery
    Author: Xianli Song
    Journal: Solid State Ionics

  • Title: Construction organic composite gel polymer electrolyte for stable solid-state lithium metal batteries
    Author: Xianli Song
    Journal: Solid State Ionics

  • Title: Enhanced transport and favorable distribution of Li-ion in a poly(ionic liquid) based electrolyte facilitated by Li₁.₃Al₀.₃Ti₁.₇(PO₄)₃ nanoparticles for highly-safe lithium metal batteries
    Author: Xianli Song
    Journal: Electrochimica Acta

  • Title: Freestanding needle-like polyaniline–coal based carbon nanofibers composites for flexible supercapacitor
    Author: Xianli Song
    Journal: Electrochimica Acta

  • Title: Unraveling the Synergistic Coupling Mechanism of Li⁺ Transport in an “Ionogel-in-Ceramic” Hybrid Solid Electrolyte for Rechargeable Lithium Metal Battery
    Author: Xianli Song
    Journal: Advanced Functional Materials

Haowen Huang | Chemical and Bioanalysis | Best Researcher Award

Prof. Haowen Huang | Chemical and Bioanalysis | Best Researcher Award

Hunan University of Science and Technology, China

👨‍🎓Profile

🎓 Early Academic Pursuits

Haowen Huang earned his Ph.D. in Analytical Chemistry from the Institute of Chemistry, Chinese Academy of Sciences, in 2004, following his M.S. in Analytical Chemistry from Hunan University in 1999. His early academic journey laid a strong foundation in analytical chemistry, with a focus on the development of advanced chemical and biosensing methods.

👨‍🏫 Professional Endeavors

He is currently a Professor at the School of Chemistry and Chemical Engineering at Hunan University of Science and Technology, a position he has held since 2011. Prior to this, he served as an Associate Professor at the same institution from 2006 to 2011. His professional career is marked by a commitment to advancing the field of analytical chemistry, particularly in the development of novel biosensors and nanomaterials.

🔬 Contributions and Research Focus

His research primarily focuses on the development of biosensors and analytical platforms using noble metal nanomaterials, such as gold nanoparticles, nanoclusters, and carbon dots, for the detection of biomolecules like proteins, nucleic acids, and small molecules. He has also worked extensively on surface plasmon resonance (SPR) systems, applying SPR imaging to enhance molecular recognition capabilities. His work in nanomaterials and advanced analytical techniques plays a key role in applications across biomedical diagnostics, environmental monitoring, and single-cell analysis.

🌍 Impact and Influence

His contributions have had a significant impact on the fields of analytical chemistry and biosensor development. His pioneering work with gold nanorods and nanoclusters for multiplex detection of disease markers and heavy metals has positioned him as a leader in the field. Additionally, his developments in SPR imaging systems have advanced chiral recognition and biomolecular interaction studies, further enhancing the molecular diagnostics landscape.

📚 Academic Cites

Although specific citation numbers are not provided, Dr. Huang's research has been widely acknowledged in the scientific community, evidenced by his work's application in major areas of biosensing, diagnostics, and environmental monitoring. His work continues to influence new developments in the synthesis and application of nanomaterials.

🛠️ Technical Skills

He is an expert in the synthesis and characterization of nanomaterials, particularly gold and carbon-based nanoclusters. He is highly proficient in the fabrication of optical biosensors and in the use of surface plasmon resonance imaging systems. His expertise extends to the development of advanced analytical methods for complex biological media, which is crucial for a variety of applications in diagnostics and environmental monitoring.

📚 Teaching Experience

As a professor, He teaches courses in Analytical Chemistry and Instrumental Analysis, in addition to supervising laboratory courses. He mentors graduate and undergraduate students, guiding research projects that focus on the synthesis of nanomaterials and their application in biosensor development. His teaching fosters innovation in the next generation of researchers in the fields of analytical chemistry and biosensing technologies.

🏆 Legacy

His legacy lies in his contributions to the development of cutting-edge biosensor technologies and nanomaterial applications. His work has shaped the field of molecular detection and bioanalytics, particularly in terms of how nanomaterials can be integrated into diagnostic tools for disease detection and environmental monitoring.

🔮 Future Contributions

Looking ahead, He is poised to continue his groundbreaking work in the development of next-generation biosensors and analytical techniques. His research will likely advance the use of nanomaterials in precision medicine, single-cell analysis, and real-time environmental monitoring. His expertise in SPR imaging and nanomaterials synthesis is expected to drive further innovation in these rapidly evolving fields.

📖Notable Publications