Xianli Song | Analytical Techniques| Best Researcher Award

Dr. Xianli Song | Analytical Techniques | Best Researcher Award 

Anhui polytechnic university, china

Profiles

Early Academic Pursuits

Xianli Song embarked on her academic journey in chemical sciences with a Bachelor of Engineering in Chemical Engineering and Technology from Taishan Medical College (2008–2012). Her enthusiasm for the field grew as she pursued her Master of Engineering in Chemistry at the University of Xinjiang (2013–2016), where she laid a solid foundation in materials and electrochemistry. Her pursuit of advanced scientific inquiry culminated in a Ph.D. in Applied Chemistry from the prestigious University of Chinese Academy of Sciences (2017–2021), Beijing, where she honed her research skills in solid-state electrolytes and lithium metal battery technologies.

Professional Endeavors & Research Focus

Dr. Song's research is primarily centered around electrochemical energy storage, particularly solid-state lithium metal batteries. She has significantly contributed to the development of composite gel polymer electrolytes, poly(ionic liquid)-based electrolytes, and hybrid solid-state systems. Her studies focus on enhancing ion transport mechanisms, improving interface compatibility, and ensuring thermal and electrochemical stability of next-generation battery materials. Her multidisciplinary approach integrates material synthesis, structural analysis, and performance evaluation—positioning her as an expert in applied electrochemistry.

Contributions and Publications

Dr. Song has authored and co-authored 10 peer-reviewed journal articles in high-impact publications such as Advanced Functional Materials, Electrochimica Acta, Solid State Ionics, and J. Mater. Chem. A. Her work has explored topics ranging from ionogel-in-ceramic hybrid electrolytes to freestanding carbon nanofiber composites for flexible supercapacitors. Notably, her 2021 paper on “synergistic coupling mechanism of Li⁺ transport” gained attention for its innovative hybrid solid electrolyte design.

Impact and Influence

Dr. Song’s research has contributed to advancing safe, high-performance lithium metal battery systems, addressing key issues in the development of solid-state energy storage. Her publications serve as references for ongoing work in electrolyte chemistry and battery materials, supporting sustainable energy goals globally. She was recognized with the 2020 Merit Student Award from the University of Chinese Academy of Sciences, acknowledging her academic excellence and research impact.

Academic Citations & Thought Leadership

Her scholarly contributions are widely cited by peers in the field of materials chemistry and battery technology, demonstrating the relevance and applicability of her findings. Through collaboration with seasoned scientists like Prof. Gongying Wang and Prof. Suojiang Zhang, she has become a valued voice in the energy storage research community.

Technical Skills & Expertise

Dr. Song exhibits a command over a wide array of laboratory instruments including tube furnaces, centrifuges, and autoclaves. She is adept at operating electrochemical workstations (Metrohm-Autolab, CHI 660E) and battery charge-discharge analyzers. Her material characterization proficiency spans XRD, SEM, TEM, and BET techniques. Additionally, she is skilled in scientific data analysis and visualization using software like Origin 8.0 and Jade 6.0, along with strong command of Microsoft Office tools.

Teaching Experience

Currently affiliated with the School of Chemical and Environmental Engineering at Anhui Polytechnic University, Dr. Song shares her knowledge with aspiring chemists. She emphasizes experimental techniques and electrochemical analysis in her lectures, helping shape the next generation of materials scientists.

Awards and Recognition

Dr. Song’s academic diligence and research excellence have earned her numerous accolades, including:

  • 2020 Merit Student Award, UCAS

  • 2016 Excellent Graduate Dissertation, Xinjiang University

  • 2011 Outstanding Student, Taishan Medical College

Legacy and Future Ctionontribus

As an accomplished researcher and educator, Dr. Xianli Song continues to push the boundaries of materials chemistry. Her ongoing work in solid-state electrolytes and sustainable energy solutions is expected to play a vital role in the evolution of next-generation batteries. With a clear vision for innovation and a commitment to academic rigor, she aims to leave a lasting impact on the field of applied chemistry and clean energy technology.

Notable Publications

  • Title: Construction of core@shell nanofiber membrane with enhanced interface compatibility for lithium-metal battery
    Author: Xianli Song
    Journal: Solid State Ionics

  • Title: Construction organic composite gel polymer electrolyte for stable solid-state lithium metal batteries
    Author: Xianli Song
    Journal: Solid State Ionics

  • Title: Enhanced transport and favorable distribution of Li-ion in a poly(ionic liquid) based electrolyte facilitated by Li₁.₃Al₀.₃Ti₁.₇(PO₄)₃ nanoparticles for highly-safe lithium metal batteries
    Author: Xianli Song
    Journal: Electrochimica Acta

  • Title: Freestanding needle-like polyaniline–coal based carbon nanofibers composites for flexible supercapacitor
    Author: Xianli Song
    Journal: Electrochimica Acta

  • Title: Unraveling the Synergistic Coupling Mechanism of Li⁺ Transport in an “Ionogel-in-Ceramic” Hybrid Solid Electrolyte for Rechargeable Lithium Metal Battery
    Author: Xianli Song
    Journal: Advanced Functional Materials

Haowen Huang | Chemical and Bioanalysis | Best Researcher Award

Prof. Haowen Huang | Chemical and Bioanalysis | Best Researcher Award

Hunan University of Science and Technology, China

👨‍🎓Profile

🎓 Early Academic Pursuits

Haowen Huang earned his Ph.D. in Analytical Chemistry from the Institute of Chemistry, Chinese Academy of Sciences, in 2004, following his M.S. in Analytical Chemistry from Hunan University in 1999. His early academic journey laid a strong foundation in analytical chemistry, with a focus on the development of advanced chemical and biosensing methods.

👨‍🏫 Professional Endeavors

He is currently a Professor at the School of Chemistry and Chemical Engineering at Hunan University of Science and Technology, a position he has held since 2011. Prior to this, he served as an Associate Professor at the same institution from 2006 to 2011. His professional career is marked by a commitment to advancing the field of analytical chemistry, particularly in the development of novel biosensors and nanomaterials.

🔬 Contributions and Research Focus

His research primarily focuses on the development of biosensors and analytical platforms using noble metal nanomaterials, such as gold nanoparticles, nanoclusters, and carbon dots, for the detection of biomolecules like proteins, nucleic acids, and small molecules. He has also worked extensively on surface plasmon resonance (SPR) systems, applying SPR imaging to enhance molecular recognition capabilities. His work in nanomaterials and advanced analytical techniques plays a key role in applications across biomedical diagnostics, environmental monitoring, and single-cell analysis.

🌍 Impact and Influence

His contributions have had a significant impact on the fields of analytical chemistry and biosensor development. His pioneering work with gold nanorods and nanoclusters for multiplex detection of disease markers and heavy metals has positioned him as a leader in the field. Additionally, his developments in SPR imaging systems have advanced chiral recognition and biomolecular interaction studies, further enhancing the molecular diagnostics landscape.

📚 Academic Cites

Although specific citation numbers are not provided, Dr. Huang's research has been widely acknowledged in the scientific community, evidenced by his work's application in major areas of biosensing, diagnostics, and environmental monitoring. His work continues to influence new developments in the synthesis and application of nanomaterials.

🛠️ Technical Skills

He is an expert in the synthesis and characterization of nanomaterials, particularly gold and carbon-based nanoclusters. He is highly proficient in the fabrication of optical biosensors and in the use of surface plasmon resonance imaging systems. His expertise extends to the development of advanced analytical methods for complex biological media, which is crucial for a variety of applications in diagnostics and environmental monitoring.

📚 Teaching Experience

As a professor, He teaches courses in Analytical Chemistry and Instrumental Analysis, in addition to supervising laboratory courses. He mentors graduate and undergraduate students, guiding research projects that focus on the synthesis of nanomaterials and their application in biosensor development. His teaching fosters innovation in the next generation of researchers in the fields of analytical chemistry and biosensing technologies.

🏆 Legacy

His legacy lies in his contributions to the development of cutting-edge biosensor technologies and nanomaterial applications. His work has shaped the field of molecular detection and bioanalytics, particularly in terms of how nanomaterials can be integrated into diagnostic tools for disease detection and environmental monitoring.

🔮 Future Contributions

Looking ahead, He is poised to continue his groundbreaking work in the development of next-generation biosensors and analytical techniques. His research will likely advance the use of nanomaterials in precision medicine, single-cell analysis, and real-time environmental monitoring. His expertise in SPR imaging and nanomaterials synthesis is expected to drive further innovation in these rapidly evolving fields.

📖Notable Publications