Rohit Vekariya | Physical Chemistry | Outstanding Scientist Award

Assist. Prof. Dr. Rohit Vekariya | Physical Chemistry | Outstanding Scientist Award

CVM University | India

Dr. Rohit L. Vekariya’s research centers on the design, synthesis, and characterization of task-specific ionic liquids and their multidisciplinary applications. His work spans environmental remediation, soft matter and nanotechnology, catalysis, and energy storage systems. He has contributed significantly to water purification, nanoparticle synthesis, micellar self-assembly, and polymer electrolytes. His postdoctoral research advanced ionic-liquid-based catalysts and energy devices, including supercapacitors. Integrating techniques such as SANS, DLS, NMR, and electrochemistry, his research has achieved high international impact and recognition.

Citation Metrics (Scopus)

 2500
 2000
 1000
   500
     0

Citations
2,392

Documents
51

h-index
20

Citations

Documents

h-index

View Scopus Profile View ORCID Profile View Google Scholar Profile

Featured Publications

Oumarou Savadogo | Electrochemistry | Research Excellence Award

Prof. Dr. Oumarou Savadogo | Electrochemistry | Research Excellence Award

Polytechnique Montreal | Canada

Professor Oumarou Savadogo is a distinguished researcher whose pioneering contributions span materials science, electrochemistry, and sustainable energy technologies. With advanced training in physics, materials engineering, and metallurgical engineering, he has dedicated his career to developing innovative materials and processes that advance clean and renewable energy systems. His expertise encompasses energy materials, solar photovoltaic and thermal technologies, electrochemical energy storage including batteries, fuel cells, and supercapacitors hydrogen production and utilization, biomaterials, corrosion science, and physico-chemical characterization of complex materials. As Chairholder of the UNESCO Chair in Sustainable Engineering: Applied Solar Technologies and Head of the Laboratory of New Materials for Energy and Electrochemistry, Professor Savadogo leads multidisciplinary programs focused on the design and optimization of advanced electrochemical materials. His research includes breakthroughs in oxygen cathode development for PEM fuel cells, new formalisms for understanding electrocatalytic reactions, and advanced simulation methods for adsorption–desorption processes. His work also extends to thin-film semiconductors for solar cells, corrosion-resistant coatings, nanostructured electrodes, conducting membranes, and biomaterial surface engineering demonstrating remarkable breadth and impact. Professor Savadogo’s scientific productivity is exceptional, with more than 180 peer-reviewed journal articles, influential book chapters, a 2024 book on nanostructured lithium-ion battery materials, and two foundational patents spanning biomedical implants and hydrogen fuel cell electrocatalysts. Recent publications highlight his leadership in emerging research areas, including techno-economic analyses of hydrogen production systems, bio-derived electrode materials for batteries, catalytic pathways for CO₂ reduction, molten carbonate fuel cells, and composite coatings with enhanced corrosion resistance. Beyond his research, Professor Savadogo serves the global scientific community through longstanding roles on advisory and editorial boards in electrochemical energy science and hydrogen technologies. His work continues to shape the future of sustainable energy materials, combining scientific rigor, innovation, and societal relevance. His contributions stand as a model of excellence in advancing technologies central to a low-carbon and sustainable global energy future.

Profiles : Scopus | Google Scholar

Featured Publications

1. Zemane, W.-W. A., & Savadogo, O. (2025). Electrochemical performances of Li-ion batteries based on LiFePO₄ cathodes supported by bio-sourced activated carbon from millet cob (MC) and water hyacinth (WH). Batteries, 11(10), 361.

2. Mihin, T., Savadogo, O., & Tartakovsky, B. (2025). Impact of non-noble bimetallic oxides on bioelectrochemical reduction of carbon dioxide to volatile fatty acids. Process Biochemistry, 159, 51–63.

3. Shanian, S., & Savadogo, O. (2024). A critical review of the techno-economic analysis of hydrogen production from water electrolysers using multi-criteria decision making (MCDM). Journal of New Materials for Electrochemical Systems, 27(2), 107–134.

4. Thiam, B., & Savadogo, O. (2024). Effects of silico-tungstic acid on the pseudocapacitive properties of manganese oxide for electrochemical capacitor applications. DeCarbon, Article 100066.

5. Shanian, S., & Savadogo, O. (2024). Techno-economic analysis of electrolytic hydrogen production by alkaline and PEM electrolysers using MCDM methods. Discover Energy, 4(1), 23. )

Maria Zednikova | Chemical Engineering | Best Researcher Award

Dr. Maria Zednikova | Chemical Engineering | Best Researcher Award

Institute of Chemical Process Fundamentals of the CAS | Czech Republic

Profiles

Scopus 
Orcid
Google scholar

Early Academic Pursuits

Dr. Mária Zedníková began her academic journey in chemical engineering with a master’s degree followed by a doctoral degree, both from the Institute of Chemical Technology in Prague. Her strong foundational training laid the groundwork for her subsequent focus in multiphase systems, fluid mechanics, and process engineering. These formative years were marked by deep engagement with core engineering principles and practical laboratory experience, which shaped her research orientation toward hydrodynamics and gas-liquid interactions.

Professional Endeavors

Dr. Zedníková’s professional career is deeply rooted in the Institute of Chemical Process Fundamentals (ICPF), where she has steadily progressed from junior researcher to research scientist and eventually to a leadership role as Head of the Department of Chemical Engineering and Head of the Research Group for Multiphase Reactors. Her trajectory reflects both scientific depth and leadership capacity. She has also taken on academic responsibilities as a teacher at the University of Chemistry and Technology in Prague, expanding her influence to the educational sphere. Notably, her international experience includes collaborative research stays in the United Kingdom and Italy, reflecting her commitment to cross-border scientific exchange and cooperation.

Contributions and Research Focus

Dr. Zedníková’s research is centered on multiphase flow systems with a special emphasis on gas-liquid interactions, bubble dynamics, and mass transfer phenomena. Her work delves into the complex behaviors of bubbles and drops in turbulent environments, investigating how these particles deform, break up, and interact with fluid structures. She has developed theoretical models and experimental setups to study hydrodynamics, drop-particle collisions, and surfactant effects on fluid interfaces. Additionally, her research in stirred tank reactors and gas-lift systems addresses crucial industrial applications in chemical processing, biotechnology, and environmental engineering.

Impact and Influence

Her influence is visible both through her scholarly output and her engagement with the broader scientific community. Dr. Zedníková has authored 30 original research papers, the majority of which appear in peer-reviewed, high-impact journals. She has also contributed a chapter to a scientific monograph and holds a registered utility model. Her active presence at international conferences with over 90 contributions demonstrates her role in advancing and disseminating knowledge in her field. Furthermore, her involvement in national and international research projects as both leader and team member has positioned her as a respected figure in collaborative scientific networks.

Academic Citations and Recognition

With an H-index of 14 and nearly 700 citations most of which are from independent researchers Dr. Zedníková has established a significant academic footprint. Her research is regularly cited by peers, which confirms the value and relevance of her work in the scientific community. The Best Poster Award from the European Federation of Chemical Engineering and her active membership in professional societies and scientific committees further highlight her recognition and contributions on both national and European platforms.

Technical Skills

Dr. Zedníková possesses extensive technical expertise in experimental design, fluid flow diagnostics, multiphase reactor modeling, and mass transfer analysis. Her work includes advanced techniques for measuring bubble deformation, analyzing flow regimes, and modeling surfactant behavior in dynamic fluid systems. Her ability to integrate theoretical modeling with experimental validation distinguishes her technical acumen in the chemical engineering domain.

Teaching Experience

As an educator, Dr. Zedníková has taken a leading role in a wide range of chemical engineering subjects. She has conducted lectures and seminars on fluid mechanics, chemical technologies, process projects, and laboratory courses. Her engagement in mentoring includes the supervision of over 20 master’s, bachelor’s, and internship students. This dedication to teaching complements her research activities and ensures knowledge transfer to the next generation of engineers and scientists.

Legacy and Future Contributions

Dr. Zedníková’s career reflects a consistent drive for scientific innovation, education, and leadership. Her multidisciplinary collaborations, international exposure, and applied research make her a role model in the engineering sciences. Looking ahead, her ongoing research on bubble dynamics, reactor hydrodynamics, and surfactant behavior is expected to contribute significantly to chemical process optimization and sustainability. Her involvement in international committees and editorial boards also sets the stage for continued influence in shaping research agendas and policy in chemical engineering.

Notable Publications

  • Dynamic regimes in granular mixing: Effect of sliding friction and stirrer rotational frequency
    Authors: Martin Kozakovic, David Kramolis, Maria Zednikova, Stanislav Parez, Jaromir Havlica
    Journal: Powder Technology
    Year: 2025

  • Size distribution of daughter bubbles or drops resulting from binary breakup due to random initial deformation conditions
    Authors: Maria Zednikova, Petr Stanovsky, Sandra Orvalho
    Journal: Separation and Purification Technology
    Year: 2025

  • Gas phase behaviour in environment of fermentation processes
    Authors: Adrián Žák, Lukáš Valenz, Tomáš Moucha, Maria Zednikova
    Journal: Chemical Engineering Research and Design
    Year: 2025

  • Viscosity influence on hydrodynamics behaviour in a stirred tank reactor
    Authors: Adrián Žák, Mária Zedníková, Tomáš Moucha
    Journal: Chemical Engineering Research and Design
    Year: 2025

  • Surfactant effect on bubble deformation and breakup after interaction with vortex structure
    Authors: Maria Zednikova, Tereza Semlerová, Sandra Orvalho, Jaromir Havlica, Jaroslav Tihon
    Journal: Chemical Engineering Science
    Year: 2025

Conclusion

Dr. Mária Zedníková is a highly accomplished chemical engineering researcher with deep expertise in multiphase flow systems and hydrodynamics. Her balanced portfolio of research, teaching, leadership, and international collaboration reflects a dynamic and impactful career. Her academic and professional journey illustrates a strong commitment to advancing both fundamental science and its practical applications. She stands out as a leading figure in her field, with a legacy that is poised to grow in the coming years.

Iheke Michael Nwachukwu | Green Chemistry | Green Chemistry Award

Dr. Iheke Michael Nwachukwu | Green Chemistry | Green Chemistry Award

National Open University of Nigeria | Nigeria

Profiles

Scopus
Orcid
Google scholar

Early Academic Pursuits

Dr. Iheke Michael Nwachukwu began his academic journey in physics, laying a strong foundation for his later specialization in solar energy physics. His consistent pursuit of knowledge through undergraduate, master’s, and doctoral studies reflects a deep-seated passion for scientific advancement. His academic progression demonstrates a commitment to energy-based research disciplines, with a focus on practical applications in sustainable technologies.

Professional Endeavors

Dr. Nwachukwu currently serves as a university lecturer and researcher at the National Open University of Nigeria. In addition to his teaching responsibilities, he has taken on administrative and academic service roles, including examination coordination and faculty representation. Prior to his current position, he contributed as a research scientist within the Nano Research Lab at the University of Nigeria, where he was actively involved in experimental design, synthesis of metal oxides, and electrochemical evaluations of energy materials. Earlier in his career, he also worked as a science instructor, demonstrating a long-standing commitment to education and student mentorship.

Contributions and Research Focus

His research focus lies at the intersection of nanotechnology, green chemistry, and energy storage devices. Dr. Nwachukwu has dedicated much of his scholarly work to the development and characterization of nanostructured metal oxides, carbon nanocomposites, and lithium-ion battery materials. A significant portion of his work explores green synthesis methods, aiming to make energy storage technologies more environmentally sustainable. His contributions to understanding the electrochemical behavior of these materials and optimizing their performance for supercapacitors and batteries are central to his academic legacy.

Impact and Influence

Dr. Nwachukwu’s impact extends beyond laboratory research. He has co-authored several peer-reviewed journal publications, contributing to the body of knowledge on energy-efficient materials and green energy technologies. His article on green synthesized transition metal-based oxides in lithium-ion batteries has strengthened the case for integrating eco-friendly methods in energy material production. Additionally, his recognition as a poster presenter at notable nanotechnology conferences and editorial and reviewing roles in scientific journals reflects his influence in the scientific community.

Academic Citations

Dr. Nwachukwu’s publications, particularly in reputable journals like Applied Surface Science Advances, Current Opinion in Electrochemistry, and Journal of Energy Storage, are evidence of his academic credibility. His collaborative works have been cited within the scientific community, especially in studies focused on sustainable materials, electrochemical energy storage, and green chemistry applications.

Technical Skills 

A core strength of Dr. Nwachukwu is his hands-on expertise with a broad range of analytical and characterization tools. He is proficient in techniques such as SEM/EDX, XRD, UV-Vis spectroscopy, TEM, and AFM. His experience with electrochemical techniques such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) supports his capacity to evaluate material properties and device performance. These skills have contributed significantly to his successful interpretation of structure–performance relationships in battery systems.

Teaching Experience and Mentorship

Throughout his career, Dr. Nwachukwu has maintained a strong presence in teaching and academic mentoring. He has taught physics at both secondary and tertiary levels, coordinated laboratory practical sessions, and developed science curricula. His teaching style emphasizes conceptual understanding and critical thinking, which has led to improved student performance. Moreover, he has mentored students preparing for national science examinations and encouraged active participation in scientific inquiry.

Legacy and Future Contributions

Dr. Nwachukwu is well-positioned to continue making impactful contributions in the fields of green chemistry, renewable energy, and sustainable materials. His ongoing roles in peer review and journal editing further support his academic legacy. Looking ahead, he is expected to deepen his engagement with international collaborations, scale the commercial relevance of his battery research, and influence policy development around sustainable energy technologies in Africa and beyond.

Notable Publications

Non-relativistic Solutions of the Modified Hylleraas Potential in the Presence of External Magnetic and Aharonov-Bohm Flux Fields for Heteronuclear Diatomic Molecules
Authors: Etido Inyang, Christopher Ekechukwu, I. Nwachukwu, E. Thompson, E. William, K. Lawal
Journal: Physical Sciences and Technology
Year: 2025

Analytical Solution of the Class of Inversely Quadratic Yukawa Potential with Application to Quantum Mechanical Systems
Authors: E.P. Inyang, I.M. Nwachukwu, C.C. Ekechukwu, I.B. Ekong, E.S. William, K.M. Lawal, J. Simon, K.O. Momoh, O.A. Oyelami
Journal: Eurasian Physical Technical Journal
Year: 2024

The Potentials of LiMnPO₄ Cathode Material for Aqueous Li-ion Batteries: An Investigation into Solid State and Green Chemistry Approaches
Authors: Iheke Michael Nwachukwu, Assumpta Chinwe Nwanya, A.B.C. Ekwealor, Fabian I. Ezema
Journal: Applied Surface Science Advances
Year: 2024

Research Progress in Solid-State Synthesized LiMnPO₄ Cathode Material for Li-ion Battery Applications
Authors: Iheke Michael Nwachukwu, Assumpta Chinwe Nwanya, A.B.C. Ekwealor, Fabian I. Ezema
Journal: Applied Surface Science Advances
Year: 2023

Recent Progress in Green Synthesized Transition Metal-Based Oxides in LIBs as Energy Storage Devices
Authors: Iheke Michael Nwachukwu, Assumpta Chinwe Nwanya, Adil Alshoaibi, Chawki Awada, A.B.C. Ekwealor, Fabian I. Ezema
Journal: Current Opinion in Electrochemistry
Year: 2023

Conclusion

Dr. Iheke Michael Nwachukwu embodies the qualities of a forward-thinking scientist and dedicated educator. His research aligns with critical global challenges in clean energy and sustainable material synthesis. With a proven track record in both academic scholarship and practical innovation, he is well-prepared to lead future advancements in green energy storage technologies. His legacy is one of scientific rigor, environmental consciousness, and educational impact, making him a valuable contributor to the global scientific community.

Zhiqaing Yang | Thermodynamics | Best Researcher Award

Prof. Dr. Zhiqaing Yang | Thermodynamics | Best Researcher Award

Xi’an Modern Chemistry Research Institute, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Yang’s academic journey began with a Bachelor’s degree in Chemistry and Chemical Engineering from Dalian University, where he developed a strong foundation in chemical sciences. He further pursued a Master’s degree in Applied Chemistry at MCRI, under the supervision of Prof. Lu Jian, focusing on catalysis and chemical processes related to fluorine-based compounds. Seeking to expand his expertise, he completed a Ph.D. in Power Engineering and Engineering Thermodynamics from Xi’an Jiaotong University, where he worked under Prof. Jiangtao Wu, specializing in thermodynamic properties and fluid behavior in industrial applications.

🏢 Professional Endeavors

Dr. Yang has been actively involved in research and development at MCRI, holding various positions. As an Engineer in the Department of Catalysis and Chemical Process, he focused on HFO synthesis and chemical separation techniques. Later, as an Associate Researcher, he played a crucial role in the development of thermodynamic equipment and the study of HFO properties. Expanding his research internationally, he served as a Visiting Scholar at Mines ParisTech-PSL, CTP, under the supervision of Prof. Christophe Coquelet, where he conducted experimental studies on phase equilibrium for high-temperature heat pump working fluids. Currently, as a Researcher at the State Key Laboratory of Fluorine & Nitrogen Chemicals, he leads projects focused on experimental measurement and thermodynamic predictions for insulating gases and their environmental impact.

🔬 Contributions and Research Focus

Dr. Yang’s research spans across various domains, including hydrofluoroolefin (HFO) synthesis and separation, thermodynamic property analysis, high-temperature heat pump working fluids, and environmentally friendly insulating gases. His work has significantly contributed to industrial refrigerants and insulation technologies, enhancing sustainability in chemical engineering and reducing the environmental footprint of industrial processes. His efforts in process simulation and modeling of multisystem thermodynamics during HFO preparation have improved efficiency and reliability in industrial applications.

💰 Funded Research Projects

Dr. Yang has secured multiple research grants, highlighting his leadership in high-impact projects. He is the Program Director of R&D and Application of New Environmentally Friendly Insulating Gases, funded by China Southern Power Grid Co. Ltd, with a funding of 5.5 million RMB. Additionally, he led the Technical Research on the Physical and Chemical Properties of Insulating Gases, supported by Sinochem Group Co. Ltd, with a funding of 194,000 RMB. His long-term project, Thermodynamic Properties and Process Simulation of Multisystem During Hydrofluoroolefin Preparation, received another 5.5 million RMB in funding from Sinochem Group Co. Ltd. Earlier in his career, he directed research on Thermophysical Properties of Low-GWP HFO and HFC Mixtures and Their Solubility in Lubricant, funded by the Industrial Ministry of Shaanxi Province for 200,000 RMB. He has also served as a key researcher in several national projects funded by the Industry and Ministry of Science and Technology of China.

📊 Impact and Influence

Dr. Yang’s research has had a profound impact on both academic and industrial sectors. His studies on low-GWP refrigerants and insulating gases contribute directly to global environmental efforts to reduce greenhouse gas emissions. By developing sustainable alternatives to traditional high-GWP chemicals, his work aligns with international climate policies and promotes energy-efficient chemical processes. His advancements in thermodynamic modeling and experimental research have improved industrial operations and enhanced the efficiency of chemical processes in refrigeration, insulation, and heat transfer applications.

📚 Academic Citations and Publications

Dr. Yang’s research findings have been published in renowned scientific journals and presented at leading international conferences. His work is frequently cited in chemical engineering, thermodynamics, and industrial chemistry, reinforcing his reputation as a thought leader in the field.

🛠️ Technical Skills

With extensive expertise in chemical process engineering, Dr. Yang specializes in HFO synthesis, separation techniques, and thermodynamic modeling. His skill set includes experimental measurements, phase equilibrium modeling, and high-temperature heat pump fluid analysis. He is proficient in advanced analytical techniques such as chromatography, spectroscopy, and calorimetry, which are essential for his research in chemical thermodynamics and process optimization.

🎓 Teaching and Mentorship

Dr. Yang has been actively involved in mentoring graduate students and early-career researchers, sharing his expertise in fluorine-based chemistry and thermodynamics. His collaborations with international institutions and industry partners have facilitated knowledge exchange and technological advancements, fostering the next generation of chemists and engineers.

🔮 Legacy and Future Contributions

As a pioneer in green chemistry solutions, Dr. Yang aims to continue his research in environmentally friendly gases and sustainable industrial applications. His work on thermodynamic modeling and heat transfer technologies will contribute to energy-efficient, eco-friendly industrial processes. With a passion for innovation, he remains dedicated to training future experts in chemistry and chemical engineering, ensuring that his contributions leave a lasting impact on scientific progress and environmental sustainability.

📖Notable Publications

  • Investigation of vapor liquid equilibria for HFO-1336mzz(E) + HFC-1234ze(E) binary system by a novel developed cyclic-analytical apparatus

    • Authors: Zhiqiang Yang, Yuanhao Liao, Hong Yuan, Xiaobo Tang, Christophe Coquelet, Jijun Zeng, Sheng Han, Wei Zhang, Jian Lu

    • Journal: Fluid Phase Equilibria

    • Year: 2025

  • Discovery of a novel binary azeotrope with positive synergistic insulation strength as eco-friendly SF6-alternative

    • Authors: Yuyang Yao, Zhiqiang Yang, Boya Zhang, Xingwen Li, Mai Hao, Nian Tang, Dongwei Sun, Jian Lu

    • Journal: Journal of Physics D: Applied Physics

    • Year: 2025

  • Experimental measurements and correlation of vapor–liquid equilibrium data for the difluoromethane (R32) + 1,3,3,3-tetrafluoropropene (R1234ze(E)) binary system from 254 to 348 K

    • Authors: Pierre Six, Alain Valtz, Yulong Zhou, Zhiqiang Yang, Christophe Coquelet

    • Journal: Fluid Phase Equilibria

    • Year: 2024

  • Synthesis, Characterization, and Physicochemical Properties of New [Emim][BF₃X] Complex Anion Ionic Liquids

    • Authors: Jijun, Bo Zhao, Yu An, Xiao-Bo Tang, Sheng Han, Zhi-Qiang Yang, Wei Zhang, Jian Lu

    • Journal: ACS Omega

    • Year: 2024

  • Synthesis of Perfluoro Alkyl/Alkenyl Aryl Sulfide: C−S Coupling Reaction Using Hexafluoropropylene Dimer (HFPD) as a Building Block

    • Authors: Yu An, Ji‐Jun Zeng, Xiao‐Bo Tang, Bo Zhao, Sheng Han, Zhi‐Qiang Yang, Wei Zhang, Jian Lu

    • Journal: European Journal of Organic Chemistry

    • Year: 2024

  • Isothermal Vapor–Liquid Equilibrium for the Binary System of Trans-1,3,3,3-tetrafluoropropene and 1,1,1,3,3-Pentafluoropropane

    • Authors: Nian Tang, Wenguo Gu, Dongwei Sun, Xiaobo Tang, Zhiqiang Yang, Jian Lu

    • Journal: International Journal of Thermophysics

    • Year: 2023

  • Critical properties and vapor-liquid equilibrium of two near-azeotropic mixtures containing HFOs

    • Authors: Zhiqiang Yang, Alain Valtz, Christophe Coquelet, Jiangtao Wu, Jian Lu

    • Journal: International Journal of Refrigeration

    • Year: 2022

 

Tianjie Qiu | Electrochemistry | Best Researcher Award

Dr. Tianjie Qiu | Electrochemistry | Best Researcher Award

Peking University, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Tianjie Qiu began his academic journey at Nankai University, where he pursued a Bachelor’s degree in Chemistry of Materials (2013-2017). During his undergraduate studies, he developed a strong foundation in materials science and chemistry, setting the stage for his research in advanced materials. Recognized for his academic excellence, he continued his studies at Peking University, one of China’s premier institutions. From 2017 to 2022, he completed his Ph.D. in Materials Science and Engineering, securing the top rank in his class in annual comprehensive quality evaluations. His early education laid the groundwork for his significant contributions to electrocatalysis and energy materials.

🏆 Professional Endeavors

Dr. Qiu has been an active researcher in the field of materials science and electrochemistry since 2017. His expertise spans multiple areas, including the design of ruthenium-based nanocatalysts, heterostructure engineering, and electrochemical energy storage. His work focuses on developing hierarchically porous materials and MOF-derived catalysts for various applications, such as water electrolysis and potassium-ion batteries. Through innovative material synthesis and characterization techniques, he has pioneered multiple breakthroughs in electrocatalysis and energy storage.

🔬 Contributions and Research Focus

Dr. Qiu’s research primarily focuses on the rational design of nanocomposites for electrochemical applications, contributing significantly to the fields of energy conversion and storage. One of his notable achievements includes the development of hierarchically porous ruthenium-carbon nanocatalysts through a bimetallic MOF-derived method, which enhances hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performance by employing precise pore-formation strategies. Additionally, he optimized the heterostructure of Ru@RuOx to improve alkaline HER activity. His work on boron/nitrogen codoped carbon nanotubes for water electrolysis led to a universal method for synthesizing RuM (M = Ir, Co, Fe, Pt, Ag) nanoalloys while systematically analyzing the structure-performance relationship of these electrocatalysts. Furthermore, in the field of potassium-ion batteries, Dr. Qiu designed superstructured nitrogen-doped microporous carbon nanorods derived from MOFs and investigated the potassium-ion adsorption mechanism using first-principles calculations. His development of multi-element doped carbon superstructures has further enhanced potassium-ion storage performance. Through these innovations, Dr. Qiu has paved the way for next-generation catalysts and battery materials, advancing electrochemical energy technologies.

📊 Impact and Influence

Dr. Qiu’s work has gained widespread recognition in the scientific community: 26 SCI-indexed publications, h-index: 17, Total Citations: 2,390, 3 ESI Highly Cited Papers, 1 Invention Patent, 2 Co-authored Books. These achievements reflect the depth and influence of his research in the fields of electrocatalysis, energy storage, and materials science. His work has been referenced extensively, contributing to the development of high-performance catalysts and battery technologies.

🛠️ Technical Skills

Dr. Qiu possesses a diverse skill set in materials synthesis, characterization, and electrochemical analysis:

  • Nanomaterials Design: MOF-derived synthesis, porous structure engineering, heteroatom doping.
  • Electrocatalysis: Hydrogen Evolution Reaction (HER), Oxygen Evolution Reaction (OER), water electrolysis.
  • Battery Materials: Potassium-ion batteries, microporous carbon anodes, phosphorus confinement.
  • Computational Analysis: First-principles calculations, energy band analysis, adsorption studies.
  • Advanced Characterization: XRD, SEM, TEM, Raman Spectroscopy, XPS, BET surface analysis.

His expertise bridges the gap between experimental materials science and computational modeling, allowing for a deep understanding of structure-property relationships in nanomaterials.

🎓 Teaching and Mentorship

Beyond research, Dr. Qiu has been actively involved in mentoring and guiding students in materials science. As a top-ranking Ph.D. scholar, he played a crucial role in training junior researchers in advanced material synthesis and electrochemical characterization. His contributions to academia extend beyond publications, fostering a new generation of scientists in nanomaterials and sustainable energy.

🌍 Legacy and Future Contributions

Dr. Qiu’s groundbreaking work in rational catalyst design and battery materials will continue to shape the future of renewable energy and sustainable technologies. His research holds immense potential for:

  • Developing next-generation hydrogen production catalysts for clean energy.
  • Enhancing potassium-ion battery technologies as an alternative to lithium-ion storage.
  • Pushing the boundaries of nanomaterial engineering for energy applications.

With his strong publication record and innovative research, Dr. Qiu is poised to become a leading figure in materials science and energy storage, driving technological advancements in sustainable energy solutions.

📖Notable Publications

  • Metal-organic framework-derived materials for electrochemical energy applications

    • Authors: Z Liang, R Zhao, T Qiu, R Zou, Q Xu
    • Journal: EnergyChem
    • Year: 2019
  • Metal–organic framework-based materials for energy conversion and storage

    • Authors: T Qiu, Z Liang, W Guo, H Tabassum, S Gao, R Zou
    • Journal: ACS Energy Letters
    • Year: 2020
  • Covalent organic framework-based materials for energy applications

    • Authors: DG Wang, T Qiu, W Guo, Z Liang, H Tabassum, D Xia, R Zou
    • Journal: Energy & Environmental Science
    • Year: 2021
  • Highly exposed ruthenium-based electrocatalysts from bimetallic metal-organic frameworks for overall water splitting

    • Authors: T Qiu, Z Liang, W Guo, S Gao, C Qu, H Tabassum, H Zhang, B Zhu, R Zou
    • Journal: Nano Energy
    • Year: 2019
  • Pristine hollow metal–organic frameworks: design, synthesis and application

    • Authors: T Qiu, S Gao, Z Liang, DG Wang, H Tabassum, R Zhong, R Zou
    • Journal: Angewandte Chemie International Edition
    • Year: 2021

Zhongxin Song | Electrochemistry | Best Researcher Award

Dr. Zhongxin Song | Electrochemistry | Best Researcher Award

Shenzhen University, China

👨‍🎓Profiles

🧑‍🎓 Early Academic Pursuits

Zhongxin Song began her academic journey with a strong focus on Mechanical & Materials Engineering. She completed her Ph.D. in 2018 at the University of Western Ontario, Canada, where she honed her expertise in materials science. During her early academic years, Dr. Song developed a keen interest in nanomaterials, which would later form the core of her research in energy conversion and electrolysis.

💼 Professional Endeavors

Dr. Song is currently a Research Professor at Shenzhen University, China. Her professional trajectory has seen significant contributions to electrocatalysis and fuel cell technology. Along with her academic responsibilities, she has collaborated on several industry projects, including a notable one with Ballard Power Systems, Canada. These partnerships underscore her applied research in the energy sector.

🔬 Contributions and Research Focus

Zhongxin Song's research revolves around the design and synthesis of both noble metal and nonnoble metal-based nanomaterials. These materials play a critical role in electrocatalysis and fuel cells. Her work on atomic layer deposition (ALD) techniques and dual-metal-site catalysts has significantly advanced the field. Dr. Song's contributions have resulted in the publication of 53 high-impact research papers, two book chapters, and three Chinese patents.

🌍 Impact and Influence

Dr. Song's innovative research has made a considerable impact on the development of electrocatalysts and fuel cell technologies. With 3,355 citations to her name, her work is widely recognized within the scientific community. Her involvement in national and international projects, such as those funded by the National Natural Science Foundation of China and the Natural Sciences and Engineering Research Council of Canada, reflects her global influence in the field.

📚 Academic Cites

Dr. Song's work has been cited over 3,355 times in scientific literature, emphasizing the relevance and influence of her research in advancing sustainable energy technologies. This citation index places her among the leading researchers in her field, illustrating the growing recognition of her contributions.

🛠 Technical Skills

Dr. Song possesses strong technical expertise in the design and synthesis of nanomaterials for energy conversion and electrolysis. Her work involves advanced techniques like atomic layer deposition, electrochemical analysis, and material characterization. Her skills also extend to the development of catalysts and the application of novel materials in fuel cells and electrolysis systems.

👩‍🏫 Teaching Experience

As a research professor, Dr. Song has mentored students at both undergraduate and graduate levels. She is deeply involved in shaping the next generation of engineers and researchers. Her teaching approach integrates her cutting-edge research into classroom instruction, providing students with both theoretical knowledge and practical applications.

🏆 Legacy and Future Contributions

Dr. Song's ongoing research in nanomaterials for energy conversion continues to hold great promise for advancing clean energy technologies. With future projects focused on dual-metal-site catalysts for PEMFC anodes and electrocatalysis, her work is poised to have a lasting impact on fuel cell efficiency and longevity. She remains committed to both scientific innovation and mentorship, ensuring her legacy extends through future breakthroughs and the success of her students.

📖Notable Publications

Atomic layer deposited tantalum oxide to anchor Pt/C for a highly stable catalyst in PEMFCs

Authors: Zhongxin Song et al.

Journal: J. Mater. Chem. A

Year: 2017

Decoupling atomic-layer-deposition ultrafine RuO₂ for high-efficiency and ultralong-life Li-O₂ batteries

Authors: Zhongxin Song et al.

Journal: Nano Energy

Year: 2017

Exfoliation of graphite to few-layer graphene in aqueous media with vinylimidazole-based polymer as high-performance stabilizer

Authors: Zhongxin Song et al.

Journal: Carbon

Year: 2016

Metal-organic frameworks for energy storage and conversion

Authors: Zhongxin Song et al.

Journal: Energy Storage Materials

Year: 2016

Recent Progress on MOF-Derived Nanomaterials as Advanced Electrocatalysts in Fuel Cells

Authors: Zhongxin Song et al.

Journal: Catalysts

Year: 2016

Aqueous dispersion of pristine single-walled carbon nanotubes prepared by using a vinylimidazole-based polymer dispersant

Authors: Zhongxin Song et al.

Journal: RSC Adv.

Year: 2014

 

S. K. Tyagi | Clean Combustion of Solid Fuels | Best Researcher Award

Assoc Prof Dr. S. K. Tyagi | Clean Combustion of Solid Fuels | Best Researcher Award

Indian Institute of Technology Delhi, India

👨‍🎓 Profiles

Early Academic Pursuits

S.K. Tyagi's academic journey began with a Ph.D. from the Indian Institute of Technology (IIT) Delhi. His thesis titled "Application of Finite Time Thermodynamics and Second Law Evaluation of Thermal Energy Conversion Systems" laid the foundation for his extensive research in thermodynamics and energy systems. His early post-doctoral work took him to prominent institutions across Hong Kong and China, allowing him to build expertise in renewable energy and refrigeration systems.

💼 Professional Endeavors

S.K. Tyagi has over 25 years of professional experience in the field of energy studies. He has held various academic and research roles, including: Associate Professor at the Centre for Energy Studies, IIT Delhi, Scientist E/Director at Sardar Swaran Singh National Institute of Renewable Energy, Assistant Professor at Shri Mata Vaishno Devi University, Brain Pool Scientist at Korea Institute of Energy Research, Multiple Post-Doctoral Fellowships at Hong Kong Polytechnic University, Zhejiang University, and Xiamen University.

🔬 Contributions and Research Focus

S.K. Tyagi's research contributions span a wide range of topics within the energy sector, such as: Solar Thermal Applications, Exergy Analysis of Energy Conversion Systems, Biomass Characterization and Management, Hybrid Solar-Biomass Systems, Clean Development Mechanism (CDM), Phase Change Materials for Energy Conservation. His work on biomass combustion, solar hybrid systems, and energy-efficient cookstoves has played a crucial role in advancing renewable energy technologies. Tyagi has also contributed to the development of solar-biomass hybrid systems for atmospheric water generation, focusing on sustainable energy solutions for arid climates.

🌍 Impact and Influence

S.K. Tyagi's research has had a significant impact on renewable energy technologies, particularly in India. His projects on biomass-solar hybrid systems and clean biomass combustion for jaggery production have helped reduce environmental pollution and improve energy efficiency. His contributions have been widely recognized, with numerous citations in top energy journals, including Renewable and Sustainable Energy Reviews.

🛠️ Technical Skills

S.K. Tyagi's technical expertise includes: Finite Time Thermodynamics, Exergy and Energy Analysis, Biomass Combustion Systems, Solar-Biomass Hybrid Systems, Biomass Cookstove Design and Dissemination. His knowledge in energy-efficient technologies and thermodynamics has enabled him to contribute to both academic research and practical energy solutions.

👩‍🏫 Teaching Experience

Throughout his career, S.K. Tyagi has been an active educator, holding teaching roles at institutions like IIT Delhi and Shri Mata Vaishno Devi University. His expertise in energy conversion systems, thermodynamics, and renewable energy technologies has inspired many students to pursue careers in energy studies.

🏆 Legacy and Future Contributions

S.K. Tyagi's legacy is built on his contributions to renewable energy research and sustainable development. His work has paved the way for new innovations in biomass energy, solar thermal applications, and hybrid energy systems. Moving forward, his research is likely to focus on further advancements in clean energy technologies, energy conservation, and sustainable development.

🎖 Honors and Awards

  • Brain Pool Fellowship from the Korea Foundation of Science & Technology
  • Post-Doctoral Fellowships in Hong Kong and China
  • Research Associate at the Council of Scientific & Industrial Research (CSIR), India

Tyagi's numerous awards and fellowships underscore his international recognition as a leader in energy studies.

📖  Notable Publications

Development of phase change materials based microencapsulated technology for buildings: a review

Authors: T.S. Kousks, V.V. Tyagi, S.C. Kaushik, T. Akiyama
Journal: Renewable and Sustainable Energy Reviews
Year: 2011

Recent advances in the development of biomass gasification technology: A comprehensive review

Authors: S.K. Sansaniwal, K. Pal, M.A. Rosen, S.K. Tyagi
Journal: Renewable and Sustainable Energy Reviews
Year: 2017

Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology

Authors: S.C. Kaushik, S.K. Verma, V.V. Tyagi
Journal: Renewable and Sustainable Energy Reviews
Year: 2012

Energy and exergy analyses of thermal power plants: A review

Authors: S.C. Kaushik, V.S. Reddy, S.K. Tyagi
Journal: Renewable and Sustainable Energy Reviews
Year: 2011

State-of-the-art of solar thermal power plants

Authors: V.S. Reddy, S.C. Kaushik, K.R. Ranjan, S.K. Tyagi
Journal: Renewable and Sustainable Energy Reviews
Year: 2013