Tahereh Momeni Isfahani | Analytical Chemistry | Best Researcher Award

Assoc. Prof. Dr. Tahereh Momeni Isfahani | Analytical Chemistry | Best Researcher Award

Islamic Azad University, Iran

👨‍🎓Profiles

🎓 Early Academic Pursuits

Assoc. Prof. Dr. Tahereh Momeni Isfahani laid the foundation of her academic career in chemistry with a B.Sc. from Islamic Azad University, Arak (1996). She advanced her expertise with a Master’s degree from the University of Isfahan, where her thesis focused on the design and construction of an optical sensor using polymeric membranes for nickel (II) ion detection. Her Ph.D., completed in 2014 at Islamic Azad University of Arak, further deepened her analytical skills with a thesis centered on simultaneous determination of cations and equilibrium studies through spectrophotometric and chemometrics methods. These early academic experiences shaped her proficiency in sensor technology and analytical chemistry.

💼 Professional Endeavors

Throughout her career, Dr. Momeni Isfahani has contributed significantly to the field of electrochemical sensor development and analytical chemistry. She holds a pivotal role on the Science Committee at Arak Branch of Islamic Azad University. Her supervision experience is notable, mentoring 12 MSc and 6 PhD students to graduation and advising a total of 32 graduate researchers. She remains actively involved in both academic research and applied projects, bridging theoretical chemistry with practical sensor fabrication and environmental applications.

🔬 Contributions and Research Focus

Her research is prominently focused on advanced sensor fabrication, particularly electrochemical sensors for biological applications such as neurotransmitter detection. A highlight is her innovative work on a pencil graphite electrode modified with electrospun polyacrylonitrile and Sudan Black B nanofibers, achieving sensitive dopamine detection in plasma samples. This advancement holds clinical relevance in neuroscience and disease monitoring. Additional research includes heavy metal removal from aqueous solutions, trace gold detection, and development of extraction methods, reflecting her versatile expertise in analytical methods like QSAR/QSPR, cyclic voltammetry, and various extraction techniques.

🌍 Impact and Influence

Dr. Momeni Isfahani’s work has earned recognition and provisional nomination for the prestigious Best Researcher Award. Her publications have been cited over 350 times, reflecting her growing influence in the scientific community. Her innovative sensor designs enhance capabilities for early disease diagnostics and environmental monitoring, impacting fields such as neuroscience, environmental science, and nanotechnology.

📊 Academic Cites and Recognition

With an h-index of 9 on Scopus and citations from 359 documents, her research outputs consistently contribute to scholarly discourse. Publications in reputable journals such as the Journal of Cluster Science and Journal of Nanostructures underline her scientific rigor and commitment to advancing sensor technology and analytical chemistry.

🛠️ Technical Skills

Dr. Momeni Isfahani excels in sensor fabrication techniques, including electrospinning and electrochemical sensor design. Her methodological expertise spans cyclic voltammetry, solid-phase extraction, liquid-liquid extraction, and cloud point extraction. She is adept in using chemometric tools for simultaneous multi-ion detection and equilibrium studies, emphasizing her multidisciplinary command over both chemical analysis and materials science.

👩‍🏫 Teaching Experience

Her dedication to education is evident through her extensive supervision of graduate students at MSc and PhD levels. She fosters the next generation of chemists by integrating cutting-edge research topics with practical laboratory skills, thereby ensuring her mentees gain both theoretical knowledge and hands-on expertise.

🌟 Legacy and Future Contributions

Dr. Momeni Isfahani’s legacy lies in her pioneering sensor research with practical applications in health and environmental sciences. Looking forward, she aims to further refine sensitive detection methods for neurotransmitters and trace metals, expanding the impact of her work on clinical diagnostics and pollution control. Her ongoing mentorship will continue to cultivate innovative research, inspiring advancements in analytical chemistry.

📖Notable Publications

  • QSAR studies of quinoline alkaloids camptothecin derivatives for prediction anticancer activity using linear and nonlinear methods
    Authors: Mohebbi, S.; Shafiei, F.; Momeni Isfahani, T.; Ahmadi Sabegh, M.
    Journal: International Journal of Quantum Chemistry
    Year: 2024

  • QSPR study to predict some of quantum chemical properties of anticancer imidazo[4,5-b]pyridine derivatives using genetic algorithm multiple linear regression and molecular descriptors
    Authors: Jafari, M.; Momeni Isfahani, T.; Shafiei, F.; Senejani, M.A.
    Journal: International Journal of Quantum Chemistry
    Year: 2024

  • Development of a novel method for determination of Ultra-Trace gold in cosmetics based on ion Pair-Dispersive Liquid-Liquid microextraction Assisted syringe to syringe coupled to Tailor-Made Quartz Atom Concentrator tube -flame atomic absorption Spectrometry: Experimental design optimization
    Authors: Mahmoud Asadieraghi; Tahereh Momeni Isfahani; Masumeh Abdoli Senejani
    Journal: Microchemical Journal
    Year: 2024

  • QSPR analysis to predict some quantum chemical properties of 2‐phenylindol derivatives as anticancer drugs using molecular descriptor and genetic algorithm multiple linear regression
    Authors: Samira Bahrami; Fatemeh Shafiei; Azam Marjani; Tahereh Momeni Isfahani
    Journal: International Journal of Quantum Chemistry
    Year: 2024

  • Comparative QSAR Modeling for Predicting Anticancer Potency of Imidazo[4,5-b]Pyridine Derivatives Using GA-MLR and BP-ANN Techniques
    Authors: Jafari, M.; Isfahani, T.M.; Shafiei, F.; Senejani, M.A.; Alimoradi, M.
    Journal: Letters in Drug Design and Discovery
    Year: 2023

Yun Zhao | Analytical Chemistry | Best Researcher Award

Ms. Yun Zhao | Analytical Chemistry | Best Researcher Award

Shanghai Institute of Technology, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Ms. Yun Zhao, originally from Shanghai, pursued her Ph.D. in Science at the prestigious Nanjing University, laying a strong foundation for her academic and research journey in the field of chemistry. Her early education and research were deeply rooted in analytical and environmental chemistry, preparing her for a distinguished career in both theoretical and applied scientific research.

👩‍🔬 Professional Endeavors

Since October 2014, Ms. Zhao has served at the School of Chemistry and Environmental Engineering, Shanghai Institute of Technology, rising through the ranks to become Associate Professor, Master’s Supervisor, and currently Vice Dean of the School. Between September 2020 and November 2024, she also served concurrently at the Higher Vocational College within the university. Her leadership is reflected not only in academic management but also in strategic research coordination and teaching excellence.

🔬 Contributions and Research Focus

Ms. Zhao’s primary research interests include green chemistry, clean energy, and chemical process analysis and control technology. She has led 4 major national and provincial-level research projects, including a National Natural Science Foundation of China (NSFC) Youth Project, and has completed over 10 enterprise-funded R&D projects, contributing significantly to applied chemical engineering. Her research achievements have secured more than ¥3.42 million RMB in funding. She has published 35 SCI-indexed papers, filed 14 invention patents (with 4 already granted), and developed impactful industry collaborations.

🌟 Impact and Influence

Recognized as a recipient of the 2023 Shanghai Rising-Star Program for Young Scientists and Technologists, Ms. Zhao has gained considerable acclaim in both academic and industry circles. Her influence extends into education, having won four prestigious provincial/ministerial-level teaching awards, including the First and Second Class Shanghai Teaching Achievement Awards, and the China Petroleum and Chemical Industry Education Teaching Achievement Award.

📚 Academic Citations & Peer Recognition

Her role as a peer reviewer for leading international journals like Advanced Functional Materials and Analytical Chemistry signifies her standing in the global scientific community. With 35 high-impact SCI publications, Ms. Zhao continues to be a strong contributor to scholarly discourse in analytical chemistry and chemical engineering education.

🛠️ Technical Skills

Ms. Zhao demonstrates advanced technical expertise in instrumental analysis, analytical chemistry, and process control systems. Her hands-on experience in both experimental and theoretical techniques has enabled her to design efficient, eco-friendly chemical processes, making notable contributions to sustainable chemistry and energy systems.

👩‍🏫 Teaching Experience

Ms. Zhao is actively involved in undergraduate education, teaching bilingual courses such as Instrumental Analysis and Analytical Chemistry. She also serves as Chief Editor for the widely used textbook Professional English for Chemical Engineering, enhancing the linguistic and professional competence of future chemical engineers.

🧭 Student Mentorship & Competitions

She has been a dynamic mentor, guiding students in major competitions like the China International College Students’ “Internet+” Innovation and Entrepreneurship Competition, and helping them win multiple awards, including the 1st team prize and individual prizes (1st, 2nd, and 3rd) in the Chemical Laboratory Technology category of the 9th Shanghai “Starlight Plan” Vocational College Skills Competition.

🏅 Legacy and Future Contributions

With a robust foundation in research and a commitment to excellence in teaching and leadership, Ms. Zhao is shaping the future of chemical engineering education and sustainable technology development in China. Her ongoing work aims to bridge academic research with industrial innovation, reinforcing her legacy as a transformative educator and scientist in the field.

📖Notable Publications

Unlocking the access to nature-identical vanillin via isoeugenol ozonation: in situ ATR-IR monitoring and safety evaluation
Authors: Yun Zhao, Tingfei Li, Sisi Xie, Pingyi Zhang, Haifang Mao
Journal: Analytical Methods
Year: 2025

Enhanced enantioselective separation of racemic menthol via reverse-phase high-performance liquid chromatography: Method development and computational insights for pre-screening
Authors: Haifang Mao, Yucheng Zhou, Zhengyang Xu, Yun Zhao
Journal: Talanta
Year: 2025

Application of in situ ATR-IR spectroscopy for the synthesis of bisphenol F: optimization, mechanistic and kinetics studies
Authors: Yun Zhao, Xinkai Zhang, Yanxia Chen, Pingyi Zhang, Haifang Mao
Journal: Analytical Methods
Year: 2023

Accelerating Surface Lattice Oxygen Activation of Pt/TiO2–x by Modulating the Interface Electron Interaction for Efficient Photocatalytic Toluene Oxidation
Authors: Haifang Mao, Mengli Xu, Shuangjun Li, Yuqing Ren, Yun Zhao, Jun Yu, Qizhong Zhang, Wenshu Zhao, Gui Zhang, Lan Yan et al.
Journal: ACS ES&T Engineering
Year: 2023

Boosting Higher Selectivity for Thymol Hydrogenation Reaction over Ni/Ce Catalyst
Authors: Haifang Mao, Yongqi Wu, Bo Cui, Yun Zhao, Xiang Zheng
Journal: Catalysts
Year: 2023

An in-depth mechanistic study of the p-hydroxyphenylglycine synthetic process using in situ ATR-IR spectroscopy
Authors: Hai-Fang Mao, Hui-Min Xing, Miao-Miao Jin, Ji-Bo Liu, Yue-Liang Yao, Yun Zhao
Journal: Analytical Methods
Year: 2022

Cycloaddition of carbon dioxide and epoxides over Fe-PYPA: Synthetic optimization and mechanistic study
Authors: Mao, Hai-Fang; Fu, Hong-Qing; Liu, Ji-Bo; Zhao, Yun
Journal: Journal of Environmental Chemical Engineering
Year: 2022

Eduard Tokar | Analytical Chemistry | Best Researcher Award

Mr. Eduard Tokar | Analytical Chemistry | Best Researcher Award

Sakhalin State University, Russia

👨‍🎓Profiles

🎓 Education and Academic Journey

Mr. Eduard Tokar’ has built a solid academic foundation in chemistry and industrial ecology. He earned his Bachelor’s (2011-2015) and Master’s (2015-2017) degrees in Chemistry from Far Eastern Federal University (FEFU), Russia. His passion for research led him to postgraduate studies (2017-2021) in Industrial Ecology and Biotechnology, where he specialized in the environmental impact of industrial processes. In 2022, he was awarded the title of Candidate of Chemical Sciences (PhD) in Physical Chemistry and Ecology, solidifying his expertise in both chemical sciences and environmental sustainability.

🏛️ Professional Experience and Teaching

Eduard Tokar’ has an extensive background in both academic research and teaching, with a focus on nuclear technology and environmental safety. His career at Far Eastern Federal University began in 2015 as a laboratory research assistant and leading engineer in the Department of General Inorganic and Organoelement Chemistry. From 2019 to 2021, he served as a Junior Researcher in the Academic Department of Nuclear Technology, contributing to advancements in radiation safety and nuclear materials.

Currently, he is a Senior Lecturer at the Department of Nuclear Technology (2021 – Present) at Sakhalin State University. In this role, he is actively involved in student supervision, curriculum development, and research projects. He manages the educational process for undergraduate and graduate students in courses such as:

🔬 Research Interests and Contributions

Mr. Tokar’ specializes in nuclear and radiation safety at nuclear power facilities, working on methods to reduce environmental hazards associated with nuclear energy. His research extends to radiochemistry, materials science, and water purification techniques for removing radionuclides. His expertise in industrial ecology contributes to the development of sustainable solutions for managing nuclear waste and minimizing environmental contamination.

🏆 Impact and Influence in Nuclear and Environmental Chemistry

With a strong focus on nuclear technology and radiation safety, Mr. Tokar’ plays a crucial role in preparing students for careers in nuclear power, radiochemistry, and environmental protection. His work ensures that future scientists and engineers are equipped with the knowledge and skills necessary to maintain nuclear safety and develop sustainable energy solutions.

🛠️ Technical Expertise

Mr. Tokar’ has in-depth knowledge of chemical and nuclear technologies, with expertise in: Radiochemistry and Radioecology, Water purification and environmental remediation, Mathematical modeling and statistical analysis in experiments, Materials chemistry for nuclear energy applications, Chemical safety and risk assessment in nuclear power plants.

🎓 Teaching and Mentorship

A dedicated educator and mentor, Mr. Tokar’ has guided numerous students in chemical technology and nuclear safety, supervising theses on modern energy materials. His ability to integrate theoretical knowledge with practical applications helps students gain real-world expertise in nuclear power facility management and environmental protection.

🌍 Legacy and Future Contributions

Eduard Tokar’ continues to make significant contributions to nuclear and environmental chemistry, aiming to develop safer and more sustainable nuclear energy technologies. His expertise in radiation safety and water purification is critical for minimizing the environmental impact of nuclear energy production. As the world moves towards cleaner and more efficient energy solutions, his research will remain at the forefront of ensuring safety and sustainability in the nuclear industry.

📖Notable Publications

Sorbents Based on Polyacrylonitrile Fiber for Complex Recovery of Artificial 137Cs and Natural Radionuclides from Natural Media
Authors: Iuliia G. Shibetskaia, Viktoriia A. Razina, N. A. Bezhin, Sofia B. Yarusova, Ivan Gundarovich Tananaev
Journal: Water (Switzerland)
Year: 2025

Composite Sorbents Based on Chitosan Polymer Matrix and Derivatives of 4-Amino-N′-hydroxy-1,2,5-oxadiazole-3-carboximidamide for Uranium Removal from Liquid Mineralized Media
Authors: Anna I. Matskevich, Konstantin V. Maslov, Veronika A. Prokudina, Nikita S. Markin, E. A. Tokar’
Journal: Gels
Year: 2025

Composite Sorbents Based on Polymeric Se-Derivative of Amidoximes and SiO2 for the Uranium Removal from Liquid Mineralized Media
Authors: Anna I. Matskevich, Konstantin V. Maslov, Veronika A. Prokudina, Evgenij A. Eliseenko, E. A. Tokar’
Journal: Gels
Year: 2025

Decontamination of Spent Ion-Exchange Resins from the Nuclear Fuel Cycle Using Chemical Decontamination and Direct Current
Authors: Anna I. Matskevich, Nikita S. Markin, Marina Palamarchuk, E. A. Tokar’, Andrei Mikhailovich Egorin
Journal: Journal of Cleaner Production
Year: 2024

Distribution of Np, Pu, and Am in Water, Suspended Matter, and Bottom Sediments of Peter the Great Bay
Authors: Natalia V. Kuzmenkova, Vladimir G. Petrov, Alexandra K. Rozhkova, S. N. Kalmykov, Xiaolin Hou
Journal: Radiochemistry
Year: 2024

New Sorbents Based on Polyacrylonitrile Fiber and Transition Metal Ferrocyanides for 137Cs Recovery from Various Composition Solutions
Authors: Iuliia G. Shibetskaia, Viktoriia A. Razina, N. A. Bezhin, Victoria S. Yankovskaya, Ivan Gundarovich Tananaev
Journal: Applied Sciences (Switzerland)
Year: 2024

Yangting Ou | Analytical Chemistry | Best Researcher Award

Ms. Yangting Ou | Analytical Chemistry | Best Researcher Award

Guangdong University of Technology, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Ms. Yangting Ou embarked on her academic journey at Guangdong University of Technology, where she is currently pursuing a master’s degree. From the outset, she demonstrated a strong dedication to her studies, culminating in her being awarded the prestigious First-Class Scholarship in 2024 for her outstanding academic performance. This early recognition reflects her commitment to academic excellence and her growing potential as a researcher in the field of advanced materials and semiconductor technologies.

💼 Professional Endeavors

In parallel with her academic studies, Ms. Ou has actively contributed to several significant research projects. She has been involved in major national and provincial-level programs, such as The National Key R&D Program of China (No. 2024YFE0205600) and the Guangdong S&T Programme (No. 2024B0101120003). These projects have provided her with a solid foundation in applied research, focusing on cutting-edge topics relevant to the semiconductor industry.

🔬 Contributions and Research Focus

Ms. Ou’s research is centered on semiconductor polishing processes, with a particular emphasis on electrochemical-assisted chemical mechanical polishing (ECMP). Through her involvement in this area, she has proposed several innovative research methods, contributing new insights and methodologies that serve as an essential reference for advancing ECMP technologies. Her research has resulted in the publication of four SCI-indexed papers, showcasing her ability to deliver impactful scientific work at an early stage in her career.

🌍 Impact and Influence

While still in the early stages of her research career, Ms. Ou’s contributions are beginning to shape the future of semiconductor processing. Her patent, reflects her innovative approach to solving complex challenges in semiconductor polishing. By providing new techniques and frameworks, her work supports both academic research and industrial applications in materials science and microelectronics manufacturing.

📚 Academic Citations

As Ms. Ou is at the beginning of her academic journey, she has not yet accumulated citations for her published work. However, with the growing relevance of her research in semiconductor technologies and polishing processes, her contributions are expected to gain academic recognition and citations in the near future.

🛠️ Technical Skills

Ms. Ou has developed a diverse technical skill set through her research activities. She is proficient in materials characterization techniques, process optimization, and electrochemical analysis related to semiconductor fabrication. Her hands-on experience with laboratory instrumentation and data interpretation is complemented by her understanding of advanced polishing and surface modification processes.

👩‍🏫 Teaching Experience

While her primary focus has been on research, Ms. Ou has also contributed to academic activities within her department. She has supported faculty members in guiding undergraduate students during laboratory sessions and has assisted in mentoring junior researchers involved in collaborative projects.

🌟 Legacy and Future Contributions

Looking ahead, Ms. Ou aspires to further deepen her research into semiconductor processing and electrochemical systems. She aims to expand her research portfolio by exploring interdisciplinary approaches that integrate materials science, chemistry, and advanced manufacturing. Her future contributions are expected to play a pivotal role in optimizing semiconductor fabrication processes, improving manufacturing efficiency, and fostering technological innovation in the microelectronics industry.

📖Notable Publications

New skin corrosion effect of magnetorheological electro-Fenton polishing investigated by friction and wear experiments
Authors: Yangting Ou, Hao Wang, Yusen Wu, Zhijun Chen, Qiusheng Yan, Jisheng Pan
Journal: Materials Science in Semiconductor Processing
Year: 2024

Study on the Electro-Fenton Chemomechanical Removal Behavior in Single-Crystal GaN Pin–Disk Friction Wear Experiments
Authors: Yangting Ou, Zhijun Shen, Jiaqi Xie, Jisheng Pan
Journal: Micromachines
Year: 2025

Tribochemical behavior of GaN in electro-Fenton system based on bimetallic micro-electrolytic catalysts
Authors: Zhijun Chen, Jisheng Pan, Weijun Deng, Qiusheng Yan, Jiaxi He, Yangting Ou, Song Fan
Journal: Ceramics International
Year: 2025

Olakunle Oluwaleye | Analytical Chemistry | Best Researcher Award -1860

Dr. Olakunle Oluwaleye | Analytical Chemistry | Best Researcher Award

Tshwane University of Technology, South Africa

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Olakunle Oluwaleye’s academic journey began with a strong foundation in physics and materials science. He completed his Ph.D. in Physics at the University of South Africa, in collaboration with NRF-iThemba Laboratory for Accelerator-Based Sciences (iThemba LABS) and the National Centre for Nano-Structured Materials at the CSIR in Pretoria. His doctoral research focused on ion beam modification of transparent conducting oxide (TCO) materials, a cutting-edge area with broad applications in spintronics, optoelectronics, sensors, and energy nanodevices.

🏢 Professional Endeavors

Dr. Oluwaleye has accumulated diverse international research and teaching experiences. He has worked as a research assistant at prestigious institutions such as Karlsruhe Institute of Technology (KIT), Germany, and SCK-CEN, Belgium, where he expanded his expertise in nanostructured materials and energy materials. Additionally, he served as a physics lecturer at the University of Johannesburg, further contributing to academic development. His international exposure has provided him with multidisciplinary experience in materials preparation, thin-film synthesis, and semiconductor physics.

🔬 Contributions and Research Focus

His Ph.D. research played a vital role in advancing ion beam implantation for tailoring the properties of TCO thin films, specifically indium tin oxide (ITO) and zinc oxide (ZnO). He explored the effects of Co+ and V+ ion implantation on these materials, proving their enhanced applicability in spin-based magnetoelectronics, optoelectronics, and energy nanodevices. His thin-film synthesis techniques involved radio frequency (RF) magnetron sputtering, while his analysis utilized cutting-edge material characterization techniques, including XRD, SEM, UV-Vis spectroscopy, PIXE, RBS, FTIR, and AFM.

🌍 Impact and Influence

Dr. Oluwaleye has presented his research at multiple prestigious international conferences in India, China, Italy, and the USA, receiving the best presentation award at the International Centre for Theoretical Physics (ICTP) in Italy. His contributions to nanotechnology and materials science have positioned him as a respected figure in energy materials research, with his work cited in international peer-reviewed journals.

📚 Academic Citations and Publications

During his Ph.D. studies, Dr. Oluwaleye published two research articles in internationally recognized peer-reviewed journals. His research continues to gain citations, reflecting its significant impact on materials science and nanotechnology.

🛠️ Technical Skills

Dr. Oluwaleye possesses extensive expertise in a range of scientific and computational tools, including:

  • Thin-film deposition techniques (RF magnetron sputtering)
  • Material characterization methods (VSM, XRD, UV-Vis, SEM, AFM, PIXE, RBS, FTIR, EDX)
  • Material simulation software (SRIM/TRIM Monte Carlo Code)
  • Programming and computing skills (Linux/UNIX environment)

🎓 Teaching Experience

With a passion for education, Dr. Oluwaleye served as a physics lecturer at the University of Johannesburg. His strong mentorship and research expertise have contributed to shaping the next generation of scientists in materials science and nanotechnology.

🚀 Legacy and Future Contributions

Dr. Oluwaleye’s future research aims to push the boundaries of materials innovation, focusing on energy materials, hydrogen storage, nanostructures, and materials modification. His continued work in thin-film synthesis and semiconductor materials will contribute to advancements in sustainable energy and next-generation nanodevices.

📖Notable Publications

  1. Effects of Induced Structural Modification on Properties of V+ Ion-Implanted RF—Magnetron Sputtering Deposited ZnO Thin Films of Thickness 120 nm on Borosilicate Glass Substrates

    • Authors: Olakunle Oluwaleye, Bonex Mwakikunga, Joseph Asante
    • Journal: Nanomaterials
    • Year: 2025
  2. Studies of Lattice Structure, Electrical Properties, Thermal and Chemical Stability of Cobalt Ion Implanted Indium Tin Oxide (ITO) Thin Films on Polymer Substrates

    • Authors: Olakunle Oluwaleye
    • Journal: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
    • Year: 2019
  3. Investigation of Structural and Magnetic Properties of Co+ Ion Implanted Indium Tin Oxide Thin Films on Polyethylene Terephthalate (C10H8O4)n Substrates by 100 keV Ions

    • Authors: Olakunle Oluwaleye
    • Journal: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
    • Year: 2019
  4. Analysis of the Spatial and Spectral Neutron Distribution of Various Conceptual Core Designs with Aim of Optimizing SAFARI-1 Research Reactor

    • Authors: Olakunle Oluwaleye
    • Journal: Proceedings of the South African Institute of Physics 2013
    • Year: 2014

Robert Hendricks | Analytical Chemistry | Best Researcher Award

Mr. Robert Hendricks | Analytical Chemistry | Best Researcher Award

Genentech, United States

👨‍🎓Profiles

🎓 Early Academic Pursuits

Robert Hendricks pursued his Bachelor of Science in Biology with a Minor in English at California State Polytechnic University, Humboldt, graduating in December 1995. His academic background provided a strong foundation in biological sciences while also honing his communication and analytical skills through English studies.

💼 Professional Endeavors

Hendricks has had a distinguished career at Genentech, a leading biotechnology company in the United States. His expertise spans technology development, specifically in bioanalytical assays and laboratory information management systems (LIMS). His contributions to Watson LIMS have played a crucial role in optimizing laboratory workflows and data management.

🚀 Contributions and Research Focus

Hendricks has been deeply involved in Watson LIMS technology development at Genentech. His contributions include:

  • Serving as a core team member of the BioAnalytical Watson LIMS evaluation and implementation team from 2000 to 2003, later taking on a leadership role in 2003+.
  • Leading the BioAnalytical Watson LIMS 7.2 team and representing BioAnalytical Assays in the cross-functional Watson LIMS 7.2 team.
  • Designing and implementing a comprehensive training program for Watson LIMS users.
  • Authoring the Genentech Watson LIMS user manual, ensuring standardized and efficient usage across teams.

🌎 Impact and Influence

Through his leadership and technical expertise, Hendricks has influenced laboratory data management and automation at Genentech, contributing to increased efficiency, accuracy, and compliance in bioanalytical assays. His work in Watson LIMS has streamlined laboratory operations, impacting drug development and quality control processes.

📚 Academic Citations

While his primary focus has been in technology development and implementation, Hendricks’ contributions to Watson LIMS have likely influenced various scientific publications, training materials, and industry best practices in laboratory information management.

🛠️ Technical Skills

Hendricks has demonstrated proficiency in LIMS technology, bioanalytical assay workflows, and laboratory automation. His skill set includes:

  • Watson LIMS evaluation, implementation, and training
  • Technical documentation and user manual development
  • Cross-functional team leadership and collaboration

🎓 Teaching Experience

A key aspect of Hendricks’ contribution has been in training and education within Genentech. He developed and delivered Watson LIMS training courses for BioAnalytical Assays, ensuring that laboratory personnel were well-equipped to utilize the system effectively.

🌟 Legacy and Future Contributions

Robert Hendricks’ work in Watson LIMS technology has left a lasting impact on laboratory automation and data management at Genentech. His expertise has paved the way for future innovations in bioanalytical workflows. Moving forward, his contributions in LIMS training and implementation will continue to shape biotechnology and pharmaceutical research, ensuring efficiency, compliance, and technological advancement.

📖Notable Publications

  • Addressing Clinical Challenges in Aberrant Pharmacokinetics of Biologic Therapeutic Drugs: Investigating Sample Processing Procedure in the Immunoassays

    • Authors: Y.W. Chen, O. Davenport, N. Yu, R.T. Hendricks, Y. Song
    • Journal: AAPS Journal
    • Year: 2025
  • Cross validation of pharmacokinetic bioanalytical methods: Experimental and statistical design

    • Authors: I. Nijem, R.J. Elliott, J. Brumm, B. Wang, P.Y. Siguenza
    • Journal: Journal of Pharmaceutical and Biomedical Analysis
    • Year: 2025
  • Author Correction: Anti-TIGIT antibody improves PD-L1 blockade through myeloid and Treg cells (Nature, 10.1038/s41586-024-07121-9)

    • Authors: X. Guan, R. Hu, Y. Choi, R.J. Johnston, N.S. Patil
    • Journal: Nature
    • Year: 2024

Rotan Kumar Saha | Analytical Techniques | Best Researcher Award

Mr. Rotan Kumar Saha | Analytical Techniques | Best Researcher Award

Dhaka University of Engineering and Technology (DUET), Bangladesh

👨‍🎓Profiles

🎓 Academic and Professional Background

Rotan Kumar Saha is a Lecturer in the Department of Industrial & Production Engineering (IPE) at Dhaka University of Engineering & Technology (DUET), Gazipur, Bangladesh. He holds an M.Sc. in Mechanical Engineering with a perfect CGPA of 4.00, demonstrating his strong academic foundation and dedication to excellence. His expertise spans multiple fields, including additive manufacturing, 3D printing, lean manufacturing, advanced manufacturing, and Lean Six Sigma. As a researcher, he actively engages in various projects that contribute to industrial and academic advancements, particularly in the areas of process optimization and smart manufacturing.

🔬 Research and Innovations

Rotan Kumar Saha has been actively involved in several research and industrial projects, making significant contributions to the fields of manufacturing and materials science. His research portfolio includes 07 completed or ongoing research projects, demonstrating his commitment to innovative exploration. Additionally, he has published 02 journal papers in reputed SCI and Scopus-indexed journals, reinforcing his growing academic influence. He has also collaborated on 04 research projects with various academic and industry partners, enhancing interdisciplinary research efforts. Furthermore, his expertise extends to consultancy and industry projects, with 01 completed project showcasing his ability to apply theoretical knowledge to practical industrial applications.

🛠️ Areas of Research

Mr. Saha’s research primarily focuses on advanced manufacturing processes, materials science, and optimization techniques. His work in 3D printing and additive manufacturing includes the development of photopolymer composite materials for soft robotics, aiming to revolutionize flexible and responsive materials. In CNC machining optimization, he has explored machining parameters for titanium alloys, contributing to efficiency improvements and enhanced product performance. His work in sustainable composite materials involves the fabrication of eco-friendly composites for automotive applications, aligning with the global shift towards sustainable manufacturing. Moreover, he employs advanced process optimization methodologies, such as Response Surface Methodology (RSM) and Analysis of Variance (ANOVA), to refine manufacturing processes, reduce waste, and enhance productivity.

📊 Impact and Influence

Despite being in the early stages of his academic career, Rotan Kumar Saha’s contributions to research and industry are steadily gaining recognition. His citation index stands at 02, reflecting the initial impact of his published works. While he has yet to secure patents or publish books, his research trajectory suggests a strong potential for future breakthroughs. Although he currently holds no editorial appointments, his continuous engagement with high-impact research projects positions him as a promising academic and industry expert. His ongoing efforts in manufacturing innovations, materials optimization, and sustainable production techniques are expected to make a significant impact in the coming years.

🎓 Professional Memberships and Collaborations

Collaboration plays a vital role in Mr. Saha’s academic journey, as evidenced by his 04 research partnerships with institutions and industry leaders. His engagement in professional networks and research groups enables him to contribute meaningfully to cutting-edge manufacturing technologies. Through these collaborations, he actively shares knowledge, explores interdisciplinary approaches, and enhances the industrial applicability of his research.

🌍 Future Contributions

As an emerging researcher and educator, Rotan Kumar Saha envisions a future where his work significantly influences manufacturing efficiency, material sustainability, and industrial automation. He aims to develop novel materials for additive manufacturing, particularly for applications in robotics and healthcare. Additionally, he seeks to optimize manufacturing processes using AI-driven modeling techniques, further advancing the field of smart manufacturing. His commitment to sustainable production solutions aligns with global efforts to minimize environmental impact in industrial engineering. With his expertise in advanced manufacturing and optimization, he is poised to make substantial contributions to industrial innovation and sustainable engineering practices.

📖Notable Publications

  • Electro-mechanical analysis of nanostructured polymer matrix composite materials for 3D printing using machine learning

    • Authors: MI Hossain, MA Chowdhury, S Mahamud, RK Saha, MS Zahid, J Ferdous, …
    • Journal: Chemical Engineering Journal Advances
    • Year: 2024
  • Lean Tools and Techniques for Improving Production Performance and Waste Reduction in A Plastic Company: A Case Study

    • Authors: RK Saha, F Mahmud
    • Journal:
    • Year: 2022
  • Optimization of cutting temperature and surface roughness in CNC turning of Ti-6Al-4V alloy using response surface methodology

    • Authors: S Hossain, MZ Abedin, RK Saha, M Touhiduzzaman, MJ Hossen
    • Journal: Heliyon
    • Year: 2025
  • Investigation of the Effect of Cutting Parameters on Surface Roughness in Dry Turning of Hardened Steel Using the Taguchi Method

    • Authors: MT Rotan Kumar Saha, G Hossain, MM Rahman, NC Ray, MS Hossain, …
    • Journal: 6th Industrial Engineering and Operations Management Bangladesh Conference
    • Year: 2023
  • Reduction of Changeover Time by Using the SMED Technique with the Assistance of Lean Manufacturing Tools in a Plastic Company

    • Authors: MMU Rotan Kumar Saha, MM Rahman, MT Islam, MM Mumin
    • Journal: 6th Industrial Engineering and Operations Management Bangladesh Conference
    • Year: 2023

Munusamy Settu | Analytical Chemistry | Best Researcher Award

Dr. Munusamy Settu | Analytical Chemistry | Best Researcher Award

Chennai institute of technology, India.

Dr. S. Munusamy is a distinguished researcher and educator in the field of inorganic chemistry and nanomaterials. his academic journey began with a strong foundation in chemistry, leading to a Ph. d. from the university of madras, where he specialized in electrocatalytic and photocatalytic studies of metal nitrides and conducting co-polymer hybrid nanocomposites. his professional career spans roles as an assistant researcher, head of the department, and currently as a research faculty member at the Centre for applied nanomaterials, Chennai institute of technology. his work focuses on nanomaterials, electrocatalysis, hydrogen evolution reactions (her), oxygen evolution reactions (oer), photocatalysis, supercapacitors, and antibiotic research.

Profile

Google Scholar

Early academic pursuits 🎓

His journey into the world of chemistry began with a strong foundation in the subject during his undergraduate studies at Thiruvalluvar university. with a keen interest in exploring the principles of chemistry, he pursued his M. Sc. in chemistry at the prestigious university of madras, where he gained expertise in analytical, inorganic, organic, and physical chemistry. his academic brilliance and dedication to scientific exploration led him to further his research aspirations through a Ph. d. in inorganic chemistry (material science) at the university of madras. his doctoral research focused on electrocatalytic and photocatalytic studies of metal nitrides and conducting co-polymer hybrid nanocomposites under the guidance of Prof. V. Narayanan.

Professional endeavors 🏛️

following his academic achievements, Dr. Munusamy embarked on a dynamic professional career dedicated to research and education. he served as an assistant researcher and later as the head of the department at shishya arts and science college, thiruvalluvar university. his work in gallium nitride-polyaniline-polypyrrole hybrid nanocomposites showcased his expertise in nanomaterials and their applications in electrochemical sensors. in 2024, he joined the chennai institute of technology as a research faculty member at the centre for applied nanomaterials, where he continues to advance research in cutting-edge material science.

Contributions and research focus 🔬

His research is deeply rooted in the synthesis and application of nanomaterials, including metal nitrides, metal oxides, metal carbides, and conducting polymers. his work spans various critical domains, such as electrocatalysis, hydrogen evolution reactions (her), oxygen evolution reactions (oer), photocatalysis, supercapacitors, and antibiotic research. his innovative approaches to material synthesis and application have led to significant advancements in sustainable energy and environmental chemistry, particularly in developing efficient catalysts for energy storage and conversion.

Accolades and recognition 🏆

throughout his career, Dr. Munusamy has earned recognition for his pioneering research and contributions to the field of nanomaterials. his expertise in developing hybrid nanocomposites has been instrumental in enhancing electrochemical sensing technologies. his scholarly achievements have been acknowledged through academic honors, research publications, and invitations to participate in scientific forums, reflecting his standing in the global scientific community.

Impact and influence 🌍

His research has had a profound impact on both academia and industry. his work on electrocatalysts and photocatalysts has provided valuable insights into alternative energy solutions, contributing to the advancement of sustainable technologies. as a dedicated educator, he has mentored aspiring chemists, inspiring the next generation of scientists to push the boundaries of material science and nanotechnology. his leadership roles in academic institutions have further solidified his influence in shaping scientific curricula and fostering research-driven learning environments.

Legacy and future contributions 🔭

as a committed researcher and educator, Dr. Munusamy continues to explore new frontiers in nanomaterial science. his ongoing work at the chennai institute of technology aims to develop innovative materials with enhanced efficiency for energy storage and environmental applications. his legacy is marked by his relentless pursuit of knowledge and his dedication to scientific excellence. looking ahead, he envisions expanding his research into interdisciplinary collaborations, furthering the impact of nanomaterials in solving global challenges.

Publication

  • Doping of Co into V₂O₅ nanoparticles enhances photodegradation of methylene blue
    Authors: R. Suresh, K. Giribabu, R. Manigandan, S. Munusamy, S.P. Kumar, …
    Year: 2014

 

  • MnWO₄ nanocapsules: synthesis, characterization and its electrochemical sensing property
    Authors: S. Muthamizh, R. Suresh, K. Giribabu, R. Manigandan, S.P. Kumar, …
    Year: 2015

 

  • Nanomolar determination of 4-nitrophenol based on a poly (methylene blue)-modified glassy carbon electrode
    Authors: K. Giribabu, R. Suresh, R. Manigandan, S. Munusamy, S.P. Kumar, …
    Year: 2013

 

  • New electrochemical sensor based on Ni-doped V₂O₅ nanoplates modified glassy carbon electrode for selective determination of dopamine at nanomolar level
    Authors: R. Suresh, K. Giribabu, R. Manigandan, S.P. Kumar, S. Munusamy, …
    Year: 2014

 

  • Synthesis and characterization of cerium oxide nanoparticles using Curvularia lunata and their antibacterial properties
    Authors: S. Munusamy, K. Bhakyaraj, L. Vijayalakshmi, A. Stephen, V. Narayanan
    Year: 2014

 

  • Simultaneous determination of paracetamol and 4-aminophenol based on poly (chromium Schiff base complex) modified electrode at nanomolar levels
    Authors: S.P. Kumar, K. Giribabu, R. Manigandan, S. Munusamy, S. Muthamizh, …
    Year: 2016

 

  • Synthesis and characterization of chromium (III) Schiff base complexes: Antimicrobial activity and its electrocatalytic sensing ability of catechol
    Authors: S.P. Kumar, R. Suresh, K. Giribabu, R. Manigandan, S. Munusamy, …
    Year: 2015

 

  • A voltammetric biosensor based on poly (o-methoxyaniline)-gold nanocomposite modified electrode for the simultaneous determination of dopamine and folic acid
    Authors: D. Sangamithirai, S. Munusamy, V. Narayanan, A. Stephen
    Year: 2018

 

  • Copper vanadate nanoparticles: synthesis, characterization and its electrochemical sensing property
    Authors: V. Sivakumar, R. Suresh, K. Giribabu, R. Manigandan, S. Munusamy, …
    Year: 2014

 

  • Fabrication of neurotransmitter dopamine electrochemical sensor based on poly (o-anisidine)/CNTs nanocomposite
    Authors: D. Sangamithirai, S. Munusamy, V. Narayanan, A. Stephen
    Year: 2016

Marjanur Rahman Bhuiyan | Computational Chemistry | Best Researcher Award

Mr. Marjanur Rahman Bhuiyan | Computational Chemistry | Best Researcher Award

Incepta Pharmaceuticals Ltd, Bangladesh

👨‍🎓Profiles

🎓 Academic Journey

Mr. Marjanur Rahman Bhuiyan has built a strong academic foundation in pharmacy and biomedical sciences. He completed his Bachelor of Pharmacy (B. Pharm) from Noakhali Science and Technology University, Bangladesh, achieving an impressive CGPA of 3.73/4.00 (Transcript) and 3.86/4.00 (WES Transcript Evaluation). His commitment to continuous learning is evident from his participation in the Fall 2023 Cell Biology Course at Harvard University’s Lakshmi Mittal & Family South Asian Institute. Prior to this, he demonstrated academic excellence from an early stage, securing a GPA of 4.92/5.00 in his Higher Secondary School Certificate (HSC) from Cumilla Government College and a perfect GPA of 5.00/5.00 in his Secondary School Certificate (SSC) from Amratoli C. Ali High School.

🏢 Professional Experience

Mr. Bhuiyan has diverse and hands-on experience in the pharmaceutical and healthcare sectors, focusing on industrial pharmacy, hospital pharmacy, and disaster response management. Currently, he serves as a Scientific Officer in the Production Unit at Incepta Pharmaceuticals Ltd., Zirabo, Savar, Bangladesh. In this role, he is responsible for overseeing pharmaceutical manufacturing processes, ensuring quality assurance, and maintaining regulatory compliance to produce high-quality medicines.

His professional journey includes valuable internship experiences in both industrial and hospital pharmacy. As a Trainee Industrial Pharmacist at Aristopharma Ltd., Shampur Plant, Dhaka, in November 2023, he gained practical knowledge in pharmaceutical manufacturing, formulation development, and quality control while adhering to Good Manufacturing Practices (GMP) and industry regulations. Additionally, his internship as a Trainee Hospital Pharmacist at the 250 Bed General Hospital, Noakhali, from August to October 2023, provided him with firsthand experience in dispensing medications, patient counseling, and prescription verification, further enhancing his understanding of hospital pharmacy operations and clinical pharmacology.

Beyond the pharmaceutical sector, Mr. Bhuiyan has actively contributed to disaster response and humanitarian aid. As an Executive of the Unit Disaster Response Team (UDRT) at the Noakhali Red Crescent Unit from January 2019 to December 2022, he played a vital role in disaster management, emergency response, and public health initiatives. His involvement in relief distribution, first-aid training, and community health awareness programs showcases his commitment to social responsibility.

🔬 Research and Scientific Interests

Passionate about pharmaceutical sciences, drug development, and healthcare innovations, Mr. Bhuiyan's research interests span pharmaceutical production, quality assurance, biopharmaceutical research, clinical pharmacy, and molecular pharmacology. His education at Harvard University (Scienspur Program) has enriched his understanding of cell biology, equipping him with advanced knowledge applicable to drug development and disease treatment.

🌍 Impact and Contributions

Through his work in pharmaceutical production, hospital pharmacy, and humanitarian services, Mr. Bhuiyan has made significant contributions to healthcare standards. His ability to integrate academic knowledge with practical experience ensures the effective implementation of pharmaceutical advancements. His efforts in disaster response and healthcare advocacy further highlight his dedication to public well-being.

🚀 Future Aspirations

Looking ahead, Mr. Bhuiyan aspires to advance pharmaceutical research, develop innovative and safe medications, and contribute to global health initiatives. He plans to pursue higher studies in pharmaceutical sciences or biomedical research, aiming to enhance drug accessibility and affordability. Additionally, he intends to continue his humanitarian efforts by promoting health awareness and disaster preparedness. With his strong academic background, professional expertise, and passion for healthcare innovation, Mr. Bhuiyan is poised to become a leader in the pharmaceutical and healthcare sectors. 🚀

📖Notable Publications

Prediction of angiogenesis suppression by myricetin from Aeginetia indica via inhibiting VEGFR2 signaling pathway using computer-aided analysis
Authors: MR Bhuiyan, KS Ahmed, MS Reza, H Hossain, SMM Siam, S Nayan, ...
Journal: Heliyon
Year: 2025

Mechanisms of Castanopsis tribuloides targeting α-glucosidase for the management of type-2 diabetes: Experimental and computational approaches
Authors: T Hasan, SMM Siam, MR Bhuiyan, E Jahan, N Nahar, MS Sakib, ...
Journal: Process Biochemistry
Year: 2024

Report of In-Plant Training at ARISTOPHARMA LTD.
Authors: MR Bhuiyan
Journal: Noakhali Science and Technology University
Year: 2024

Report of Hospital Training At 250 Bedded General Hospital, Noakhali.
Authors: MR Bhuiyan
Journal: Noakhali Science and Technology University
Year: 2024

 

Jianlong Chai | Analytical Techniques | Young Scientist Award

Dr. Jianlong Chai | Analytical Techniques | Young Scientist Award

Institute of Modern Physics, Chinese Academy of Sciences, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Jianlong Chai’s academic journey is deeply rooted in the field of nuclear materials science, with a focus on high-performance ceramic composites for next-generation nuclear fission reactors. His expertise lies in understanding the complex interactions between ion beams and materials, particularly in fusion reactor environments. Through advanced material characterization techniques, he has investigated the synergistic effects of ion irradiation and plasma irradiation, paving the way for the development of radiation-resistant ceramic materials. His academic training and research experience at the Institute of Modern Physics, Chinese Academy of Sciences, have provided him with a solid foundation in experimental nuclear material science.

🏢 Professional Endeavors

As a Doctor & Research Assistant at the Institute of Modern Physics, Chinese Academy of Sciences, Dr. Chai has been actively engaged in cutting-edge research on the performance and durability of materials in extreme conditions. His work primarily focuses on developing and evaluating advanced ceramic composites, which are crucial for enhancing the structural integrity of nuclear reactors. In addition, he has contributed to national and international research initiatives, securing funding from prestigious scientific programs such as the National Natural Science Foundation of China and the National Key R&D Program of China. His collaborative research efforts have significantly advanced the understanding of fusion reactor wall materials under extreme conditions.

🔬 Contributions and Research Focus

Dr. Chai’s research has led to several groundbreaking innovations in nuclear materials science:

  • Successfully developed intergranular-strengthened and intragranular particle-toughened ceramic composites, enhancing their mechanical performance under irradiation.
  • First to observe ZrO₂ phase transformation using TEM imaging, contributing to the understanding of toughening mechanisms in triple-phase ceramic composites.
  • Refined indentation toughness evaluation methods, enabling precise assessment of the mechanical properties of multi-phase ceramics.
  • Conducted pioneering studies on the effects of ion irradiation, plasma interaction, and high-temperature displacement damage on W (tungsten) materials in fusion reactors, investigating dislocation loop size, density evolution, and nanohardness variations.

🌍 Impact and Influence

Dr. Chai’s research has had a significant impact on the development of advanced nuclear materials, particularly in the realm of fusion energy. His findings have contributed to the global scientific understanding of radiation effects on reactor materials, influencing both academic research and practical applications in nuclear reactor design. Through his published work and collaborative research, he has provided key insights into material performance under extreme irradiation conditions, addressing critical challenges in the nuclear energy sector.

📚 Academic Citations and Research Contributions

Dr. Chai has an impressive citation index of 12, reflecting the recognition and impact of his research within the scientific community. His contributions to high-performance ceramic composites and fusion reactor materials have been widely cited in leading scientific journals. Additionally, he has successfully secured multiple research grants, including:

  • National Natural Science Foundation of China (No. 12205349)
  • Gansu Youth Science and Technology Fund (No. 23JRRA652)
  • National Key R&D Program of China (No. 2022YFB3708500)

These projects highlight his ability to secure funding for high-impact research and his active role in national scientific initiatives.

⚙️ Technical Skills and Expertise

Dr. Chai is proficient in advanced material characterization and nuclear materials research techniques, including:

  • Transmission Electron Microscopy (TEM) imaging, crucial for studying microstructural changes in irradiated materials.
  • Ion irradiation studies, focusing on the effects of plasma irradiation on fusion reactor wall materials.
  • Mechanical property evaluation methods, including indentation toughness assessments for ceramic composites.
  • Nanohardness measurements to analyze radiation-induced material degradation.
  • High-temperature testing for assessing material durability under extreme conditions.

His expertise in experimental methodologies allows him to conduct high-precision studies on the behavior of nuclear materials.

📖 Teaching Experience and Mentorship

While Dr. Chai is primarily focused on research, his contributions extend to mentoring young scientists and researchers in the field of nuclear materials science. Through his involvement in scientific projects and experimental studies, he has guided students and junior researchers, helping them develop expertise in ion beam interactions, material analysis, and ceramic composite development. His hands-on mentorship ensures that the next generation of researchers is well-equipped with the knowledge and technical skills necessary for advancing nuclear materials science.

🚀 Legacy and Future Contributions

Dr. Chai is committed to pushing the boundaries of nuclear materials research, particularly in the development of radiation-resistant and high-performance ceramic materials. His future research will focus on:

  • Enhancing the toughness and stability of ceramic composites through novel strengthening mechanisms.
  • Exploring new multi-phase material systems to improve fusion reactor wall materials.
  • Advancing irradiation studies to better understand the synergistic effects of ion and plasma irradiation.
  • Contributing to large-scale research collaborations aimed at developing next-generation nuclear energy technologies.

With his strong research background, technical expertise, and innovative approach, Dr. Chai is poised to make significant contributions to the field of nuclear materials science, helping pave the way for safer and more efficient nuclear reactors.

📖Notable Publications

  • Structural damage and bubble evolution in SiC-ZrC composite irradiated with 500 keV He-ions at various temperatures
    Authors: Y. Zhu, L. Niu, J. Chai, C. Yao, Z. Wang
    Journal: Journal of the European Ceramic Society
    Year: 2025

  • Experimental investigation of microstructure and mechanical properties of β-SiC with various sintering additives supplemented by first-principles calculations
    Authors: B. Chen, L. Niu, J. Chai, X. Lu, Y. Zhu
    Journal: Ceramics International
    Year: 2025

  • Co-evolution of M23C6 precipitates and cavities in a boron-free Ni-based alloy GH3617 under high-temperature He ion irradiation: Effects on cavity swelling and mechanical properties
    Authors: P. Jin, L. Zhang, M. Cui, Z. Wang, T. Shen
    Journal: Materials Characterization
    Year: 2024