Georgy Mochalov | Inorganic Chemistry | Best Researcher Award

Prof. Dr. Georgy Mochalov | Inorganic Chemistry | Best Researcher Award

Nizhny Novgorod State Technical University named after R.E. Alekseev, Russia

👨‍🎓Profiles

🎓 Early Academic Pursuits

Prof. Dr. Georgy Mochalov began his academic journey at the prestigious National Research Lobachevsky State University of Nizhny Novgorod, where he laid a strong foundation in the field of chemical sciences. Further sharpening his expertise, he underwent professional training at the G.G. Devyatykh Institute of Chemistry of High-Purity Substances under the Russian Academy of Sciences. This early academic background equipped him with the critical knowledge needed for his future pioneering work in high-purity chemical production.

💼 Professional Endeavors

With an impressive career spanning over 50 years, Prof. Dr. Mochalov has devoted his professional life to the advancement of chemical technologies, specifically focusing on the development of processes for synthesizing and purifying high-purity volatile silicon compounds and alkyl organometallic compounds. His professional journey is closely linked to Nizhny Novgorod State Technical University named after R.E. Alekseev, Russia, where he has played a significant role in both academic and industrial research.

🔬 Contributions and Research Focus

Prof. Dr. Mochalov is recognized for his outstanding contributions in developing technologies for the synthesis, deep purification, and analysis of high-purity volatile substances. His research focuses primarily on alkyl compounds of cadmium, zinc, tellurium, as well as hydrides and chlorides of silicon. His work also addresses the vital need for safe and sustainable waste disposal methods for hazardous materials such as silicon and germanium tetrachlorides.

🌍 Impact and Influence

Through his research and innovations, Prof. Dr. Mochalov has greatly influenced the fields of materials science and semiconductor technology. His development of high-pressure distillation processes for purifying silane and the creation of gas chromatographic methods for analyzing various volatile compounds has had a profound impact on both academia and industry, particularly in the production of ultra-pure substances critical for advanced electronic applications.

🏆 Patents and Industry Contributions

A prolific innovator, Prof. Dr. Mochalov holds 9 patents related to the synthesis and purification of volatile compounds and waste treatment technologies. His consultancy and industry engagements span 3 major projects, underscoring his role as a trusted expert for advancing technological solutions in industrial chemistry.

🧪 Technical Skills

Prof. Dr. Mochalov is skilled in developing gas chromatographic analytical techniques, high-pressure distillation processes, and designing systems for synthesizing and purifying high-purity silicon-based and organometallic compounds. His technical acumen has been instrumental in creating scalable solutions for both laboratory and industrial applications.

👨‍🏫 Teaching Experience

Alongside his research, Prof. Dr. Mochalov has mentored and guided students and young researchers at Nizhny Novgorod State Technical University. His teaching experience is enriched by decades of hands-on research and development, making him a valued academician and mentor in his department.

🌟 Legacy and Future Contributions

Prof. Dr. Mochalov’s legacy lies in his significant advancements in high-purity compound synthesis and purification, which continue to influence semiconductor and materials industries globally. Looking forward, he aims to further innovate in the field of waste management and green chemistry by enhancing methods for the safe and efficient disposal of toxic chlorides and organometallic by-products.

📖Notable Publications

Promising Catalyst for Chlorosilane Dismutation
Authors: O. Zhuchok, Y. Stolmakov, A.A. Kalinina, N. Maleev, G.M. Mochalov
Journal: Sci
Year: 2024

Plasma-Chemical Disposal of Silicon and Germanium Tetrachlorides Waste by Hydrogen Reduction
Authors: R.A. Kornev, I.B. Gornushkin, L.V. Shabarova, D. Belousova, N. Maleev
Journal: Sci
Year: 2024

Synthesis, Structure, and Biological Activity of the Germanium Dioxide Complex Compound with 2-Amino-3-Hydroxybutanoic Acid
Authors: A.V. Kadomtseva, G.M. Mochalov, M.A. Zasovskaya, A.M. Ob’’edkov
Journal: Inorganics
Year: 2024

Xiong He | Inorganic Chemistry | Best Researcher Award

Assist. Prof. Dr. Xiong He | Inorganic Chemistry | Best Researcher Award

Guangxi University of Science and Technology, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Xiong He began his academic journey at the Harbin Institute of Technology, where he pursued a Bachelor’s degree in Nuclear Chemical Engineering (2009-2013). During this time, he gained a solid foundation in nuclear chemistry, materials science, and energy conversion technologies. His keen interest in sustainable energy led him to continue his studies at the same institution, earning a Ph.D. in Chemical Engineering and Technology (2013-2019) under the supervision of Prof. Xin Li. His doctoral research focused on the design of hierarchical TiO₂ photoanodes for dye-sensitized solar cells (DSSCs), aiming to enhance the efficiency of solar energy harvesting and conversion. This research contributed significantly to the development of improved photovoltaic materials, which are crucial for next-generation solar energy applications.

👨‍🏫 Professional Endeavors

After completing his Ph.D., Dr. Xiong He joined Guangxi University of Science and Technology in August 2019 as an Associate Professor in the School of Electronic Engineering. In this role, he has been actively engaged in both teaching and research, with a strong focus on nanomaterials, electrocatalysis, and renewable energy technologies. His work aims to bridge the gap between academic research and practical energy applications, contributing to advancements in clean energy solutions.

🔬 Contributions and Research Focus

Dr. Xiong He’s research primarily focuses on developing high-efficiency catalysts for the electrocatalytic oxygen evolution reaction (OER), a crucial process in green hydrogen production and sustainable energy systems. His work involves designing advanced nanocatalysts, optimizing material structures, and investigating reaction mechanisms to improve energy efficiency. Additionally, his earlier research on hierarchical TiO₂ photoanodes significantly contributed to the development of dye-sensitized solar cells (DSSCs), enhancing their light absorption, charge transport, and overall efficiency. His research findings provide valuable insights into material design strategies that can be applied to various energy conversion technologies.

🌍 Impact and Influence

Dr. Xiong He’s research has made a significant impact on the fields of electrocatalysis, nanotechnology, and renewable energy. His work on catalyst development has contributed to advancing hydrogen fuel production, while his contributions to DSSCs have helped improve solar energy conversion efficiency. By integrating innovative material engineering techniques, his research has provided new strategies for developing efficient, stable, and cost-effective energy solutions. His findings are widely referenced by researchers working on sustainable energy applications, making a lasting impact on the global energy landscape.

📚 Academic Citations

Dr. Xiong He has published extensively in high-impact peer-reviewed journals, and his research has been cited by scholars in the fields of electrocatalysis, nanomaterials, and renewable energy. His contributions continue to shape the development of novel materials for energy storage and conversion, reinforcing his role as a leading researcher in clean energy technologies. His work is widely recognized for its relevance to solving energy challenges and advancing the efficiency of renewable energy systems.

🛠️ Technical Skills

Dr. Xiong He possesses a strong technical background in materials science and electrochemistry. His expertise includes nanomaterial synthesis and characterization, utilizing techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). He is also proficient in electrochemical analysis methods, including cyclic voltammetry and electrochemical impedance spectroscopy, which are essential for evaluating catalyst performance. Additionally, he has experience in photovoltaic device fabrication and efficiency testing, contributing to advancements in solar energy technologies. His skills in computational modeling for catalyst design further enhance his ability to develop and optimize high-performance materials for energy applications.

🎓 Teaching Experience

As an Associate Professor at Guangxi University of Science and Technology, Dr. Xiong He is deeply involved in teaching and mentoring students. He lectures on chemical engineering, nanomaterials, and renewable energy technologies, providing students with both theoretical knowledge and practical skills. He actively supervises undergraduate and graduate research projects, guiding students in developing innovative solutions for energy challenges. His commitment to education extends to training students in advanced laboratory techniques, ensuring that they acquire hands-on experience in material synthesis and characterization. Through his mentorship, he has inspired many students to pursue careers in scientific research and clean energy innovation.

🌟 Legacy and Future Contributions

Dr. Xiong He’s future contributions are aimed at furthering research in electrocatalysis, hydrogen energy, and solar energy conversion. He plans to expand his work on high-performance catalysts, improving their efficiency and stability for large-scale applications. Additionally, he aims to collaborate with international research teams to accelerate the development of sustainable energy solutions. His long-term vision includes bridging the gap between academic research and industrial applications, ensuring that nanomaterials and electrochemical technologies contribute effectively to real-world energy challenges. By continuing to mentor the next generation of scientists and engineers, he hopes to foster innovation and drive advancements in clean energy for a more sustainable future.

📖Notable Publications

Tuning surface hydrophilicity of a BiVO4 photoanode through interface engineering for efficient PEC water splitting

Authors: S. Yu, Shuangwei; C. Su, Chunrong; Z. Xiao, Zhehui; Q. Jin, Qianqian; Z. Sun, Zijun

Journal: RSC Advances

Year: 2025

Rapid electrodeposition synthesis of partially phosphorylated cobalt iron phosphate for application in seawater overall electrolysis

Authors: J. Cai, Jiayang; D. Qu, Dezhi; X. He, Xiong; B. Zhu, Baoning; S. Yu, Shuangwei

Journal: Electrochimica Acta

Year: 2024

Construction of Heterostructured Ni3S2@V-NiFe(III) LDH for Enhanced OER Performance

Authors: Q. Dong, Qianqian; Q. Zhong, Qijun; J. Zhou, Jie; X. He, Xiong; S. Zhang, Shaohui

Journal: Molecules

Year: 2024

Employing shielding effect of intercalated cinnamate anion in NiFe LDH for stable and efficient seawater oxidation

Authors: J. Cai, Jiayang; X. He, Xiong; Q. Dong, Qianqian; Q. Jin, Qianqian; Z. Sun, Zijun

Journal: Surfaces and Interfaces

Year: 2024