Md Ibrahim Shikder Mahin | Computational Modeling | Best Researcher Award

Mr. Md Ibrahim Shikder Mahin | Computational Modeling | Best Researcher Award

Bangladesh University of Business and Technology (BUBT), Bangladesh

👨‍🎓Profiles

🎓 Academic Background

Md Ibrahim Shikder Mahin is a Bachelor of Science (B.S.) graduate in Electrical and Electronics Engineering from Bangladesh University of Business and Technology (BUBT), where he maintained a CGPA of 3.41/4.0 (2019-2024). His earlier academic journey includes:  Higher Secondary School Certificate (HSC) – Science from Government Shaheed Suhrawardy College (2017-2019), with a GPA of 3.75/5.0. Secondary School Certificate (SSC) – Science from Gandaria High School (2005-2017).

🚀 Passion for Technology & Innovation

As a passionate technophile, Mr. Mahin specializes in:
✔️ Computational Modeling & Image Processing 🖥️ – Applying advanced algorithms for visual data analysis.
✔️ Machine Learning & Deep Learning 🧠 – Developing intelligent systems for automation and decision-making.
✔️ Robotics & AI 🤖 – Exploring automation, smart systems, and industrial robotics.
✔️ Blockchain Technology 🔗 – Investigating decentralized applications and cryptographic security.

His strong foundation in Python programming allows him to implement innovative AI and image processing solutions, contributing to cutting-edge research and real-world applications.

📊 Technical Expertise

Mr. Mahin has hands-on experience in various AI and computational technologies, including:
✔️ Programming Languages: Python, MATLAB
✔️ Machine Learning Frameworks: TensorFlow, PyTorch, Scikit-learn
✔️ Image Processing: OpenCV, Computer Vision Techniques
✔️ Robotics & AI: Embedded Systems, IoT Integration
✔️ Blockchain & Cryptography: Smart Contracts, Decentralized Systems

🎯 Research & Career Aspirations

Mr. Mahin is committed to driving innovation and fostering collaboration in the tech community. His future goals include:
🔹 Developing intelligent automation systems using AI & robotics.
🔹 Advancing deep learning applications for medical and industrial imaging.
🔹 Exploring the intersection of blockchain and AI for secure, decentralized solutions.
🔹 Contributing to open-source projects and global research communities.

🏆 Conclusion

Md Ibrahim Shikder Mahin is a highly motivated researcher and engineer in the fields of AI, deep learning, and computational modeling. His passion for technology, robotics, and blockchain continues to shape his journey toward innovation and impactful contributions in the digital era.

📖Notable Publication

Real-Time Rapid Accident Detection for Optimizing Road Safety in Bangladesh

Authors: Md Shamsul Arefin, Md Ibrahim Shikder Mahin, Farzana Akter Mily

Journal: Heliyon

Year: 2025

Eugene Mananga | Nuclear Magnetic Resonance | Best Researcher Award 1739

Prof. Dr. Eugene Mananga | Nuclear Magnetic Resonance (NMR) | Best Researcher Award

The City University of New York United States

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Eugene Stéphane Mananga began his academic journey in Cameroon, where he demonstrated exceptional talent in physics and mathematics. He completed his B.Sc. in Physics/Chemistry from the University of Yaoundé in 1990, ranking among the top 5% of his class. He continued his studies, earning an M.Sc. in Physics (1991) and a DEA in Physics (1992), securing first rank. His academic curiosity led him to pursue a Doctorate in Mechanics - Solitons (1992-94), though he did not defend his thesis. His academic ambitions took him to The City University of New York (CUNY), where he earned multiple advanced degrees, including an M.A. in Physics (2002), an M. Phil. in Physics (2004), and a Ph.D. in Physics (2005) under the mentorship of Distinguished Professor Steven G. Greenbaum. His doctoral research set the stage for groundbreaking work in nuclear magnetic resonance (NMR) and condensed matter physics.

🏛️ Professional Endeavors

Dr. Mananga has held prestigious positions at Harvard University, MIT, CUNY, New York University (NYU), and Brookhaven National Laboratory, contributing significantly to medical physics, solid-state NMR, and nuclear medicine. He has been a:

Postdoctoral Fellow at Harvard Medical School (2011-14) and the Atomic Energy Commission (CEA), France (2009-11), working on neuroimaging and nuclear medicine.

Research Fellow at Massachusetts General Hospital and National High Magnetic Field Lab, specializing in high-field NMR applications.

NSF/AGEP-MAGNET Chancellor Fellow at CUNY (2005-07), demonstrating excellence in research and education.

Dr. Mananga’s interdisciplinary expertise spans across physics, engineering, medical sciences, and sustainability, reflecting his broad academic interests and impact.

🏆 Contributions and Research Focus

Dr. Mananga’s research has significantly advanced solid-state nuclear magnetic resonance (NMR), quantum physics, and medical imaging. He is best known for his work on the Floquet-Magnus expansion, a mathematical technique widely applied in NMR spectroscopy and condensed matter physics. His key contributions include:

Solid-State NMR Spectroscopy: His work on dipolar recoupling techniques has improved signal processing in high-field NMR.

Quantum Physics & Magnonics: He has extended the Floquet-Magnus expansion theory, enabling new applications in quantum mechanics and spintronics.

Medical Imaging & Nuclear Medicine: His research at Harvard Medical School and Massachusetts General Hospital has contributed to better diagnostic imaging techniques in nuclear medicine.

Sustainability & Materials Science: His recent studies at Harvard University (HES, 2022) focus on sustainable materials and their applications in energy storage and green technology.

His ability to bridge physics, engineering, and medicine highlights his interdisciplinary impact on modern science.

🌍 Impact and Influence

Dr. Mananga’s research has led to pioneering advancements in NMR spectroscopy, quantum physics, and medical imaging. His work has been widely cited, influencing scientists, engineers, and medical researchers across disciplines. Some key aspects of his influence include:

Academic Citations & Recognition: His publications, particularly on the Floquet-Magnus expansion and solid-state NMR, have been cited hundreds of times in prestigious journals.

Mentorship & Collaboration: He has collaborated with leading institutions, including Harvard, MIT, CUNY, NYU, and Brookhaven National Laboratory, mentoring students and researchers worldwide.

Technical Contributions: His research has improved NMR techniques, quantum computing principles, and sustainable material applications.

Dr. Mananga’s contributions continue to shape scientific advancements in multiple fields.

🛠️ Technical Skills

Dr. Mananga possesses expertise in advanced scientific techniques, including:

Nuclear Magnetic Resonance (NMR) Spectroscopy

Quantum Physics & Spintronics

Medical Imaging & Nuclear Medicine

Biostatistics & Applied Mathematics

Sustainable Materials & Green Technology

His strong computational and analytical skills allow him to solve complex problems across physics, chemistry, and medical sciences.

📚 Teaching Experience

Dr. Mananga has a strong background in academia, having taught and mentored students at: City University of New York (CUNY), New York University (NYU), Harvard Medical School. His dedication to education has inspired numerous students to pursue careers in physics, engineering, and medical sciences.

🚀 Legacy and Future Contributions

Dr. Mananga’s legacy lies in his ability to integrate physics, medical imaging, and sustainable materials science. His future contributions are expected to:

Advance quantum computing and solid-state NMR spectroscopy

Enhance nuclear medicine techniques for better diagnostics

Promote sustainability in energy storage and materials science

Mentor the next generation of scientists and engineers

His pioneering research and interdisciplinary approach ensure that his work will continue to impact science, technology, and medicine for decades.

📖Notable Publications

Introduction of the Floquet-Magnus expansion in solid-state nuclear magnetic resonance spectroscopy
Authors: ES Mananga, T Charpentier
Journal: The Journal of Chemical Physics, 2011

Facile synthesis of the Basolite F300-like nanoscale Fe-BTC framework and its lithium storage properties
Authors: X Hu, X Lou, C Li, Y Ning, Y Liao, Q Chen, ES Mananga, M Shen, B Hu
Journal: RSC Advances, 2016

High pressure NMR study of water self-diffusion in NAFION-117 membrane
Authors: JRP Jayakody, PE Stallworth, ES Mananga, J Farrington-Zapata
Journal: The Journal of Physical Chemistry B, 2004

On the Floquet–Magnus expansion: Applications in solid-state nuclear magnetic resonance and physics
Authors: ES Mananga, T Charpentier
Journal: Physics Reports, 2016

NMR investigation of water and methanol transport in sulfonated polyarylenethioethersulfones for fuel cell applications
Authors: JRP Jayakody, A Khalfan, ES Mananga, SG Greenbaum, TD Dang
Journal: Journal of Power Sources, 2006

Finite pulse width artifact suppression in spin-1 quadrupolar echo spectra by phase cycling
Authors: ES Mananga, YS Rumala, GS Boutis
Journal: Journal of Magnetic Resonance, 2006

Efficient theory of dipolar recoupling in solid-state nuclear magnetic resonance of rotating solids using Floquet–Magnus expansion: Application on BABA and C7 radiofrequency
Authors: ES Mananga, AE Reid, T Charpentier
Journal: Solid State Nuclear Magnetic Resonance, 2012

Ahmed Hassan Bakheit | Analytical Chemistry | Analytical Chemistry Award

Dr. Ahmed Hassan Bakheit | Analytical Chemistry | Analytical Chemistry Award

King Saud University, Saudi Arabia

👨‍🎓Profiles

🎓 Early Academic Pursuits

Ahmed H. Bakheit's academic journey began with a B.Sc. (Honors) in Chemistry from Al-Neelain University in Sudan, where he was awarded the Sudan Institute for Natural Sciences Prize in 2000-2001. His thirst for knowledge continued with an M.Sc. in Analytical Chemistry, followed by a Ph.D. in Chemistry (Analytical Chemistry) in 2023, where he focused on the interaction of anticancer drugs with serum albumin and DNA. His work integrates advanced spectroscopy and molecular modeling techniques, contributing significantly to his field.

💼 Professional Endeavors

Dr. Bakheit’s professional career spans multiple roles in both teaching and research. Since June 2011, he has been a researcher at King Saud University's Department of Pharmaceutical Chemistry, Saudi Arabia. Prior to that, he served as a lecturer at Al-Neelain University in Sudan, where he also lectured at the University of Bahr al Ghazal, Sudan. These roles helped shape his expertise in analytical chemistry and pharmaceutical sciences. Dr. Bakheit also contributed through various workshops and short courses, including specialized training in spectroscopy and chromatography.

🔬 Contributions and Research Focus

Dr. Bakheit has dedicated much of his research to the development and validation of analytical techniques for pharmaceutical compounds and environmental pollutants. His primary focus areas include: Spectroscopic Investigation of Drug-Plasma Protein Interactions: Using advanced spectroscopic techniques, he studies the binding interactions between drugs and serum proteins to improve drug efficacy and pharmacokinetics. Computational Chemistry and Molecular Dynamics: His work in molecular docking and dynamic simulations aids in understanding the binding mechanisms of drugs, facilitating drug discovery and design. Pharmaceutical Quality Control & Analysis: He contributes significantly to quality control, stability studies, and impurity profiling in pharmaceutical formulations, ensuring drug safety and efficacy.

🌍 Impact and Influence

Dr. Bakheit's research has influenced drug design, bioinformatics, and pharmaceutical quality control. By integrating analytical chemistry with computational tools, his work promotes a deeper understanding of drug behavior and interactions in biological systems, influencing the fields of drug discovery, pharmacology, and pharmaceutical sciences. His contributions to bioorganic chemistry and biophysics have been vital in advancing the understanding of drug mechanisms and kinetics, paving the way for more effective and stable pharmaceutical formulations.

📚 Academic Cites & Publications

Dr. Bakheit’s academic contributions have been widely recognized in the scientific community. His work is documented on platforms like Google Scholar, where his research in analytical chemistry and drug interactions has been cited numerous times. His publications showcase his continuous pursuit of knowledge and his contributions to the advancement of pharmaceutical chemistry and related fields.

🛠️ Technical Skills

Dr. Bakheit is highly skilled in various technical areas, including: Computational Chemistry Software: Proficient in AutoDock, MOE, Gaussian 09, and Visual Molecular Dynamics (VMD). Spectroscopic & Chromatographic Techniques: Expertise in methods such as Atomic Absorption Spectroscopy, HPLC, NMR Spectroscopy, and Mass Spectrometry (LC-MS/MS). Molecular Dynamic Simulation: Skilled in using NAMD and other dynamic simulation tools to model molecular behavior.

👨‍🏫 Teaching Experience

Dr. Bakheit has had a long and impactful career in education. He has taught a range of subjects, including: Analytical Chemistry: Undergraduate and graduate courses at Al-Neelain University and King Saud University. Instrumental Analysis: Lecturing on techniques such as HPLC, atomic absorption, spectrophotometry, and more. Practical Chemistry: Guiding students through lab experiments to enhance their understanding of chemical analysis. His teaching approach focuses on blending theoretical knowledge with practical skills, helping students grasp complex concepts through hands-on learning.

🌱 Legacy and Future Contributions

Dr. Bakheit's legacy lies in his comprehensive approach to integrating analytical chemistry with pharmaceutical sciences, which has profound implications for drug safety and development. Moving forward, his research will likely continue to influence the development of novel drugs, better-quality control methods, and advanced therapeutic solutions. His work in drug discovery and bioinformatics is poised to contribute to the next generation of pharmaceutical innovations.

📖Notable Publications

Study of interactions of an anticancer drug neratinib with bovine serum albumin: spectroscopic and molecular docking approach
Authors: TA Wani, AH Bakheit, MA Abounassif, S Zargar
Journal: Frontiers in Chemistry
Year: 2018
Citations: 121

Multi-spectroscopic investigation, molecular docking and molecular dynamic simulation of competitive interactions between flavonoids (quercetin and rutin) and sorafenib for …
Authors: NA Alsaif, TA Wani, AH Bakheit, S Zargar
Journal: International Journal of Biological Macromolecules
Year: 2020
Citations: 105

Propranolol
Authors: AA Al-Majed, AHH Bakheit, HAA Aziz, FM Alajmi, H AlRabiah
Journal: Profiles of Drug Substances, Excipients and Related Methodology
Year: 2017
Citations: 102

Interaction of an abiraterone with calf thymus DNA: Investigation with spectroscopic technique and modelling studies
Authors: TA Wani, N Alsaif, AH Bakheit, S Zargar, AA Al-Mehizia, AA Khan
Journal: Bioorganic Chemistry
Year: 2020
Citations: 89

Fluorescence spectroscopic and molecular docking studies of the binding interaction between the new anaplastic lymphoma kinase inhibitor crizotinib and bovine serum albumin
Authors: AS Abdelhameed, AM Alanazi, AH Bakheit, HW Darwish, HA Ghabbour, ...
Journal: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Year: 2017
Citations: 82

Spectrophotometric and molecular modelling studies on in vitro interaction of tyrosine kinase inhibitor linifanib with bovine serum albumin
Authors: TA Wani, AH Bakheit, S Zargar, MA Hamidaddin, IA Darwish
Journal: PLoS One
Year: 2017
Citations: 80