Changjin Xu | Analytical Chemistry | Best Researcher Award -1902

Dr. Changjin Xu | Analytical Chemistry | Best Researcher Award

Inner Mongolia Medical University, China

👨‍🎓Profiles

✨ Early Academic Pursuits

Dr. Changjin Xu began his academic journey with a strong foundation in chemical engineering and technology. His undergraduate studies at Inner Mongolia Agricultural University (2010-2014) laid the groundwork for his passion for materials science and applied chemistry. He pursued a Master’s degree in Applied Chemistry at Inner Mongolia University (2014-2017), further refining his expertise in the field. His dedication to research led him to obtain a Ph.D. in Materials Science from Northeastern University (2017-2021), where he conducted in-depth studies on nanomaterials and catalytic performance.

🎓 Professional Endeavors

Since April 2022, Dr. Xu has been serving as a Lecturer at the School of Pharmacy, Inner Mongolia Medical University. His role involves teaching, mentoring students, and conducting high-impact research in materials science and its applications in the pharmaceutical sector.

💪 Contributions and Research Focus

Dr. Xu’s research primarily revolves around nanomaterials synthesis, catalytic performance optimization, and intermetallic compounds. His expertise in micro-arc oxidation preparation has significantly contributed to advancements in catalysis and materials science.

Notable Research Project:

  • National Natural Science Foundation of China (NSFC) General Project (51971059)
    • Title: Micro-arc oxidation preparation and catalytic performance research of precious metal intermetallic compound nanocrystals
    • Duration: 2020-01-01 to 2023-12-31
    • Funding: RMB 600,000
    • Role: Participated in the project, contributing to innovative research in catalytic materials.

🌟 Impact and Influence

Dr. Xu’s research has made notable contributions to the field of materials science and catalysis, with implications in pharmaceutical and chemical engineering applications. His work in nanocrystal synthesis and catalytic efficiency improvement is paving the way for future innovations.

🎉 Academic Citations

Dr. Xu’s publications in high-impact journals have received recognition within the scientific community. His research papers focus on nanostructured materials, surface engineering techniques, and advanced catalysis.

🛠️ Technical Skills

Dr. Xu is proficient in materials characterization techniques, nanomaterial synthesis, catalytic performance analysis, and micro-arc oxidation. His expertise spans multiple advanced methodologies, ensuring his research aligns with global scientific advancements.

👨‍👩‍👦 Teaching Experience

As a lecturer, Dr. Xu actively engages in student mentorship, curriculum development, and research supervision. His ability to integrate real-world applications into academic learning enhances students’ understanding of materials science in pharmaceuticals.

⚖️ Legacy and Future Contributions

Dr. Xu aims to continue his groundbreaking research in nanomaterials and catalysis, expand his collaborative projects, and contribute to the development of new materials for pharmaceutical applications. His commitment to academic excellence and innovation ensures his lasting impact on the scientific community

📖Notable Publications

From FCC to BCC: Engineering Pd nuclearity in the PdCu catalyst to enhance ethylene selectivity in acetylene hydrogenation
Authors: Changjin Xu, Yinglei Liu, Huiqing Guo, Chun Du, Gaowu Qin, Song Li
Journal: Inorganic Chemistry
Year: 2025

Engineering CeO2 configurations to regulate the CuO dispersion and switch pathways of preferential CO oxidation
Authors: Junfang Ding, Changjin Xu, Guilan Fan, Tuya Naren, Yan Wang, Yang Liu, Xiaojun Gu, Limin Wu, Shanghong Zeng
Journal: Applied Catalysis B: Environmental
Year: 2023

Enhancing selectivity for semi-hydrogenation of Ni by periodic isolation in the MM′X structure
Authors: Yinglei Liu, Changjin Xu, Bo Yang, Xiangying Meng, Gaowu Qin, Song Li
Journal: Catalysis Science & Technology
Year: 2023

Carbon-CeO2 interface confinement enhances the chemical stability of Pt nanocatalyst for catalytic oxidation reactions
Authors: Xu Changjin, Zhang Yue, Chen Jing, Li Song, Zhang Yawen, Qin Gaowu
Journal: Science China Materials
Year: 2021

Engineering the epitaxial interface of Pt-CeO2 by surface redox reaction guided nucleation for low temperature CO oxidation
Authors: Xu Changjin, Wu Yutong, Li Song, Zhou Jun, Chen Jing, Jiang Min, Zhao Hongda, Qin Gaowu
Journal: Journal of Materials Science & Technology
Year: 2020

Olakunle Oluwaleye | Analytical Chemistry | Best Researcher Award -1860

Dr. Olakunle Oluwaleye | Analytical Chemistry | Best Researcher Award

Tshwane University of Technology, South Africa

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Olakunle Oluwaleye’s academic journey began with a strong foundation in physics and materials science. He completed his Ph.D. in Physics at the University of South Africa, in collaboration with NRF-iThemba Laboratory for Accelerator-Based Sciences (iThemba LABS) and the National Centre for Nano-Structured Materials at the CSIR in Pretoria. His doctoral research focused on ion beam modification of transparent conducting oxide (TCO) materials, a cutting-edge area with broad applications in spintronics, optoelectronics, sensors, and energy nanodevices.

🏢 Professional Endeavors

Dr. Oluwaleye has accumulated diverse international research and teaching experiences. He has worked as a research assistant at prestigious institutions such as Karlsruhe Institute of Technology (KIT), Germany, and SCK-CEN, Belgium, where he expanded his expertise in nanostructured materials and energy materials. Additionally, he served as a physics lecturer at the University of Johannesburg, further contributing to academic development. His international exposure has provided him with multidisciplinary experience in materials preparation, thin-film synthesis, and semiconductor physics.

🔬 Contributions and Research Focus

His Ph.D. research played a vital role in advancing ion beam implantation for tailoring the properties of TCO thin films, specifically indium tin oxide (ITO) and zinc oxide (ZnO). He explored the effects of Co+ and V+ ion implantation on these materials, proving their enhanced applicability in spin-based magnetoelectronics, optoelectronics, and energy nanodevices. His thin-film synthesis techniques involved radio frequency (RF) magnetron sputtering, while his analysis utilized cutting-edge material characterization techniques, including XRD, SEM, UV-Vis spectroscopy, PIXE, RBS, FTIR, and AFM.

🌍 Impact and Influence

Dr. Oluwaleye has presented his research at multiple prestigious international conferences in India, China, Italy, and the USA, receiving the best presentation award at the International Centre for Theoretical Physics (ICTP) in Italy. His contributions to nanotechnology and materials science have positioned him as a respected figure in energy materials research, with his work cited in international peer-reviewed journals.

📚 Academic Citations and Publications

During his Ph.D. studies, Dr. Oluwaleye published two research articles in internationally recognized peer-reviewed journals. His research continues to gain citations, reflecting its significant impact on materials science and nanotechnology.

🛠️ Technical Skills

Dr. Oluwaleye possesses extensive expertise in a range of scientific and computational tools, including:

  • Thin-film deposition techniques (RF magnetron sputtering)
  • Material characterization methods (VSM, XRD, UV-Vis, SEM, AFM, PIXE, RBS, FTIR, EDX)
  • Material simulation software (SRIM/TRIM Monte Carlo Code)
  • Programming and computing skills (Linux/UNIX environment)

🎓 Teaching Experience

With a passion for education, Dr. Oluwaleye served as a physics lecturer at the University of Johannesburg. His strong mentorship and research expertise have contributed to shaping the next generation of scientists in materials science and nanotechnology.

🚀 Legacy and Future Contributions

Dr. Oluwaleye’s future research aims to push the boundaries of materials innovation, focusing on energy materials, hydrogen storage, nanostructures, and materials modification. His continued work in thin-film synthesis and semiconductor materials will contribute to advancements in sustainable energy and next-generation nanodevices.

📖Notable Publications

  1. Effects of Induced Structural Modification on Properties of V+ Ion-Implanted RF—Magnetron Sputtering Deposited ZnO Thin Films of Thickness 120 nm on Borosilicate Glass Substrates

    • Authors: Olakunle Oluwaleye, Bonex Mwakikunga, Joseph Asante
    • Journal: Nanomaterials
    • Year: 2025
  2. Studies of Lattice Structure, Electrical Properties, Thermal and Chemical Stability of Cobalt Ion Implanted Indium Tin Oxide (ITO) Thin Films on Polymer Substrates

    • Authors: Olakunle Oluwaleye
    • Journal: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
    • Year: 2019
  3. Investigation of Structural and Magnetic Properties of Co+ Ion Implanted Indium Tin Oxide Thin Films on Polyethylene Terephthalate (C10H8O4)n Substrates by 100 keV Ions

    • Authors: Olakunle Oluwaleye
    • Journal: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
    • Year: 2019
  4. Analysis of the Spatial and Spectral Neutron Distribution of Various Conceptual Core Designs with Aim of Optimizing SAFARI-1 Research Reactor

    • Authors: Olakunle Oluwaleye
    • Journal: Proceedings of the South African Institute of Physics 2013
    • Year: 2014

Robert Hendricks | Analytical Chemistry | Best Researcher Award

Mr. Robert Hendricks | Analytical Chemistry | Best Researcher Award

Genentech, United States

👨‍🎓Profiles

🎓 Early Academic Pursuits

Robert Hendricks pursued his Bachelor of Science in Biology with a Minor in English at California State Polytechnic University, Humboldt, graduating in December 1995. His academic background provided a strong foundation in biological sciences while also honing his communication and analytical skills through English studies.

💼 Professional Endeavors

Hendricks has had a distinguished career at Genentech, a leading biotechnology company in the United States. His expertise spans technology development, specifically in bioanalytical assays and laboratory information management systems (LIMS). His contributions to Watson LIMS have played a crucial role in optimizing laboratory workflows and data management.

🚀 Contributions and Research Focus

Hendricks has been deeply involved in Watson LIMS technology development at Genentech. His contributions include:

  • Serving as a core team member of the BioAnalytical Watson LIMS evaluation and implementation team from 2000 to 2003, later taking on a leadership role in 2003+.
  • Leading the BioAnalytical Watson LIMS 7.2 team and representing BioAnalytical Assays in the cross-functional Watson LIMS 7.2 team.
  • Designing and implementing a comprehensive training program for Watson LIMS users.
  • Authoring the Genentech Watson LIMS user manual, ensuring standardized and efficient usage across teams.

🌎 Impact and Influence

Through his leadership and technical expertise, Hendricks has influenced laboratory data management and automation at Genentech, contributing to increased efficiency, accuracy, and compliance in bioanalytical assays. His work in Watson LIMS has streamlined laboratory operations, impacting drug development and quality control processes.

📚 Academic Citations

While his primary focus has been in technology development and implementation, Hendricks’ contributions to Watson LIMS have likely influenced various scientific publications, training materials, and industry best practices in laboratory information management.

🛠️ Technical Skills

Hendricks has demonstrated proficiency in LIMS technology, bioanalytical assay workflows, and laboratory automation. His skill set includes:

  • Watson LIMS evaluation, implementation, and training
  • Technical documentation and user manual development
  • Cross-functional team leadership and collaboration

🎓 Teaching Experience

A key aspect of Hendricks’ contribution has been in training and education within Genentech. He developed and delivered Watson LIMS training courses for BioAnalytical Assays, ensuring that laboratory personnel were well-equipped to utilize the system effectively.

🌟 Legacy and Future Contributions

Robert Hendricks’ work in Watson LIMS technology has left a lasting impact on laboratory automation and data management at Genentech. His expertise has paved the way for future innovations in bioanalytical workflows. Moving forward, his contributions in LIMS training and implementation will continue to shape biotechnology and pharmaceutical research, ensuring efficiency, compliance, and technological advancement.

📖Notable Publications

  • Addressing Clinical Challenges in Aberrant Pharmacokinetics of Biologic Therapeutic Drugs: Investigating Sample Processing Procedure in the Immunoassays

    • Authors: Y.W. Chen, O. Davenport, N. Yu, R.T. Hendricks, Y. Song
    • Journal: AAPS Journal
    • Year: 2025
  • Cross validation of pharmacokinetic bioanalytical methods: Experimental and statistical design

    • Authors: I. Nijem, R.J. Elliott, J. Brumm, B. Wang, P.Y. Siguenza
    • Journal: Journal of Pharmaceutical and Biomedical Analysis
    • Year: 2025
  • Author Correction: Anti-TIGIT antibody improves PD-L1 blockade through myeloid and Treg cells (Nature, 10.1038/s41586-024-07121-9)

    • Authors: X. Guan, R. Hu, Y. Choi, R.J. Johnston, N.S. Patil
    • Journal: Nature
    • Year: 2024

Munusamy Settu | Analytical Chemistry | Best Researcher Award

Dr. Munusamy Settu | Analytical Chemistry | Best Researcher Award

Chennai institute of technology, India.

Dr. S. Munusamy is a distinguished researcher and educator in the field of inorganic chemistry and nanomaterials. his academic journey began with a strong foundation in chemistry, leading to a Ph. d. from the university of madras, where he specialized in electrocatalytic and photocatalytic studies of metal nitrides and conducting co-polymer hybrid nanocomposites. his professional career spans roles as an assistant researcher, head of the department, and currently as a research faculty member at the Centre for applied nanomaterials, Chennai institute of technology. his work focuses on nanomaterials, electrocatalysis, hydrogen evolution reactions (her), oxygen evolution reactions (oer), photocatalysis, supercapacitors, and antibiotic research.

Profile

Google Scholar

Early academic pursuits 🎓

His journey into the world of chemistry began with a strong foundation in the subject during his undergraduate studies at Thiruvalluvar university. with a keen interest in exploring the principles of chemistry, he pursued his M. Sc. in chemistry at the prestigious university of madras, where he gained expertise in analytical, inorganic, organic, and physical chemistry. his academic brilliance and dedication to scientific exploration led him to further his research aspirations through a Ph. d. in inorganic chemistry (material science) at the university of madras. his doctoral research focused on electrocatalytic and photocatalytic studies of metal nitrides and conducting co-polymer hybrid nanocomposites under the guidance of Prof. V. Narayanan.

Professional endeavors 🏛️

following his academic achievements, Dr. Munusamy embarked on a dynamic professional career dedicated to research and education. he served as an assistant researcher and later as the head of the department at shishya arts and science college, thiruvalluvar university. his work in gallium nitride-polyaniline-polypyrrole hybrid nanocomposites showcased his expertise in nanomaterials and their applications in electrochemical sensors. in 2024, he joined the chennai institute of technology as a research faculty member at the centre for applied nanomaterials, where he continues to advance research in cutting-edge material science.

Contributions and research focus 🔬

His research is deeply rooted in the synthesis and application of nanomaterials, including metal nitrides, metal oxides, metal carbides, and conducting polymers. his work spans various critical domains, such as electrocatalysis, hydrogen evolution reactions (her), oxygen evolution reactions (oer), photocatalysis, supercapacitors, and antibiotic research. his innovative approaches to material synthesis and application have led to significant advancements in sustainable energy and environmental chemistry, particularly in developing efficient catalysts for energy storage and conversion.

Accolades and recognition 🏆

throughout his career, Dr. Munusamy has earned recognition for his pioneering research and contributions to the field of nanomaterials. his expertise in developing hybrid nanocomposites has been instrumental in enhancing electrochemical sensing technologies. his scholarly achievements have been acknowledged through academic honors, research publications, and invitations to participate in scientific forums, reflecting his standing in the global scientific community.

Impact and influence 🌍

His research has had a profound impact on both academia and industry. his work on electrocatalysts and photocatalysts has provided valuable insights into alternative energy solutions, contributing to the advancement of sustainable technologies. as a dedicated educator, he has mentored aspiring chemists, inspiring the next generation of scientists to push the boundaries of material science and nanotechnology. his leadership roles in academic institutions have further solidified his influence in shaping scientific curricula and fostering research-driven learning environments.

Legacy and future contributions 🔭

as a committed researcher and educator, Dr. Munusamy continues to explore new frontiers in nanomaterial science. his ongoing work at the chennai institute of technology aims to develop innovative materials with enhanced efficiency for energy storage and environmental applications. his legacy is marked by his relentless pursuit of knowledge and his dedication to scientific excellence. looking ahead, he envisions expanding his research into interdisciplinary collaborations, furthering the impact of nanomaterials in solving global challenges.

Publication

  • Doping of Co into V₂O₅ nanoparticles enhances photodegradation of methylene blue
    Authors: R. Suresh, K. Giribabu, R. Manigandan, S. Munusamy, S.P. Kumar, …
    Year: 2014

 

  • MnWO₄ nanocapsules: synthesis, characterization and its electrochemical sensing property
    Authors: S. Muthamizh, R. Suresh, K. Giribabu, R. Manigandan, S.P. Kumar, …
    Year: 2015

 

  • Nanomolar determination of 4-nitrophenol based on a poly (methylene blue)-modified glassy carbon electrode
    Authors: K. Giribabu, R. Suresh, R. Manigandan, S. Munusamy, S.P. Kumar, …
    Year: 2013

 

  • New electrochemical sensor based on Ni-doped V₂O₅ nanoplates modified glassy carbon electrode for selective determination of dopamine at nanomolar level
    Authors: R. Suresh, K. Giribabu, R. Manigandan, S.P. Kumar, S. Munusamy, …
    Year: 2014

 

  • Synthesis and characterization of cerium oxide nanoparticles using Curvularia lunata and their antibacterial properties
    Authors: S. Munusamy, K. Bhakyaraj, L. Vijayalakshmi, A. Stephen, V. Narayanan
    Year: 2014

 

  • Simultaneous determination of paracetamol and 4-aminophenol based on poly (chromium Schiff base complex) modified electrode at nanomolar levels
    Authors: S.P. Kumar, K. Giribabu, R. Manigandan, S. Munusamy, S. Muthamizh, …
    Year: 2016

 

  • Synthesis and characterization of chromium (III) Schiff base complexes: Antimicrobial activity and its electrocatalytic sensing ability of catechol
    Authors: S.P. Kumar, R. Suresh, K. Giribabu, R. Manigandan, S. Munusamy, …
    Year: 2015

 

  • A voltammetric biosensor based on poly (o-methoxyaniline)-gold nanocomposite modified electrode for the simultaneous determination of dopamine and folic acid
    Authors: D. Sangamithirai, S. Munusamy, V. Narayanan, A. Stephen
    Year: 2018

 

  • Copper vanadate nanoparticles: synthesis, characterization and its electrochemical sensing property
    Authors: V. Sivakumar, R. Suresh, K. Giribabu, R. Manigandan, S. Munusamy, …
    Year: 2014

 

  • Fabrication of neurotransmitter dopamine electrochemical sensor based on poly (o-anisidine)/CNTs nanocomposite
    Authors: D. Sangamithirai, S. Munusamy, V. Narayanan, A. Stephen
    Year: 2016

Marjanur Rahman Bhuiyan | Computational Chemistry | Best Researcher Award

Mr. Marjanur Rahman Bhuiyan | Computational Chemistry | Best Researcher Award

Incepta Pharmaceuticals Ltd, Bangladesh

👨‍🎓Profiles

🎓 Academic Journey

Mr. Marjanur Rahman Bhuiyan has built a strong academic foundation in pharmacy and biomedical sciences. He completed his Bachelor of Pharmacy (B. Pharm) from Noakhali Science and Technology University, Bangladesh, achieving an impressive CGPA of 3.73/4.00 (Transcript) and 3.86/4.00 (WES Transcript Evaluation). His commitment to continuous learning is evident from his participation in the Fall 2023 Cell Biology Course at Harvard University’s Lakshmi Mittal & Family South Asian Institute. Prior to this, he demonstrated academic excellence from an early stage, securing a GPA of 4.92/5.00 in his Higher Secondary School Certificate (HSC) from Cumilla Government College and a perfect GPA of 5.00/5.00 in his Secondary School Certificate (SSC) from Amratoli C. Ali High School.

🏢 Professional Experience

Mr. Bhuiyan has diverse and hands-on experience in the pharmaceutical and healthcare sectors, focusing on industrial pharmacy, hospital pharmacy, and disaster response management. Currently, he serves as a Scientific Officer in the Production Unit at Incepta Pharmaceuticals Ltd., Zirabo, Savar, Bangladesh. In this role, he is responsible for overseeing pharmaceutical manufacturing processes, ensuring quality assurance, and maintaining regulatory compliance to produce high-quality medicines.

His professional journey includes valuable internship experiences in both industrial and hospital pharmacy. As a Trainee Industrial Pharmacist at Aristopharma Ltd., Shampur Plant, Dhaka, in November 2023, he gained practical knowledge in pharmaceutical manufacturing, formulation development, and quality control while adhering to Good Manufacturing Practices (GMP) and industry regulations. Additionally, his internship as a Trainee Hospital Pharmacist at the 250 Bed General Hospital, Noakhali, from August to October 2023, provided him with firsthand experience in dispensing medications, patient counseling, and prescription verification, further enhancing his understanding of hospital pharmacy operations and clinical pharmacology.

Beyond the pharmaceutical sector, Mr. Bhuiyan has actively contributed to disaster response and humanitarian aid. As an Executive of the Unit Disaster Response Team (UDRT) at the Noakhali Red Crescent Unit from January 2019 to December 2022, he played a vital role in disaster management, emergency response, and public health initiatives. His involvement in relief distribution, first-aid training, and community health awareness programs showcases his commitment to social responsibility.

🔬 Research and Scientific Interests

Passionate about pharmaceutical sciences, drug development, and healthcare innovations, Mr. Bhuiyan's research interests span pharmaceutical production, quality assurance, biopharmaceutical research, clinical pharmacy, and molecular pharmacology. His education at Harvard University (Scienspur Program) has enriched his understanding of cell biology, equipping him with advanced knowledge applicable to drug development and disease treatment.

🌍 Impact and Contributions

Through his work in pharmaceutical production, hospital pharmacy, and humanitarian services, Mr. Bhuiyan has made significant contributions to healthcare standards. His ability to integrate academic knowledge with practical experience ensures the effective implementation of pharmaceutical advancements. His efforts in disaster response and healthcare advocacy further highlight his dedication to public well-being.

🚀 Future Aspirations

Looking ahead, Mr. Bhuiyan aspires to advance pharmaceutical research, develop innovative and safe medications, and contribute to global health initiatives. He plans to pursue higher studies in pharmaceutical sciences or biomedical research, aiming to enhance drug accessibility and affordability. Additionally, he intends to continue his humanitarian efforts by promoting health awareness and disaster preparedness. With his strong academic background, professional expertise, and passion for healthcare innovation, Mr. Bhuiyan is poised to become a leader in the pharmaceutical and healthcare sectors. 🚀

📖Notable Publications

Prediction of angiogenesis suppression by myricetin from Aeginetia indica via inhibiting VEGFR2 signaling pathway using computer-aided analysis
Authors: MR Bhuiyan, KS Ahmed, MS Reza, H Hossain, SMM Siam, S Nayan, ...
Journal: Heliyon
Year: 2025

Mechanisms of Castanopsis tribuloides targeting α-glucosidase for the management of type-2 diabetes: Experimental and computational approaches
Authors: T Hasan, SMM Siam, MR Bhuiyan, E Jahan, N Nahar, MS Sakib, ...
Journal: Process Biochemistry
Year: 2024

Report of In-Plant Training at ARISTOPHARMA LTD.
Authors: MR Bhuiyan
Journal: Noakhali Science and Technology University
Year: 2024

Report of Hospital Training At 250 Bedded General Hospital, Noakhali.
Authors: MR Bhuiyan
Journal: Noakhali Science and Technology University
Year: 2024

 

Jianlong Chai | Analytical Techniques | Young Scientist Award

Dr. Jianlong Chai | Analytical Techniques | Young Scientist Award

Institute of Modern Physics, Chinese Academy of Sciences, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Jianlong Chai’s academic journey is deeply rooted in the field of nuclear materials science, with a focus on high-performance ceramic composites for next-generation nuclear fission reactors. His expertise lies in understanding the complex interactions between ion beams and materials, particularly in fusion reactor environments. Through advanced material characterization techniques, he has investigated the synergistic effects of ion irradiation and plasma irradiation, paving the way for the development of radiation-resistant ceramic materials. His academic training and research experience at the Institute of Modern Physics, Chinese Academy of Sciences, have provided him with a solid foundation in experimental nuclear material science.

🏢 Professional Endeavors

As a Doctor & Research Assistant at the Institute of Modern Physics, Chinese Academy of Sciences, Dr. Chai has been actively engaged in cutting-edge research on the performance and durability of materials in extreme conditions. His work primarily focuses on developing and evaluating advanced ceramic composites, which are crucial for enhancing the structural integrity of nuclear reactors. In addition, he has contributed to national and international research initiatives, securing funding from prestigious scientific programs such as the National Natural Science Foundation of China and the National Key R&D Program of China. His collaborative research efforts have significantly advanced the understanding of fusion reactor wall materials under extreme conditions.

🔬 Contributions and Research Focus

Dr. Chai’s research has led to several groundbreaking innovations in nuclear materials science:

  • Successfully developed intergranular-strengthened and intragranular particle-toughened ceramic composites, enhancing their mechanical performance under irradiation.
  • First to observe ZrO₂ phase transformation using TEM imaging, contributing to the understanding of toughening mechanisms in triple-phase ceramic composites.
  • Refined indentation toughness evaluation methods, enabling precise assessment of the mechanical properties of multi-phase ceramics.
  • Conducted pioneering studies on the effects of ion irradiation, plasma interaction, and high-temperature displacement damage on W (tungsten) materials in fusion reactors, investigating dislocation loop size, density evolution, and nanohardness variations.

🌍 Impact and Influence

Dr. Chai’s research has had a significant impact on the development of advanced nuclear materials, particularly in the realm of fusion energy. His findings have contributed to the global scientific understanding of radiation effects on reactor materials, influencing both academic research and practical applications in nuclear reactor design. Through his published work and collaborative research, he has provided key insights into material performance under extreme irradiation conditions, addressing critical challenges in the nuclear energy sector.

📚 Academic Citations and Research Contributions

Dr. Chai has an impressive citation index of 12, reflecting the recognition and impact of his research within the scientific community. His contributions to high-performance ceramic composites and fusion reactor materials have been widely cited in leading scientific journals. Additionally, he has successfully secured multiple research grants, including:

  • National Natural Science Foundation of China (No. 12205349)
  • Gansu Youth Science and Technology Fund (No. 23JRRA652)
  • National Key R&D Program of China (No. 2022YFB3708500)

These projects highlight his ability to secure funding for high-impact research and his active role in national scientific initiatives.

⚙️ Technical Skills and Expertise

Dr. Chai is proficient in advanced material characterization and nuclear materials research techniques, including:

  • Transmission Electron Microscopy (TEM) imaging, crucial for studying microstructural changes in irradiated materials.
  • Ion irradiation studies, focusing on the effects of plasma irradiation on fusion reactor wall materials.
  • Mechanical property evaluation methods, including indentation toughness assessments for ceramic composites.
  • Nanohardness measurements to analyze radiation-induced material degradation.
  • High-temperature testing for assessing material durability under extreme conditions.

His expertise in experimental methodologies allows him to conduct high-precision studies on the behavior of nuclear materials.

📖 Teaching Experience and Mentorship

While Dr. Chai is primarily focused on research, his contributions extend to mentoring young scientists and researchers in the field of nuclear materials science. Through his involvement in scientific projects and experimental studies, he has guided students and junior researchers, helping them develop expertise in ion beam interactions, material analysis, and ceramic composite development. His hands-on mentorship ensures that the next generation of researchers is well-equipped with the knowledge and technical skills necessary for advancing nuclear materials science.

🚀 Legacy and Future Contributions

Dr. Chai is committed to pushing the boundaries of nuclear materials research, particularly in the development of radiation-resistant and high-performance ceramic materials. His future research will focus on:

  • Enhancing the toughness and stability of ceramic composites through novel strengthening mechanisms.
  • Exploring new multi-phase material systems to improve fusion reactor wall materials.
  • Advancing irradiation studies to better understand the synergistic effects of ion and plasma irradiation.
  • Contributing to large-scale research collaborations aimed at developing next-generation nuclear energy technologies.

With his strong research background, technical expertise, and innovative approach, Dr. Chai is poised to make significant contributions to the field of nuclear materials science, helping pave the way for safer and more efficient nuclear reactors.

📖Notable Publications

  • Structural damage and bubble evolution in SiC-ZrC composite irradiated with 500 keV He-ions at various temperatures
    Authors: Y. Zhu, L. Niu, J. Chai, C. Yao, Z. Wang
    Journal: Journal of the European Ceramic Society
    Year: 2025

  • Experimental investigation of microstructure and mechanical properties of β-SiC with various sintering additives supplemented by first-principles calculations
    Authors: B. Chen, L. Niu, J. Chai, X. Lu, Y. Zhu
    Journal: Ceramics International
    Year: 2025

  • Co-evolution of M23C6 precipitates and cavities in a boron-free Ni-based alloy GH3617 under high-temperature He ion irradiation: Effects on cavity swelling and mechanical properties
    Authors: P. Jin, L. Zhang, M. Cui, Z. Wang, T. Shen
    Journal: Materials Characterization
    Year: 2024

Thulya Chakkumpulakkal Puthan Veettil | Analytical Chemistry | Women Researcher Award

Dr. Thulya Chakkumpulakkal Puthan Veettil | Analytical Chemistry | Women Researcher Award

Nutrition Care, Australia

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Thulya Chakkumpulakkal Puthan Veettil began her academic journey with a B.Sc. in Physics (2009-2012) from the University of Calicut, India, where she developed a strong foundation in materials science. She then pursued an M.Tech in Materials Science and Technology with a specialization in Nanotechnology (2013-2016) at the University of Mysore, India, securing an impressive GPA of 9.00/10.00. Her passion for advanced materials, point-of-care diagnostics, and biomedical applications led her to the Monash–Bath Global PhD Programme (2019-2024). During her Ph.D. at Monash University, Australia, and the University of Bath, UK, she conducted extensive research in disease diagnostics, microfluidic devices, antimicrobial resistance, biomaterials, and regenerative medicine.

🏛️ Professional Endeavors

Dr. Thulya has amassed significant experience in academia, research, and industry. Currently, she is serving as a Senior Quality Control Chemist at Nutrition Care Pharmaceuticals, Victoria, Australia (September 2024 – Present), where she plays a crucial role in ensuring pharmaceutical product quality and safety. Alongside her industry experience, she has an extensive teaching background as a Teaching Associate at Monash University (2021-2024), mentoring students in first-year to final-year undergraduate chemistry courses. She has also contributed to pharmacy education at the University of Bath, UK (2023-2024) and has taught master's courses in Materials Science and Engineering at Monash University. Her academic contributions are complemented by her role as a Programme Officer – Scientist B (2016-2018) at the Vikram A. Sarabhai Community Science Centre (VASCSC), India, where she was actively involved in STEM education and scientific research projects.

🔬 Research Focus and Contributions

Dr. Thulya’s research revolves around point-of-care disease diagnostics, antimicrobial resistance, biomaterials, regenerative medicine, and Process Analytical Technology (PAT). She has significantly contributed to the development of microfluidic point-of-care devices for early and precise disease detection. Her expertise in chemometrics and machine learning has enhanced diagnostic accuracy, making disease detection more efficient. She has also conducted extensive research on antimicrobial resistance (AMR) and its public health implications, contributing valuable insights into combatting drug-resistant pathogens. Additionally, her work in biomaterials and regenerative medicine has facilitated advancements in tissue engineering and drug delivery systems. Her research expertise extends to vibrational spectroscopic techniques such as Infrared (IR), Raman, UV-Vis-NIR, and Atomic Force Microscopy (AFM), which she employs for material characterization and quality control in pharmaceutical and biomedical applications.

🌍 Impact and Influence

Dr. Thulya’s research holds significant global relevance in healthcare, materials science, and pharmaceuticals. Her work in point-of-care diagnostics and antimicrobial resistance research is crucial in the fight against drug-resistant infections. By developing microfluidic devices and novel biomaterials, she is helping advance personalized medicine and regenerative therapies. Her expertise in Process Analytical Technology (PAT) methods ensures high-quality control standards in pharmaceutical manufacturing, impacting both industrial and clinical applications.

📈 Academic Citations & Recognition

As a dedicated researcher, Dr. Thulya has contributed to several peer-reviewed journal articles, book chapters, and industry reports, showcasing her commitment to advancing scientific knowledge. Her work has gained recognition in materials science, biomedical engineering, and pharmaceutical research, further solidifying her reputation as a pioneering scientist in her field.

🛠️ Technical Skills

Dr. Thulya possesses a comprehensive technical skill set, making her a versatile scientist in pharmaceutical, biomedical, and materials science research. Her expertise includes chemometrics and machine learning for data analysis, microfluidic device development for disease diagnostics, and advanced spectroscopy techniques such as Infrared (IR), Raman, UV-Vis-NIR, and AFM for material characterization. She is also skilled in Process Analytical Technology (PAT), quality control, and pharmaceutical product evaluation, ensuring compliance with industry standards.

📚 Teaching & Mentorship

With her strong academic background, Dr. Thulya has played a pivotal role as a Teaching Associate at Monash University and the University of Bath. She has mentored students at various levels, from undergraduate chemistry courses to final-year pharmacy and master's programs in materials science and engineering. Her interdisciplinary expertise allows her to provide valuable insights to students in chemistry, materials science, biomedical engineering, and pharmaceuticals. Her dedication to teaching and mentorship has contributed to the academic growth of many aspiring scientists and industry professionals.

🌟 Legacy and Future Contributions

Dr. Thulya Chakkumpulakkal Puthan Veettil continues to drive innovation in healthcare, pharmaceuticals, and materials science. Her contributions to point-of-care diagnostics, antimicrobial resistance research, biomaterials, and regenerative medicine will pave the way for new treatments, medical technologies, and quality control advancements. As she continues her journey as a Senior Quality Control Chemist in Australia’s pharmaceutical sector, she will play a key role in enhancing healthcare solutions and ensuring the safety and efficacy of medical products. Her passion for scientific discovery and translational research will undoubtedly leave a lasting impact on both academia and industry.

📖Notable Publications

  1. Evolution of vibrational biospectroscopy: multimodal techniques and miniaturisation supported by machine learning
    Authors: Mclean A., Veettil T.C.P., Giergiel M., Wood B.R.
    Journal: Vibrational Spectroscopy
    Year: 2024

  2. Revolutionising Health Science: A Historical and Future Perspective on Multimodal, Miniaturisation, and Machine Learning in Biospectroscopy
    Authors: Aaron McLean, Thulya Chakkumpulakkal Puthan Veettil, Magdalena Giergiel, Bayden R. Wood
    Journal: Preprint
    Year: 2024

  3. A Multimodal Spectroscopic Approach Combining Mid-infrared and Near-infrared for Discriminating Gram-positive and Gram-negative Bacteria
    Authors: Thulya Chakkumpulakkal Puthan Veettil, Kamila Kochan, Galain C. Williams, Kimberley Bourke, Xenia Kostoulias, Anton Y. Peleg, Dena Lyras, Paul A. De Bank, David Perez-Guaita, Bayden R. Wood
    Journal: Analytical Chemistry
    Year: 2024

  4. Illuminating Malaria: Spectroscopy’s Vital Role in Diagnosis and Research
    Authors: Bayden R. Wood, John A. Adegoke, Thulya Chakkumpulakkal Puthan Veettil, Ankit Dodla, Keith Dias, Neha Mehlawat, Callum Gassner, Victoria Stock, Sarika Joshi, Magdalena Giergiel et al.
    Journal: Spectroscopy Journal
    Year: 2024

  5. Ultrafast and Ultrasensitive Bacterial Detection in Biofluids: Leveraging Resazurin as a Visible and Fluorescent Spectroscopic Marker
    Authors: Neha Mehlawat, Thulya Chakkumpulakkal Puthan Veettil, Rosemary Sharpin, Bayden R. Wood, Tuncay Alan
    Journal: Analytical Chemistry
    Year: 2024

 

 

4o

Mary Higby Schweitzer | Molecular Biology | Best Researcher Award

Prof. Mary Higby Schweitzer | Molecular Biology | Best Researcher Award

North Carolina State University, United States

👨‍🎓Profiles

🏛️ Early Academic Pursuits

Mary Higby Schweitzer’s academic journey began with a B.S. in Communicative Disorders from Utah State University in 1977. However, her passion for science and education led her to pursue a Certificate in Secondary Education with a focus on Broadfield Science at Montana State University in 1988. Her growing interest in paleontology and biology propelled her towards a Ph.D. in Biology from Montana State University in 1995, where she began her groundbreaking research into biomolecules. This phase of her academic life set the foundation for her future contributions to science.

🔬 Professional Endeavors

Dr. Schweitzer’s professional career has been marked by a steady progression through prestigious academic and research institutions. She has been a Professor in the Department of Biological Sciences at North Carolina State University since 2015 and has served as a Visiting Professor at Lund University, Sweden, since 2014. In addition, she has held the role of Research Associate at the Museum of the Rockies since 2018, where she continues to collaborate on vertebrate paleontology studies. Prior to this, she worked in various capacities at Montana State University and North Carolina State University, transitioning from an assistant professor to a leading faculty member in the fields of Marine, Earth, and Atmospheric Sciences. Her long-standing association with the North Carolina State Museum of Natural Sciences as a Research Curator of Vertebrate Paleontology since 2003 reflects her dedication to both research and public science communication.

🏆 Contributions and Research Focus

Dr. Schweitzer is internationally recognized for her groundbreaking discovery of soft tissues, proteins, and potential DNA remnants in fossilized dinosaur bones. This finding challenged traditional assumptions about fossilization and opened up new possibilities for studying ancient biomolecules. Her research has demonstrated that biomolecules such as collagen proteins can persist for millions of years, providing direct biochemical evidence of evolutionary links between dinosaurs and modern birds. Her work in molecular paleontology, vertebrate taphonomy, and protein preservation has not only expanded our understanding of how biological materials endure over time but has also introduced new methodologies for studying ancient life at the molecular level.

🌍 Impact and Influence

Dr. Schweitzer’s work has significantly influenced paleontology, evolutionary biology, andbiomolecules. Her research has been pivotal in demonstrating that organic materials can survive fossilization, reshaping our understanding of ancient life and its preservation. By uncovering biochemical links between extinct species and their modern relatives, her discoveries have provided strong molecular evidence supporting evolutionary theory. Beyond her own research, she has played a key role in shaping the scientific landscape as a reviewer for high-impact journals such as Nature, Science, Proceedings of the National Academy of Sciences, and PLOS Biology. Her contributions have ensured that new discoveries in the field maintain the highest standards of scientific rigor.

📚 Academic Citations and Recognition

With an extensive portfolio of highly cited papers, Dr. Schweitzer’s research continues to be a cornerstone of molecular paleontology. Her honorary doctorate from Lund University in Sweden is a testament to her international recognition and influence in the field. Her publications have been widely referenced by paleontologists, biologists, and geochemists, further highlighting the multidisciplinary impact of her work.

🛠️ Technical Skills

Dr. Schweitzer possesses expertise in a wide range of advanced scientific techniques, including immunohistochemistry, paleohistology, microscopy, and geochemical analysis. Her ability to extract and analyze ancient proteins and biomolecules has been instrumental in confirming the preservation of soft tissues in fossils. Her technical skills also extend to spectroscopy, molecular imaging, and biochemical analysis, allowing her to identify and characterize ancient biological materials with high precision.

🎓 Teaching Experience and Mentorship

A dedicated educator and mentor, Dr. Schweitzer has trained and guided numerous graduate and Ph.D. students throughout her career. She has held teaching positions at Montana State University and North Carolina State University, where she has inspired students to explore the intersections of biology, paleontology, and molecular science. Through her mentorship, she has played a vital role in fostering the next generation of researchers who continue to push the boundaries of scientific discovery.

🌟 Legacy and Future Contributions

Dr. Schweitzer’s revolutionary research has reshaped the field of paleontology and will continue to influence scientific inquiry for years to come. Her discoveries have bridged the gap between biology and paleontology, offering new insights into how ancient life is preserved at the molecular level. Moving forward, her research could unlock even more secrets about extinct species, further deepening our understanding of Earth’s biological history. Her commitment to interdisciplinary research and innovative methodologies ensures that her legacy will endure, paving the way for future scientific breakthroughs in fossil preservation and molecular evolution. 🚀🔬

📖Notable Publications

Melanosomes and ancient coloration re-examined: A response to Vinther 2015

Authors: Mary Higby Schweitzer, Johan Lindgren, Alison E. Moyer

Journal: BioEssays

Year: 2015

Interpreting melanin-based coloration through deep time: A critical review

Authors: Johan Lindgren, Alison E. Moyer, Mary Higby Schweitzer, Bo Pagh Schultz, Benjamin P. Kear

Journal: Proceedings of the Royal Society B: Biological Sciences

Year: 2015

Biologically and diagenetically derived peptide modifications in moa collagens

Authors: Timothy P. Cleland, Elena R. Schroeter, Mary Higby Schweitzer

Journal: Proceedings of the Royal Society B: Biological Sciences

Year: 2015

A pelomedusoid turtle from the Paleocene-Eocene of Colombia exhibiting preservation of blood vessels and osteocytes

Authors: Edwin A. Cadena, Mary Higby Schweitzer

Journal: Journal of Herpetology

Year: 2014

Synchrotron chemical and structural analysis of Tyrannosaurus rex blood vessels: The contribution of collagen hypercrosslinking to tissue longevity

Authors: Elizabeth M. Boatman, Mark B. Goodwin, Hoi Ying N. Holman, Ronald Gronsky, John R. Horner

Journal: Microscopy and Microanalysis

Year: 2014

Marium Arif | Analytical Techniques | Best Researcher Award

Dr. Marium Arif | Analytical Techniques | Best Researcher Award

Sehatkahani, Pakistan

👨‍🎓Profiles

🏥 Early Academic Pursuits

Dr. Marium Arif began her academic journey with an MBBS from Sir Syed Medical College, where she developed a strong foundation in clinical medicine. Her passion for education and virtual healthcare led her to pursue a Master of Health Professions Education (MHPE) from Riphah International University. This specialized training provided her with the expertise to integrate medical education with modern technological advancements, preparing her for a career in telehealth and digital learning.

💼 Professional Endeavors

As a Telehealth Physician at Sehatkahani, Dr. Marium Arif has been instrumental in providing virtual healthcare solutions, bridging the gap between patients and quality medical services. Her role extends beyond clinical care into medical education, where she actively contributes to the design and implementation of online continuing medical education (CME) programs. Her experience in telemedicine allows her to train healthcare professionals in utilizing digital platforms effectively, ensuring accessibility and efficiency in remote healthcare delivery.

🔬 Contributions and Research Focus

Dr. Marium Arif's research primarily revolves around medical education and telehealth learning environments. She has led the development and validation of the Telehealth Educational Environment Measure (THEEM), a tool designed to assess telehealth education quality. Her work in digital instructional strategies has optimized physician engagement in virtual learning platforms, making medical education more accessible and evidence-based.

🌍 Impact and Influence

Her contributions to telehealth-based CME programs and educational assessment tools have had a significant impact on healthcare education. By implementing data-driven instructional designs and evaluating the effectiveness of digital learning strategies, she has transformed the way medical professionals engage in virtual training. Her research, published in BMC Medical Education, supports global efforts to enhance remote learning environments in healthcare.

📖 Academic Citations and Recognitions

Dr. Marium Arif's work in medical pedagogy and digital learning environments has gained recognition within the research community. Her publication in BMC Medical Education stands as a testament to her commitment to advancing telehealth education. With ongoing research in telehealth learning effectiveness, she continues to contribute valuable insights into digital curriculum development.

🛠️ Technical Skills

Dr. Marium Arif possesses a diverse set of technical and research skills, including:

  • Quantitative and qualitative data analysis
  • Curriculum development for remote medical training
  • Instructional design for virtual education
  • Medical educational assessment methodologies
  • Leadership in digital healthcare initiatives

👩‍🏫 Teaching Experience

As a medical educator, Dr. Marium Arif has trained numerous healthcare professionals in the field of telehealth and online medical education. Her expertise in designing virtual learning environments has allowed her to mentor physicians, ensuring their adaptability to digital healthcare platforms. She actively participates in workshops and educational research, contributing to the professional development of medical practitioners.

🏆 Legacy and Future Contributions

Dr. Marium Arif’s legacy lies in her pioneering contributions to telehealth education. With the successful validation of THEEM and her ongoing research in digital medical pedagogy, she aims to further refine virtual healthcare training methods. Her future work will focus on enhancing telehealth engagement metrics, developing new digital learning frameworks, and expanding her research collaborations to strengthen telehealth education globally.

 

 

Eugene Mananga | Nuclear Magnetic Resonance | Best Researcher Award 1739

Prof. Dr. Eugene Mananga | Nuclear Magnetic Resonance (NMR) | Best Researcher Award

The City University of New York United States

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Eugene Stéphane Mananga began his academic journey in Cameroon, where he demonstrated exceptional talent in physics and mathematics. He completed his B.Sc. in Physics/Chemistry from the University of Yaoundé in 1990, ranking among the top 5% of his class. He continued his studies, earning an M.Sc. in Physics (1991) and a DEA in Physics (1992), securing first rank. His academic curiosity led him to pursue a Doctorate in Mechanics - Solitons (1992-94), though he did not defend his thesis. His academic ambitions took him to The City University of New York (CUNY), where he earned multiple advanced degrees, including an M.A. in Physics (2002), an M. Phil. in Physics (2004), and a Ph.D. in Physics (2005) under the mentorship of Distinguished Professor Steven G. Greenbaum. His doctoral research set the stage for groundbreaking work in nuclear magnetic resonance (NMR) and condensed matter physics.

🏛️ Professional Endeavors

Dr. Mananga has held prestigious positions at Harvard University, MIT, CUNY, New York University (NYU), and Brookhaven National Laboratory, contributing significantly to medical physics, solid-state NMR, and nuclear medicine. He has been a:

Postdoctoral Fellow at Harvard Medical School (2011-14) and the Atomic Energy Commission (CEA), France (2009-11), working on neuroimaging and nuclear medicine.

Research Fellow at Massachusetts General Hospital and National High Magnetic Field Lab, specializing in high-field NMR applications.

NSF/AGEP-MAGNET Chancellor Fellow at CUNY (2005-07), demonstrating excellence in research and education.

Dr. Mananga’s interdisciplinary expertise spans across physics, engineering, medical sciences, and sustainability, reflecting his broad academic interests and impact.

🏆 Contributions and Research Focus

Dr. Mananga’s research has significantly advanced solid-state nuclear magnetic resonance (NMR), quantum physics, and medical imaging. He is best known for his work on the Floquet-Magnus expansion, a mathematical technique widely applied in NMR spectroscopy and condensed matter physics. His key contributions include:

Solid-State NMR Spectroscopy: His work on dipolar recoupling techniques has improved signal processing in high-field NMR.

Quantum Physics & Magnonics: He has extended the Floquet-Magnus expansion theory, enabling new applications in quantum mechanics and spintronics.

Medical Imaging & Nuclear Medicine: His research at Harvard Medical School and Massachusetts General Hospital has contributed to better diagnostic imaging techniques in nuclear medicine.

Sustainability & Materials Science: His recent studies at Harvard University (HES, 2022) focus on sustainable materials and their applications in energy storage and green technology.

His ability to bridge physics, engineering, and medicine highlights his interdisciplinary impact on modern science.

🌍 Impact and Influence

Dr. Mananga’s research has led to pioneering advancements in NMR spectroscopy, quantum physics, and medical imaging. His work has been widely cited, influencing scientists, engineers, and medical researchers across disciplines. Some key aspects of his influence include:

Academic Citations & Recognition: His publications, particularly on the Floquet-Magnus expansion and solid-state NMR, have been cited hundreds of times in prestigious journals.

Mentorship & Collaboration: He has collaborated with leading institutions, including Harvard, MIT, CUNY, NYU, and Brookhaven National Laboratory, mentoring students and researchers worldwide.

Technical Contributions: His research has improved NMR techniques, quantum computing principles, and sustainable material applications.

Dr. Mananga’s contributions continue to shape scientific advancements in multiple fields.

🛠️ Technical Skills

Dr. Mananga possesses expertise in advanced scientific techniques, including:

Nuclear Magnetic Resonance (NMR) Spectroscopy

Quantum Physics & Spintronics

Medical Imaging & Nuclear Medicine

Biostatistics & Applied Mathematics

Sustainable Materials & Green Technology

His strong computational and analytical skills allow him to solve complex problems across physics, chemistry, and medical sciences.

📚 Teaching Experience

Dr. Mananga has a strong background in academia, having taught and mentored students at: City University of New York (CUNY), New York University (NYU), Harvard Medical School. His dedication to education has inspired numerous students to pursue careers in physics, engineering, and medical sciences.

🚀 Legacy and Future Contributions

Dr. Mananga’s legacy lies in his ability to integrate physics, medical imaging, and sustainable materials science. His future contributions are expected to:

Advance quantum computing and solid-state NMR spectroscopy

Enhance nuclear medicine techniques for better diagnostics

Promote sustainability in energy storage and materials science

Mentor the next generation of scientists and engineers

His pioneering research and interdisciplinary approach ensure that his work will continue to impact science, technology, and medicine for decades.

📖Notable Publications

Introduction of the Floquet-Magnus expansion in solid-state nuclear magnetic resonance spectroscopy
Authors: ES Mananga, T Charpentier
Journal: The Journal of Chemical Physics, 2011

Facile synthesis of the Basolite F300-like nanoscale Fe-BTC framework and its lithium storage properties
Authors: X Hu, X Lou, C Li, Y Ning, Y Liao, Q Chen, ES Mananga, M Shen, B Hu
Journal: RSC Advances, 2016

High pressure NMR study of water self-diffusion in NAFION-117 membrane
Authors: JRP Jayakody, PE Stallworth, ES Mananga, J Farrington-Zapata
Journal: The Journal of Physical Chemistry B, 2004

On the Floquet–Magnus expansion: Applications in solid-state nuclear magnetic resonance and physics
Authors: ES Mananga, T Charpentier
Journal: Physics Reports, 2016

NMR investigation of water and methanol transport in sulfonated polyarylenethioethersulfones for fuel cell applications
Authors: JRP Jayakody, A Khalfan, ES Mananga, SG Greenbaum, TD Dang
Journal: Journal of Power Sources, 2006

Finite pulse width artifact suppression in spin-1 quadrupolar echo spectra by phase cycling
Authors: ES Mananga, YS Rumala, GS Boutis
Journal: Journal of Magnetic Resonance, 2006

Efficient theory of dipolar recoupling in solid-state nuclear magnetic resonance of rotating solids using Floquet–Magnus expansion: Application on BABA and C7 radiofrequency
Authors: ES Mananga, AE Reid, T Charpentier
Journal: Solid State Nuclear Magnetic Resonance, 2012