Liu Wenju | Catalysis | Best Researcher Award

Prof Liu Wenju | Catalysis | Best Researcher Award 

Henan University of Technology , china 

👨‍🎓Profiles

🎓 Early Academic Pursuits

Professor Liu Wenju embarked on his academic journey with a strong foundation in chemistry. He earned his B.Sc. in Applied Chemistry from Zhengzhou University in 2003, followed by an M.Sc. in Industrial Catalysis at the same institution, where he explored the catalytic oxidation of cooking oil fumes in microwave fields. His passion for advanced separation techniques and materials led him to pursue a Ph.D. in Chemical Engineering at Tianjin University, where he completed a groundbreaking thesis on the crystallization and polymorphism of Carbamazepine, a critical pharmaceutical compound. These early academic milestones laid the groundwork for a career dedicated to innovation in crystallization science and green chemical processes.

🧪 Professional Endeavors

Prof. Liu’s professional path is marked by impactful roles across academia and research institutions. He has served as a postdoctoral researcher at Tianjin University, leading pharmaceutical crystallization studies, and expanded his global perspective as a visiting scholar at the University of Cambridge, where he studied mechanochemical modifications of Salbutamol Sulfate. His role as a principal investigator on multiple funded research projects reflects his leadership in the field, especially within the National Natural Science Foundation of China (NNSFC).

🔬 Contributions and Research Focus

Prof. Liu has cultivated a distinguished research profile centered on chemical separation and crystallization, particularly within the pharmaceutical domain. His expertise includes industrial crystallization, polymorphism control, and green catalysis. Over the years, he has advanced critical insights into amorphization, polymorphic membrane crystallization, and impurity effects on crystal growth, aligning with sustainable chemistry goals. His research extends to eco-friendly material development, showcasing a commitment to environmentally conscious innovation.

🌍 Impact and Influence

The scope of Prof. Liu's research has significantly influenced pharmaceutical manufacturing practices and the development of greener catalytic systems. His work on crystal engineering and nucleation-growth dynamics has contributed to both academic understanding and practical applications. The international recognition gained through collaborations, such as with the University of Cambridge, highlights his role in bridging global research efforts and fostering knowledge exchange in the field of chemical engineering.

📚 Academic Citations & Scholarly Recognition

While specific citation metrics are not included, Prof. Liu's funded projects, especially by the NNSFC and other national and international bodies, signify his academic credibility and research influence. His work on pharmaceutical polymorphs, crystallization mechanisms, and green catalytic technologies continues to inspire new lines of inquiry and collaboration in chemical engineering research.

🛠️ Technical Skills

Prof. Liu brings advanced technical proficiency to his research. His core competencies include:

  • Pharmaceutical crystal engineering

  • Polymorph screening and control

  • Green catalytic process design
    He is adept with cutting-edge analytical tools such as:

  • PXRD (Powder X-ray Diffraction)

  • DSC (Differential Scanning Calorimetry)

  • SEM-EDS (Scanning Electron Microscopy – Energy Dispersive Spectroscopy)

  • HPLC-MS (High-Performance Liquid Chromatography – Mass Spectrometry)

  • In-situ Raman spectroscopy

👨‍🏫 Teaching & Mentoring Excellence

Although specific teaching roles are not detailed, Prof. Liu’s deep research involvement at Henan University of Technology suggests active engagement in mentoring graduate students and guiding thesis research, especially in crystallization and catalysis. His interdisciplinary knowledge positions him as an effective educator in both theoretical and applied chemistry fields.

🌱 Legacy and Future Contributions

Prof. Liu's early research into CO removal and microwave-assisted oxidation systems highlights a lifelong dedication to environmental sustainability. As he continues his academic journey, his future contributions are likely to deepen in the domains of eco-friendly crystallization technologies and pharmaceutical manufacturing innovations. His legacy will undoubtedly be one of bridging scientific rigor with practical environmental applications, shaping the next generation of chemical engineers.

📖Notable Publications

Title: Zr-doped CoZrOx solid solution catalysts with enhanced oxygen vacancy for trace ethylene removal under humid conditions
Authors: Zhang Qiaofei, Zhang Liwen, Liu Lei, Zhu Chunshan, Liu Wenju
Journal: Applied Surface Science
Year: 2025
Citations: 0

Title: Preparation of CunCo1Ox catalysts by co-precipitation method for catalytic oxidation of toluene
Authors: Hu Yanshao, Pan Da, Zhang Zheng, Dang Dan, Liu Wenju
Journal: Journal of Molecular Structure
Year: 2025
Citations: 0

Title: Multifunctional self-cleaning Zr-Porphyrin@PG membrane for wastewater treatment
Authors: Liu Wenju, Hou Yafang, Zhao Peixia, Zhang Yatao, D'Agostino Carmine
Journal: Applied Surface Science
Year: 2025
Citations: 0

Title: Equilibrium Solubility of Loxoprofen in 14 Monosolvents: Determination, Correlation, and Hansen Solubility Parameter
Authors: Shen Yanmin, Pan Shuting, Gao Yuqi, Wang Han, Liu Wenju
Journal: Journal of Chemical and Engineering Data
Year: 2025
Citations: 0

Reza Ahmadi | Nanotechnology | Material Chemistry Award

Mr. Reza Ahmadi | Nanotechnology | Material Chemistry Award

Universitat Politècnica de Catalunya, Spain

👨‍🎓Profiles

🎓 Early Academic Pursuits

Mr. Reza Ahmadi’s academic journey began with a High School Diploma in Mathematics and Physics from Nabi Akram High School in Iran, where he laid a strong foundation in analytical and scientific thinking. He pursued a Bachelor’s degree in Materials Engineering at Malayer University (2013–2017), achieving a commendable GPA of 16.8/20 in his final year. Demonstrating a deep interest in materials science, he secured a top 30 national rank among over 50,000 candidates in the highly competitive Iranian Nationwide Matriculation Exam (Konkoor) in 2017. This exceptional performance led him to the Sharif University of Technology, one of Iran’s top institutions, where he completed his Master’s in Materials Engineering with a specialization in Corrosion and Materials Protection (GPA: 15.34/20). His academic excellence and persistent curiosity paved the way for his current pursuit of a PhD in Chemical Engineering at the Universitat Politècnica de Catalunya (UPC), Spain, starting in 2024, under the Molecular and Industrial Biotechnology (GBMI) Group.

🧪 Professional Endeavors

Reza’s academic and research journey reflects a seamless blend of theory and application. His Master’s research focused on advanced corrosion protection, while his doctoral studies at UPC emphasize biomaterials innovation, integrating molecular biology, nanotechnology, and chemical engineering. Throughout his academic career, Reza has engaged in hands-on lab work, interdisciplinary collaborations, and advanced materials characterization—preparing him to tackle challenges at the interface of materials science, healthcare, and biotechnology.

🔬 Contributions and Research Focus

Mr. Ahmadi’s research is centered around the design, synthesis, and characterization of biomaterials with potential applications in antibacterial surfaces, chronic wound treatment, drug delivery, and bone regeneration implants. He has delved into the development of nanomaterials for antibacterial applications and explored the intricate interactions between cells and biomaterials through in vitro studies and cell culture. His comprehensive approach spans from fundamental material design to biological evaluation, making his contributions highly relevant to biomedical engineering and translational medicine.

🌍 Impact and Influence

Reza’s interdisciplinary work bridges the gap between engineering and medicine. His innovative strategies in hydrogel-based wound dressings, cancer-targeted drug delivery systems, and biocompatible implants not only contribute to academic advancements but also have promising societal impact. His technical understanding and lab experience allow him to contribute to real-world healthcare solutions, emphasizing safety, efficiency, and biocompatibility.

📚 Academic Citations and Recognition

While currently in the early stages of his PhD, Reza’s past academic accomplishments—such as ranking 30th nationally in the Iranian engineering entrance exam—demonstrate his consistent excellence and potential for significant contributions. As his doctoral research progresses, his work is expected to result in high-quality journal publications, conference presentations, and international collaborations, increasing his academic visibility and citation record.

🛠️ Technical Expertise

Reza has developed strong laboratory and instrumentation skills essential to his research. He is proficient in X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), FTIR spectroscopy, Electrochemical Impedance Spectroscopy (EIS), Polarization testing using Autolab, pull-off adhesion testing for bio-coatings, and basic AAS/ICP techniques. His software proficiency includes Xpert HighScore for XRD analysis, Nova for EIS and corrosion data, OriginPro for data visualization, Clemex for microscope image analysis, SolidWorks for CAD design, and standard Microsoft Office tools for documentation and presentation.

👨‍🏫 Teaching and Mentoring Experience

While primarily focused on research, Mr. Ahmadi has contributed to academic settings through peer mentoring, lab support, and collaborative student-led projects during his Master’s and early PhD years. His clear communication skills, combined with a passion for applied science, equip him well for future roles in higher education teaching, seminar delivery, and student research supervision.

🚀 Legacy and Future Contributions

Looking ahead, Mr. Reza Ahmadi is committed to advancing the field of biomedical materials and nanotechnology. His long-term vision includes contributing to biomedical device innovation, sustainable material development, and interdisciplinary scientific collaboration. Through research, mentorship, and applied engineering, he aspires to bridge scientific knowledge with patient care, leaving a lasting impact on both academic and healthcare landscapes.

📖Notable Publications

In vitro study: Bond strength, electrochemical and biocompatibility evaluations of TiO₂/Al₂O₃ reinforced hydroxyapatite sol–gel coatings on 316L SS
Authors: R. Ahmadi, A. Afshar
Journal: Surface and Coatings Technology, Vol. 405, Article 126594
Year: 2021

In vitro study: Synthesis and evaluation of Fe₃O₄/CQD magnetic/fluorescent nanocomposites for targeted drug delivery, MRI, and cancer cell labeling
Authors: R. Fattahi Nafchi, R. Ahmadi, M. Heydari, M.R. Rahimipour, M.J. Molaei, et al.
Journal: Langmuir, Vol. 38(12), pp. 3804–3816
Year: 2022

In vitro study: Evaluation of mechanical behavior, corrosion resistance, antibacterial properties and biocompatibility of HAp/TiO₂/Ag coating on Ti6Al4V/TiO₂ substrate
Authors: R. Ahmadi, N. Asadpourchallou, B.K. Kaleji
Journal: Surfaces and Interfaces, Vol. 24, Article 101072
Year: 2021

Development of HAp/GO/Ag coating on 316 LVM implant for medical applications
Authors: R. Ahmadi, S. Izanloo
Journal: Journal of the Mechanical Behavior of Biomedical Materials, Vol. 126, Article 105075
Year: 2022

Yong Jyun Wang | Materials Chemistry | Best Researcher Award

Mr. Yong Jyun Wang | Materials Chemistry | Best Researcher Award

National Tsing Hua University, Taiwan

👨‍🎓Profiles

🎓 Early Academic Pursuits

Mr. Yong Jyun Wang embarked on his academic journey in the field of Materials Science, and he is currently a Ph.D. candidate at the Department of Materials Science and Engineering, National Tsing Hua University, Taiwan, expecting to graduate in 2025. His early academic foundation laid the groundwork for his deep engagement in the synthesis and property analysis of advanced functional materials, particularly focusing on oxide thin films.

💼 Professional Endeavors

Throughout his doctoral studies, Mr. Wang has actively participated in significant national research projects, including the MOST-113-2639-M-007-001–ASP, which centers on the development and future application of high-entropy epitaxial films. He has gained valuable experience in cutting-edge material fabrication techniques, with an emphasis on physical vapor deposition (PVD). His professional training is complemented by collaborative efforts within interdisciplinary research teams aiming to push the boundaries of electronic material design.

🔬 Contributions and Research Focus

Mr. Wang’s primary research has revolved around two-dimensional bismuth oxychalcogenides, particularly Bi₂O₂Se, targeting its integration into next-generation electronic and memory devices. Through compositional engineering and non-volatile modulation techniques, he has pioneered the development of p-type Bi₂O₂Se with high mobility, making it feasible for integration with its native n-type counterpart. This paves the way for complementary circuits, enhancing the material’s potential in versatile electronic systems. Furthermore, his innovative approach to non-volatile control enables memory functionalities, expanding the application horizon of Bi₂O₂Se in advanced backend electronics.

🌍 Impact and Influence

Despite being at an early stage in his career, Mr. Wang has already made notable contributions to the materials science community. His work has been featured in prestigious journals such as Nature Communications and Advanced Materials, indicating strong recognition from the academic community. His insights into high-mobility semiconducting materials have opened new research avenues for low-power electronics and neuromorphic computing.

🛠️ Technical Skills

Mr. Wang is proficient in advanced thin-film fabrication methods, especially physical vapor deposition, and skilled in material characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and electrical transport measurements. His technical versatility allows for comprehensive investigations into both structural and electronic properties of novel materials.

👨‍🏫 Teaching Experience

While pursuing his Ph.D., Mr. Wang has actively mentored undergraduate and junior graduate students, assisting them in lab training and project supervision. His role as a peer mentor has not only contributed to the academic growth of his colleagues but also strengthened his capabilities in scientific communication and leadership.

🌱 Legacy and Future Contributions

Mr. Wang’s work on Bi₂O₂Se has established a strong foundation for complementary logic and memory device platforms, essential for the advancement of low-dimensional nanoelectronics. Looking ahead, he aspires to continue his research into functional oxide materials, explore heterogeneous integration, and contribute to the development of energy-efficient and intelligent device systems. His vision includes bridging fundamental material science with practical applications in flexible electronics, smart sensors, and neuromorphic systems.

📖Notable Publications

ZrO₂-HfO₂ Superlattice Ferroelectric Capacitors With Optimized Annealing to Achieve Extremely High Polarization Stability
Authors: Y.K. Liang, W.L. Li, Y.J. Wang, L.C. Peng, C.C. Lu, H.Y. Huang, S.H. Yeong, …
Journal: IEEE Electron Device Letters
Year: 2022

Electric-field control of the nucleation and motion of isolated three-fold polar vertices
Authors: M. Li, T. Yang, P. Chen, Y. Wang, R. Zhu, X. Li, R. Shi, H.J. Liu, Y.L. Huang, …
Journal: Nature Communications
Year: 2022

High entropy nonlinear dielectrics with superior thermally stable performance
Authors: Y.J. Wang, H.C. Lai, Y.A. Chen, R. Huang, T. Hsin, H.J. Liu, R. Zhu, P. Gao, C. Li, …
Journal: Advanced Materials
Year: 2023

Flexible magnetoelectric complex oxide heterostructures on muscovite for proximity sensor
Authors: Y.J. Wang, J.W. Chen, Y.H. Lai, P.W. Shao, Y. Bitla, Y.C. Chen, Y.H. Chu
Journal: npj Flexible Electronics
Year: 2023

Quasi-static modulation of multiferroic properties in flexible magnetoelectric Cr₂O₃/muscovite heteroepitaxy
Authors: Y.H. Lai, P.W. Shao, C.Y. Kuo, C.E. Liu, Z. Hu, C. Luo, K. Chen, F. Radu, …
Journal: Acta Materialia
Year: 2023

Isela Rojas | Polymer Chemistry | Best Researcher Award -1862

Dr. Isela Rojas | Polymer Chemistry | Best Researcher Award

Universidad Autónoma de Querétaro, Mexico

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Isela Rojas embarked on her academic journey at the Autonomous University of Querétaro (UAQ-FC), Mexico, where she earned her professional title and MSc. degree. She further advanced her studies by obtaining a Ph.D. degree from the National Autonomous University of Mexico (UNAM), Faculty of Chemistry. Her educational foundation in chemistry and nutrition laid the groundwork for her future contributions to research and academia.

👩‍🏫 Professional Endeavors

Since 1991, Dr. Rojas has been dedicated to training undergraduate and postgraduate students in Nutrition, Food Chemistry, and Medicinal Chemistry at UAQ-FC. Her career as a professor and researcher has not only shaped the academic paths of countless students but has also significantly contributed to the university’s growth in these specialized fields.

🔬 Contributions and Research Focus

Dr. Rojas’s research primarily focuses on the chemical and nutritional analysis of natural products. She investigates the role of micronutrients in bone mass development and the bioavailability of minerals in plant-based products. Additionally, her work extends to developing sustainable technologies aimed at enhancing nutraceutical ingredients in foods and minimizing raw material waste, contributing to global sustainability efforts.

🌍 Impact and Influence

Her academic and research endeavors have fostered strong collaborations with national and international institutions, such as UNAM, the Autonomous University of Nuevo León, the Autonomous Metropolitan University, and international centers like the University of the Valley of Guatemala and the National University of Colombia. These collaborations have led to student mobility programs and numerous joint research publications, strengthening scientific ties worldwide.

📊 Academic Citations and Publications

Dr. Rojas has made significant contributions to scientific research, with 37 publications in international indexed journals, 25 national and 15 international presentations, and five book chapters. She has successfully completed six research projects and is currently leading two ongoing projects. Her citation index includes an impressive h-index of 29 and an i10 index of 41. She has also published one patent, showcasing her ability to innovate within her field. Additionally, she has fostered strong collaborations with national and international institutions, including UNAM, the Autonomous University of Nuevo León, the National University of Colombia, and others, enhancing student mobility and contributing to the publication of scientific articles

🏅 Technical Skills and Expertise

Her expertise spans multiple disciplines within chemistry and nutrition, with a focus on natural product analysis, mineral bioavailability, and nutraceutical development. She is also skilled in scientific research methodologies, chemical analysis techniques, and sustainable food technologies.

🎓 Teaching Experience and Mentorship

Dr. Rojas has played a pivotal role in mentoring undergraduate and postgraduate students for over three decades. Her dedication to education has influenced many emerging scientists and professionals in the field of chemistry and nutrition.

🔮 Legacy and Future Contributions

Looking ahead, Dr. Rojas aims to continue her research on sustainable food technologies and nutritional science innovations. She remains committed to mentoring young researchers, fostering academic collaborations, and contributing to the global scientific community through impactful research and publications.

📖Notable Publications

Physicochemical Characterization of Nopal Pads (Opuntia ficus indica) and Dry Vacuum Nopal Powders as a Function of the Maturation
Authors: ME Rodríguez-García, C De Lira, E Hernández-Becerra, …
Journal: Plant Foods for Human Nutrition
Year: 2007

Spasmolytic Effects, Mode of Action, and Structure−Activity Relationships of Stilbenoids from Nidema boothii
Authors: Y Hernández-Romero, JI Rojas, R Castillo, A Rojas, R Mata
Journal: Journal of Natural Products
Year: 2004

Smooth muscle relaxing activity of gentiopicroside isolated from Gentiana spathacea
Authors: A Rojas, M Bah, JI Rojas, DM Gutiérrez
Journal: Planta Medica
Year: 2000

Physicochemical and rheological characterization of Opuntia ficus mucilage at three different maturity stages of cladode
Authors: M Contreras-Padilla, ME Rodríguez-García, E Gutiérrez-Cortez, …
Journal: European Polymer Journal
Year: 2016

Smooth muscle relaxing flavonoids and terpenoids from Conyza filaginoides
Authors: RBEL R. Mata, A. Rojas, L. Acevedo, S. Estrada, F. Calzada, I. Rojas
Journal: Planta Medica
Year: 1997

Tianjie Qiu | Electrochemistry | Best Researcher Award

Dr. Tianjie Qiu | Electrochemistry | Best Researcher Award

Peking University, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Tianjie Qiu began his academic journey at Nankai University, where he pursued a Bachelor’s degree in Chemistry of Materials (2013-2017). During his undergraduate studies, he developed a strong foundation in materials science and chemistry, setting the stage for his research in advanced materials. Recognized for his academic excellence, he continued his studies at Peking University, one of China’s premier institutions. From 2017 to 2022, he completed his Ph.D. in Materials Science and Engineering, securing the top rank in his class in annual comprehensive quality evaluations. His early education laid the groundwork for his significant contributions to electrocatalysis and energy materials.

🏆 Professional Endeavors

Dr. Qiu has been an active researcher in the field of materials science and electrochemistry since 2017. His expertise spans multiple areas, including the design of ruthenium-based nanocatalysts, heterostructure engineering, and electrochemical energy storage. His work focuses on developing hierarchically porous materials and MOF-derived catalysts for various applications, such as water electrolysis and potassium-ion batteries. Through innovative material synthesis and characterization techniques, he has pioneered multiple breakthroughs in electrocatalysis and energy storage.

🔬 Contributions and Research Focus

Dr. Qiu’s research primarily focuses on the rational design of nanocomposites for electrochemical applications, contributing significantly to the fields of energy conversion and storage. One of his notable achievements includes the development of hierarchically porous ruthenium-carbon nanocatalysts through a bimetallic MOF-derived method, which enhances hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performance by employing precise pore-formation strategies. Additionally, he optimized the heterostructure of Ru@RuOx to improve alkaline HER activity. His work on boron/nitrogen codoped carbon nanotubes for water electrolysis led to a universal method for synthesizing RuM (M = Ir, Co, Fe, Pt, Ag) nanoalloys while systematically analyzing the structure-performance relationship of these electrocatalysts. Furthermore, in the field of potassium-ion batteries, Dr. Qiu designed superstructured nitrogen-doped microporous carbon nanorods derived from MOFs and investigated the potassium-ion adsorption mechanism using first-principles calculations. His development of multi-element doped carbon superstructures has further enhanced potassium-ion storage performance. Through these innovations, Dr. Qiu has paved the way for next-generation catalysts and battery materials, advancing electrochemical energy technologies.

📊 Impact and Influence

Dr. Qiu’s work has gained widespread recognition in the scientific community: 26 SCI-indexed publications, h-index: 17, Total Citations: 2,390, 3 ESI Highly Cited Papers, 1 Invention Patent, 2 Co-authored Books. These achievements reflect the depth and influence of his research in the fields of electrocatalysis, energy storage, and materials science. His work has been referenced extensively, contributing to the development of high-performance catalysts and battery technologies.

🛠️ Technical Skills

Dr. Qiu possesses a diverse skill set in materials synthesis, characterization, and electrochemical analysis:

  • Nanomaterials Design: MOF-derived synthesis, porous structure engineering, heteroatom doping.
  • Electrocatalysis: Hydrogen Evolution Reaction (HER), Oxygen Evolution Reaction (OER), water electrolysis.
  • Battery Materials: Potassium-ion batteries, microporous carbon anodes, phosphorus confinement.
  • Computational Analysis: First-principles calculations, energy band analysis, adsorption studies.
  • Advanced Characterization: XRD, SEM, TEM, Raman Spectroscopy, XPS, BET surface analysis.

His expertise bridges the gap between experimental materials science and computational modeling, allowing for a deep understanding of structure-property relationships in nanomaterials.

🎓 Teaching and Mentorship

Beyond research, Dr. Qiu has been actively involved in mentoring and guiding students in materials science. As a top-ranking Ph.D. scholar, he played a crucial role in training junior researchers in advanced material synthesis and electrochemical characterization. His contributions to academia extend beyond publications, fostering a new generation of scientists in nanomaterials and sustainable energy.

🌍 Legacy and Future Contributions

Dr. Qiu’s groundbreaking work in rational catalyst design and battery materials will continue to shape the future of renewable energy and sustainable technologies. His research holds immense potential for:

  • Developing next-generation hydrogen production catalysts for clean energy.
  • Enhancing potassium-ion battery technologies as an alternative to lithium-ion storage.
  • Pushing the boundaries of nanomaterial engineering for energy applications.

With his strong publication record and innovative research, Dr. Qiu is poised to become a leading figure in materials science and energy storage, driving technological advancements in sustainable energy solutions.

📖Notable Publications

  • Metal-organic framework-derived materials for electrochemical energy applications

    • Authors: Z Liang, R Zhao, T Qiu, R Zou, Q Xu
    • Journal: EnergyChem
    • Year: 2019
  • Metal–organic framework-based materials for energy conversion and storage

    • Authors: T Qiu, Z Liang, W Guo, H Tabassum, S Gao, R Zou
    • Journal: ACS Energy Letters
    • Year: 2020
  • Covalent organic framework-based materials for energy applications

    • Authors: DG Wang, T Qiu, W Guo, Z Liang, H Tabassum, D Xia, R Zou
    • Journal: Energy & Environmental Science
    • Year: 2021
  • Highly exposed ruthenium-based electrocatalysts from bimetallic metal-organic frameworks for overall water splitting

    • Authors: T Qiu, Z Liang, W Guo, S Gao, C Qu, H Tabassum, H Zhang, B Zhu, R Zou
    • Journal: Nano Energy
    • Year: 2019
  • Pristine hollow metal–organic frameworks: design, synthesis and application

    • Authors: T Qiu, S Gao, Z Liang, DG Wang, H Tabassum, R Zhong, R Zou
    • Journal: Angewandte Chemie International Edition
    • Year: 2021

Emma Rebeca Macías Balleza | Polymer Chemistry | Best Researcher Award

Prof. Dr. Emma Rebeca Macías Balleza | Polymer Chemistry | Best Researcher Award

University of Guadalajara, Mexico

👨‍🎓Profiles

🎓 Early Academic Pursuits

Emma Rebeca Macías Balleza began her academic journey with a Bachelor’s degree in Chemical Engineering (1990) from the University of Guadalajara, followed by a Master of Science in Chemical Engineering (1994). Her passion for materials and chemical processes led her to pursue a Doctorate in Science in Chemical Engineering at the same university, in cotutorship with a Doctorate in Physics from the University of Grenoble, France (2002). This strong foundation in multidisciplinary studies allowed her to develop expertise in polymers, nanomaterials, and complex fluid rheology.

🏛️ Professional Endeavors

Currently, she serves as a Senior Research Professor at the Department of Chemical Engineering in the University Centre of Exact Sciences and Engineering, University of Guadalajara. Over the years, she has actively contributed to industrial and academic projects, fostering international collaborations with institutions such as Université Grenoble Alpes (France), Université de Rennes (France), and the University of Santiago de Compostela (Spain). Her consultancy work extends to more than ten industry projects, further bridging the gap between theoretical research and practical applications.

🔬 Contributions and Research Focus

Her research is centered on polymer synthesis and characterization, the rheology of complex fluids, and the development of nanomaterials from agroindustrial waste for reinforcement in polymeric and construction matrices. These areas of expertise contribute significantly to sustainable materials engineering, where she explores innovative ways to utilize waste materials for high-performance applications.

🌍 Impact and Influence

Emma Macías Balleza is a recognized researcher and academic leader, having completed ten collaborative research projects and published extensively. She has played a pivotal role in shaping research policies and evaluations at both institutional and national levels. As a National System of Researchers member since 2002 and a Professor with a Desirable Profile by the Ministry of Public Education since 2000, she continuously influences the next generation of researchers.

📊 Academic Citations and Publications

Her extensive publication record includes:

  • Google Scholar: 60 documents, 746 citations, h-index 16
  • Scopus: 38 documents, 572 citations, h-index 14
  • SCI/Scopus Indexed Journals: 43 publications
    She has also contributed to three chapter books, enhancing the global knowledge base in analytical chemistry and polymer engineering.

🛠️ Technical Skills

Her technical expertise spans polymer characterization, rheological analysis, nanomaterial synthesis, and analytical chemistry techniques. She has extensive experience in material testing and the application of nanotechnology in industrial and construction materials.

👩‍🏫 Teaching Experience and Mentorship

Emma Macías Balleza is deeply involved in postgraduate education, contributing as a faculty member in Materials Science programs. She has mentored numerous students and participated in advisory roles within institutional and national evaluation committees, such as SEP and CONHACYT. She also serves as a reviewer for prestigious scientific journals, ensuring the advancement of research in her field.

🌟 Legacy and Future Contributions

As the head of the Rheology Academic Group at the University of Guadalajara, she has been instrumental in advancing research on fluid behavior in complex systems. Her contributions to the study of sustainable nanomaterials hold promise for future advancements in environmentally friendly polymers and industrial applications. Looking ahead, her work aims to further integrate circular economy principles into materials science, promoting green and efficient solutions for polymer engineering.

📖Notable Publications

  • Influence of Chemical, Morphological, Spectroscopic and Calorimetric Properties of Agroindustrial Cellulose Wastes on Drainage Behavior in Stone Mastic Asphalt Mixtures

    • Authors: L.Y. Cabello-Suárez, J. Anzaldo-Hernández, J.R. Galaviz-Gonzalez, P. Limón-Covarrubias, E.R. Macías-Balleza
    • Journal: Materials
    • Year: 2024
  • Thermoplastic Starch Biocomposite Films Reinforced with Nanocellulose from Agave tequilana Weber var. Azul Bagasse

    • Authors: M.G. Lomelí-Ramírez, B. Reyes-Alfaro, S.L. Martínez-Salcedo, E.R. Macías-Balleza, S. García-Enriquez
    • Journal: Polymers
    • Year: 2023
  • Structural Behavior of Amphiphilic Triblock Copolymer P104/Water System

    • Authors: É.B. Figueroa-Ochoa, L.M. Bravo-Anaya, R. Vaca-López, Y. Rharbi, J.F.A. Soltero-Martínez
    • Journal: Polymers
    • Year: 2023
  • Optimization of the obtaining of cellulose nanocrystals from agave tequilana weber var. Azul Bagasse by acid hydrolysis

    • Authors: M.A. Gallardo-Sánchez, T. Diaz-Vidal, A.B. Navarro-Hermosillo, S.G. Enríquez, E.R. Macías-Balleza
    • Journal: Nanomaterials
    • Year: 2021

Fei Yu | Analytical Chemistry | Best Researcher Award

Mr. Fei Yu | Analytical Chemistry | Best Researcher Award

Shanghai Tenth People's Hospital, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Yu Fei’s academic journey began with a Bachelor of Medicine (B.Med.) in Nuclear Medicine from Soochow University (1996-2001). This foundational education provided a strong background in medical imaging and nuclear diagnostics. Building on this, Yu Fei pursued a Master of Science (M.Sc.) in Public Health at Fudan University (2005-2008), which broadened his expertise in epidemiology, healthcare management, and disease prevention strategies. To further specialize in nuclear medicine, he completed a Doctor of Medicine (Ph.D.) at Tongji University (2009-2012), focusing on advanced medical imaging, radiopharmaceuticals, and nuclear diagnostics.

🏥 Professional Endeavors

Yu Fei has been an integral part of Tongji University and Shanghai Tenth People’s Hospital, where he has steadily progressed through various roles:

  • Physician (2001-2007) – Gaining hands-on clinical experience in diagnostic imaging and nuclear medicine procedures.
  • Attending Physician (2007-2013) – Expanding his clinical expertise while taking on responsibilities in patient care, research, and teaching.
  • Associate Chief Physician (2013-2018) – Playing a pivotal role in medical research and supervising junior physicians.
  • Chief Physician (2018-Present) – Leading advancements in nuclear medicine, guiding medical teams, and contributing to innovative research.

His steady career progression reflects dedication, expertise, and leadership in the medical field.

🔬 Contributions and Research Focus

Yu Fei’s research is centered on nuclear medicine and public health, with a particular focus on:

  • Radiopharmaceuticals and Molecular Imaging – Enhancing early disease detection and treatment effectiveness.
  • Oncological Imaging – Using PET/CT and SPECT for cancer diagnostics and therapy assessment.
  • Nuclear Cardiology – Advancing non-invasive imaging techniques for cardiovascular diseases.
  • Public Health and Preventive Medicine – Contributing to healthcare policies and epidemiological studies.

His work has improved diagnostic accuracy, influenced treatment strategies, and contributed to advancements in personalized medicine.

🌍 Impact and Influence

As a Chief Physician at Shanghai Tenth People’s Hospital, Yu Fei has significantly impacted the fields of nuclear medicine and medical imaging. His leadership in clinical applications, research innovations, and academic mentorship has shaped both medical practice and scientific advancements. His contributions in oncology, cardiology, and public health imaging continue to influence medical professionals locally and internationally.

📚 Academic Citations and Publications

Yu Fei has published numerous research papers in leading medical journals, focusing on nuclear medicine applications, radiopharmaceuticals, and imaging advancements. His research has been widely cited, reflecting his influence in the academic and medical research communities.

🛠️ Technical Skills

With extensive experience in nuclear medicine and diagnostic imaging, Yu Fei is proficient in:

  • Positron Emission Tomography (PET/CT)
  • Single Photon Emission Computed Tomography (SPECT)
  • Radiopharmaceutical Development and Application
  • Cardiac and Oncological Nuclear Imaging
  • Epidemiological Data Analysis in Public Health

His technical expertise enables accurate diagnosis and cutting-edge research in nuclear imaging.

👨‍🏫 Teaching and Mentorship

Yu Fei has played a key role in training and mentoring medical students, residents, and junior physicians at Tongji University and Shanghai Tenth People’s Hospital. His teaching contributions include:

  • Clinical Training in Nuclear Medicine – Preparing future specialists with hands-on experience.
  • Medical Research Supervision – Guiding students in conducting and publishing research.
  • Continuing Medical Education (CME) Programs – Enhancing the skills of practicing professionals in nuclear medicine.

His mentorship has fostered the growth of future medical leaders and researchers.

🚀 Legacy and Future Contributions

Yu Fei’s career has already left a significant mark on nuclear medicine and medical imaging. Looking ahead, his goals include:

  • Expanding Research in Molecular Imaging – Improving early disease detection techniques.
  • Developing Innovative Radiopharmaceuticals – Enhancing therapeutic applications.
  • Advancing Public Health Imaging – Integrating nuclear medicine in preventive healthcare.
  • Mentoring the Next Generation – Continuing to train and inspire future medical professionals.

📖Notable Publications

Minal Ghante | Analytical Chemistry | Best Researcher Award

Dr. Minal Ghante | Analytical Chemistry | Best Researcher Award

Smt. Kashibai Navale College of Pharmacy, India

👨‍🎓Profiles

🎓 Early Academic Pursuits

From the outset of your academic journey, you demonstrated a keen interest in chemistry and material sciences, which led you to pursue higher education in this field. Your Bachelor’s, Master’s, and Ph.D. studies at Thiruvalluvar University provided a solid foundation in chemistry, focusing on nanomaterials and electrocatalysis. Your early research efforts delved into photocatalysis and energy storage systems, setting the stage for your future contributions to renewable energy research.

🏆 Professional Endeavors

Your professional career has been shaped by roles in academia and research, particularly through your postdoctoral fellowship at Chulalongkorn University, Bangkok, Thailand. Under the mentorship of Dr. Piyasan Praserthdam, you continued your explorations in electrocatalysis and nanomaterials. Your expertise spans energy storage, hydrogen evolution reaction (HER), and catalysis, with a specific focus on sustainable and platinum-free electrocatalysts.

🔬 Contributions and Research Focus

A key area of your research revolves around the design and development of nanomaterials for energy conversion. Your work in HER and OER electrocatalysis has played a pivotal role in advancing green hydrogen technology. You have also contributed to the study of supercapacitors, electrochemical impedance spectroscopy, and photocatalytic materials, making significant strides toward efficient and cost-effective energy solutions. Your Ph.D. thesis focused on the synthesis, characterization, and application of platinum-free electrocatalysts, demonstrating your commitment to sustainable research.

🌍 Impact and Influence

Your research has had a profound impact on the field of sustainable energy and nanotechnology, contributing to the global push for cleaner energy solutions. Through international collaborations and scientific publications, your work has influenced both academic circles and industrial applications. The practical applications of your research in energy storage and hydrogen production have the potential to revolutionize renewable energy technologies.

📚 Academic Citations and Publications

Your scholarly contributions include several SCI-indexed publications, showcasing your research in renowned journals and international conferences. Your work has garnered significant recognition, with numerous citations in leading scientific papers. This highlights the relevance and impact of your findings in the scientific community.

🛠️ Technical Skills

With a strong background in analytical and electrochemical techniques, you possess expertise in:

👨‍🏫 Teaching and Mentorship

Throughout your academic career, you have actively mentored and guided students, fostering the next generation of researchers. Your involvement in student projects during your Ph.D. and postdoctoral tenure has played a crucial role in their academic and professional development. Your dedication to knowledge-sharing and mentorship is a testament to your commitment to academic excellence.

🚀 Legacy and Future Contributions

Your long-term vision includes expanding the frontiers of green energy research by focusing on sustainable electrocatalysts and advanced nanomaterials. Your work has already paved the way for innovative energy storage systems, and you continue to explore cost-effective solutions for hydrogen production and environmental sustainability. Moving forward, you aim to contribute to cutting-edge research, mentor upcoming scientists, and drive impactful collaborations worldwide.

📖Notable Publications

  • RP-HPLC and HPTLC method development and validation for estimation of dolutegravir in bulk and tablet dosage form
    Authors: Ghante, M.R.; Sawant, S.D.; Undre, M.; Jagtap, S.G.; Kulkarni, P.; Nikam, V.S.
    Journal: Indian Drugs
    Year: 2019

  • Stability indicating method development and validation of finasteride by high-performance thin-layer chromatography studies
    Authors: Sawant, S.; Ghante, M.
    Journal: Asian Journal of Chemistry
    Year: 2017

  • Development and validation of stability indicating method for darunavir with forced degradation studies using LC-ESI-MS/MS
    Authors: Ghante, M.; Sawant, S.D.
    Journal: Asian Journal of Chemistry
    Year: 2016

  • Development and validation of UV spectrophotometric method for estimation of Darunavir ethanolate in bulk and tablet dosage form
    Authors: Ghante, M.R.; Shelar, R.S.; Sawant, S.D.; Kadam, M.M.
    Journal: International Journal of Pharmacy and Pharmaceutical Sciences
    Year: 2014

  • Development and validation of UV spectrophotometric methods for estimation of Atazanavir sulphate in bulk and tablet dosage form
    Authors: Ghante, M.R.; Kadam, M.M.; Sawant, S.D.; Shelar, R.S.
    Journal: International Journal of Pharmacy and Pharmaceutical Sciences
    Year: 2014

 

Kumlachew Yeneneh | Materials Chemistry | Best Researcher Award

Mr. Kumlachew Yeneneh | Materials Chemistry | Best Researcher Award

Ethiopian Defence Univeristy, Ethiopia

👨‍🎓Profiles

🧑‍🔬 Early Academic Pursuits

Mr. Kumlachew Yeneneh’s educational background highlights a focused journey in the fields of mechanical and motor vehicle engineering. His Master of Science in Mechanical and Motor Vehicle Engineering from the Ethiopian Defence University laid the foundation for his expertise in materials chemistry and mechanical systems design. His academic pursuits were driven by a strong interest in developing materials for defense applications, particularly in creating advanced systems for protection and optimization under extreme conditions.

🔬 Professional Endeavors

As an Associate Researcher and Lecturer at the Ethiopian Defence University, Mr. Yeneneh has significantly contributed to both the academic and practical aspects of mechanical and materials engineering. His key responsibilities include conducting groundbreaking research, mentoring students, and collaborating with industry partners. Since January 2019, his role has been pivotal in developing innovative solutions in armament and materials chemistry. One of his key achievements includes the development of novel bulletproof materials, which enhance ballistic protection for defense applications.

📚 Contributions and Research Focus

Mr. Yeneneh’s primary research area revolves around armament and mechanical engineering, while his secondary focus lies in materials chemistry. He has contributed to several research projects, including the development of high-strength composite materials for ballistic applications and the optimization of mechanical systems for extreme environments. His work in materials science for defense technologies is particularly noteworthy. His recent publication in Heliyon titled “Numerical and Experimental Analysis of Body Armor Polymer Penetration Resistance Against 7.62 mm Bullets” is a prime example of his expertise in materials engineering, where he demonstrated significant improvements in material durability.

🌍 Impact and Influence

Mr. Yeneneh’s research has made a considerable impact on both the scientific community and the defense sector. By developing advanced materials and innovative solutions for armament systems, he has contributed to enhancing protection mechanisms, especially in defense and military applications. His work is not just limited to theoretical advancements but has tangible implications in improving materials used in extreme environments, particularly in ballistics and automotive engineering. Moreover, his involvement in academic publications and collaborations further establishes his influence in materials and mechanical engineering research.

🔍 Academic Citations and Publications

His contributions have been recognized globally, with his research published in respected journals like Heliyon and the International Journal of Automotive and Mechanical Engineering. His publications, such as "Numerical and Experimental Analysis of Body Armor Polymer Penetration Resistance Against 7.62 mm Bullets," showcase his expertise in advanced material synthesis and mechanical testing. His recent work on lateral dynamics in semi-autonomous vehicles and evaporative cooling systems for horticulture in Ethiopia has broadened the scope of his research to include automotive and environmental engineering as well.

🛠️ Technical Skills

Mr. Yeneneh’s technical skills span a range of advanced areas in both materials chemistry and mechanical systems design. He is proficient in analytical chemistry techniques, including spectroscopy and chromatography, which he applies to the synthesis and characterization of novel materials. In addition, his computational modeling expertise in MATLAB, ANSYS, and COMSOL allows him to simulate material behaviors and mechanical systems. His proficiency in software like AutoCAD and ChemDraw aids in the design and visualization of complex mechanical and chemical systems.

👨‍🏫 Teaching Experience

As a lecturer, Mr. Yeneneh is dedicated to nurturing the next generation of engineers and researchers. His teaching experience at the Ethiopian Defence University involves guiding students through complex concepts in mechanical and materials engineering. By mentoring students and encouraging them to engage in cutting-edge research, he plays a crucial role in the development of future engineers. His focus on mentorship is reinforced by his involvement in publishing and presenting research, making sure students are exposed to real-world challenges and innovations.

🔮 Legacy and Future Contributions

Mr. Yeneneh’s work and legacy in material chemistry and mechanical systems design are setting the stage for future advancements in defense technologies and materials science. He is committed to continuing his research in creating high-performance materials for various applications, particularly in ballistics, automotive, and energy systems. With his proven track record of developing innovative solutions, his future contributions promise to impact both military and civilian technologies, driving forward advancements in sustainability, defense, and engineering.

🏆 Awards and Recognition

Mr. Yeneneh’s outstanding contributions have earned him prestigious accolades, including the Best Researcher Award for his work in material chemistry and mechanical engineering. He also received a Distinction Certificate from the International Journal of Environment and Climate Change in recognition of his impactful research. These honors are a testament to the quality and significance of his work in the fields of materials science and engineering.

🤝 Professional Memberships

Mr. Yeneneh’s professional affiliations with organizations like the Society of Mechanical Engineers (ASME) and the Ethiopian Mechanical Engineers Association further demonstrate his commitment to staying at the forefront of the engineering community. His involvement in these associations allows him to collaborate with peers, exchange ideas, and contribute to the development of industry standards and practices.

📖Notable Publications

  • Numerical and experimental analysis of body armor polymer penetration resistance against 7.62 mm bullet
    Authors: Gebrewahid Asgedom, Kumlachew Yeneneh, Getu Tilahun, Besufekad Negash
    Journal: Heliyon
    Year: 2025

  • Analysis of Lateral Dynamics of the Semi-Autonomous Vehicles for Lane Changes and Cornering Maneuvers
    Authors: Kumlachew Yeneneh, Yoseph B.
    Journal: Research Square
    Year: 2024

  • Performance evaluation of evaporative cooling systems for mitigating post-harvest losses in Ethiopian horticultural crops
    Authors: Kumlachew Yeneneh, Menelik Walle
    Journal: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
    Year: 2024

  • Robust H∞ Control Design for Improving Handling and Ride Comfort in Semi-Active Suspension Systems
    Authors: Kumlachew Yeneneh, Tatek Mamo, Menelik Walle, Biru Birhanu
    Journal: International Journal of Automotive and Mechanical Engineering
    Year: 2024

  • Design, Fabrication and Evaluation of Evaporative Cooling System for the Storage of Fruits and Vegetables
    Authors: Kumlachew Yeneneh
    Journal: International Journal of Applied and Structural Mechanics
    Year: 2023

 

Muhammad Kashif Majeed | Materials Chemistry | Best Researcher Award

Dr. Muhammad Kashif Majeed | Materials Chemistry | Best Researcher Award

National University of Science and Technology, Pakistan

👨‍🎓Profiles

📚 Early Academic Pursuits

Dr. Muhammad Kashif Majeed’s academic journey reflects a strong foundation in chemistry, especially materials science and electrochemistry. His studies began with a Bachelor's degree in Chemistry from Gomal University, Pakistan, followed by a Master’s in the same field. His educational path continued with a Ph.D. in Chemistry (Materials/Inorganic) from Shandong University, China, where he focused on the synthesis and electrochemical performances of Si/C-based anode materials for lithium-ion batteries. His thesis, guided by Professors Yang Jian and Xiaojian Ma, provided significant contributions to the development of energy storage solutions.

🧑‍🔬 Professional Endeavors

Since 2023, Dr. Majeed has been balancing multiple prestigious roles. He is an Assistant Professor in the Department of Chemistry at the National University of Science and Technology, Islamabad, Pakistan. He also holds a Senior Researcher position in Mechanical Engineering at the University of Texas at Dallas, Richardson, Texas, U.S. His career trajectory includes prestigious postdoctoral experiences at globally recognized institutions, including the University of Texas at Arlington and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences. These roles have enabled him to strengthen his expertise in materials science, catalysis, and energy storage technologies.

🔬 Contributions and Research Focus

Dr. Majeed’s research interests primarily lie in materials chemistry, particularly focusing on lithium-ion battery development, nanomaterials, and electrochemical systems. His work on controllable synthesis techniques for Si/C-based anode materials has had a profound impact on the field of energy storage. Additionally, he has conducted advanced research in materials synthesis, crystal analysis, and electrochemical analysis techniques such as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge/discharge tests. His research has contributed significantly to the development of efficient, sustainable materials for energy storage systems, thus advancing clean energy technologies.

🌍 Impact and Influence

Dr. Majeed’s research has been pivotal in enhancing our understanding of electrochemical energy storage materials, especially those that involve novel materials like Si/C anodes. His work has been recognized in several top-tier journals such as ACS Applied Materials Interfaces, ACS Omega, Materials, and Sustainable Energy and Fuels. As an editorial board member and reviewer for prestigious journals, he plays an integral role in shaping future scientific discourse and advancing the materials science community. His collaborations across continents further amplify his global impact in the field.

📑 Academic Cites and Publications

Dr. Majeed’s publications in leading scientific journals have garnered significant attention in the materials science and electrochemistry communities. His research is frequently cited, highlighting its importance in advancing battery technology and energy storage solutions. As an active journal reviewer for high-impact publications such as ACS Applied Materials Interfaces and Chemistry-A European Journal, he not only contributes to scientific literature but also ensures the high quality and rigor of published research in his field.

🛠️ Technical Skills

Dr. Majeed possesses a diverse skill set, including proficiency in advanced materials characterization techniques such as X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR). His expertise extends to the use of computational tools for density functional theory (DFT), material modeling (ChemCraft, Gauss view), and nano-materials synthesis via various methods like sol-gel, hydrothermal, and solvothermal. He is highly proficient in electrochemical analysis methods, making him a versatile researcher capable of addressing complex material challenges.

👨‍🏫 Teaching Experience and Mentorship

As an Assistant Professor at the National University of Science and Technology, Dr. Majeed is involved in teaching advanced chemistry courses, where he imparts knowledge in materials science and electrochemistry. His teaching approach integrates his deep research experience, offering students a comprehensive understanding of both theory and practical applications in chemistry and materials science. Dr. Majeed’s mentorship extends beyond the classroom, as he actively guides research projects, helping students navigate complex scientific problems and develop critical skills for their future careers.

🏆 Legacy and Future Contributions

Dr. Majeed’s future contributions to the fields of energy storage and materials science are poised to have a lasting impact. His work in developing high-performance, sustainable materials for energy applications will continue to drive innovation in battery technologies. Moreover, his collaborative research efforts at global institutions suggest that he will remain at the forefront of scientific advancements, mentoring the next generation of researchers and contributing to a sustainable energy future. As he continues his academic career, Dr. Majeed is likely to leave a significant legacy in both research and education, inspiring future advancements in materials science and engineering.

📖Notable Publications

Interfacial Engineering of Polymer Solid‐State Lithium Battery Electrolytes and Li‐Metal Anode: Current Status and Future Directions

Authors: Muhammad Kashif Majeed, Arshad Hussain, Ghulam Hussain, Muhammad Umar Majeed, Muhammad Zeeshan Ashfaq, Rashid Iqbal, Adil Saleem

Journal: Small

Year: 2024-12

Designing Nanocomposite-Based Electrochemical Biosensors for Diabetes Mellitus Detection: A Review

Authors: Xiang Guo, Jiaxin Wang, Jinyan Bu, Huichao Zhang, Muhammad Arshad, Ayesha Kanwal, Muhammad K. Majeed, Wu-Xing Chen, Kuldeep K Saxena, Xinghui Liu

Journal: ACS Omega

Year: 2024-07-16

Ni-rich cathode evolution: exploring electrochemical dynamics and strategic modifications to combat degradation

Authors: Adil Saleem, Leon L. Shaw, Rashid Iqbal, Arshad Hussain, Abdul Rehman Akbar, Bushra Jabar, Sajid Rauf, Muhammad Kashif Majeed

Journal: Energy Storage Materials

Year: 2024-05

Co3(hexaamino dipyrazinoquinoxaline)2: Highly conductive and robust two-dimensional Aza-based cobalt metal-organic framework as an efficient electrocatalyst for acidic oxygen evolution

Authors: Rashid Iqbal, M. Shahzaib Naeem, Muhammad Ahmad, Arshad Hussain, Abdul Rehman Akbar, Maryam Kiani, M. Zeeshan Ashfaq, Sajid Rauf, Kareem Yusuf, Muhammad K. Majeed et al.

Journal: Journal of Power Sources

Year: 2024-02

Boosting the crystallinity of novel two-dimensional hexamine dipyrazino quinoxaline-based covalent organic frameworks for electrical double-layer supercapacitors

Authors: Rashid Iqbal, Muhammad Kashif Majeed, Arshad Hussain, Aziz Ahmad, Muhammad Ahmad, Bushra Jabar, Abdul Rehman Akbar, Sajjad Ali, Sajid Rauf, Adil Saleem

Journal: Materials Chemistry Frontiers

Year: 2023

Simulation Analysis of Novel Integrated LNG Regasification-Organic Rankine Cycle and Anti-Sublimation Process to Generate Clean Energy

Authors: Suri, S.U.K.; Majeed, M.K.; Ahmad, M.S.

Journal: Energies

Year: 2023