Deepak Mohite | Materials Chemistry | Green Chemistry Award

Mr. Deepak Mohite | Materials Chemistry | Green Chemistry Award

K.H. College Gargoti | India

Mr. Deepak Bandopant Mohite is an emerging material chemistry researcher whose work focuses on developing innovative and sustainable catalytic materials with strong relevance to green chemistry. He holds an M.Sc. in Organic Chemistry and has qualified for prestigious national examinations including CSIR-NET-JRF, SET, and GATE, reflecting his solid academic foundation. Currently, he is serving as an Assistant Professor of Chemistry at Karmaveer Hire Arts, Science, Commerce and Education College, Gargoti, affiliated with Shivaji University, Kolhapur, where he has gained two years of full-time teaching and research experience. Alongside his academic role, he is pursuing a Ph.D. at Shivaji University, Kolhapur. His doctoral research “Catalytic studies of titania-coated magnetic mixed metal oxide with interlayer alumina, zirconia, and silica” involves the design, synthesis, and characterization of advanced heterogeneous catalysts that are efficient, reusable, and environmentally benign. Mr. Mohite’s work aims to reduce the ecological footprint of chemical transformations by developing catalysts that offer high activity, selectivity, and recyclability while minimizing waste and energy consumption. His research integrates principles of green chemistry with material innovation, focusing on magnetic mixed metal oxides that can be easily recovered and reused, thereby supporting cleaner industrial processes. He has published his findings in the Journal of Molecular Structure (SCI/Scopus indexed), demonstrating the scientific merit and relevance of his work. Additionally, he holds a granted German patent, reflecting his capability to translate research ideas into applicable technological solutions. Through his contributions, Mr. Mohite is advancing sustainable material development and environmentally responsible catalysis with potential impact across chemical and industrial sectors.

Profile : Scopus

Featured Publication

Mohite, D. B., Pandhare, A. B., Chavan, A. S., Kadam, M. R., Nikam, P. N., Junghare, N. V., Ayyar, M., Rajendran, S., Khan, M. A., Delekar, S. D., Patil, R. P., Santhamoorthy, M., & Santhoshkumar, S. (2026). CoFe₂O₄–Al₂O₃–TiO₂ nanocatalyst: Magnetically retrievable platform for medicinal precursors. Journal of Molecular Structure, 1352(Part 2), 144521.

Oumarou Savadogo | Electrochemistry | Research Excellence Award

Prof. Dr. Oumarou Savadogo | Electrochemistry | Research Excellence Award

Polytechnique Montreal | Canada

Professor Oumarou Savadogo is a distinguished researcher whose pioneering contributions span materials science, electrochemistry, and sustainable energy technologies. With advanced training in physics, materials engineering, and metallurgical engineering, he has dedicated his career to developing innovative materials and processes that advance clean and renewable energy systems. His expertise encompasses energy materials, solar photovoltaic and thermal technologies, electrochemical energy storage including batteries, fuel cells, and supercapacitors hydrogen production and utilization, biomaterials, corrosion science, and physico-chemical characterization of complex materials. As Chairholder of the UNESCO Chair in Sustainable Engineering: Applied Solar Technologies and Head of the Laboratory of New Materials for Energy and Electrochemistry, Professor Savadogo leads multidisciplinary programs focused on the design and optimization of advanced electrochemical materials. His research includes breakthroughs in oxygen cathode development for PEM fuel cells, new formalisms for understanding electrocatalytic reactions, and advanced simulation methods for adsorption–desorption processes. His work also extends to thin-film semiconductors for solar cells, corrosion-resistant coatings, nanostructured electrodes, conducting membranes, and biomaterial surface engineering demonstrating remarkable breadth and impact. Professor Savadogo’s scientific productivity is exceptional, with more than 180 peer-reviewed journal articles, influential book chapters, a 2024 book on nanostructured lithium-ion battery materials, and two foundational patents spanning biomedical implants and hydrogen fuel cell electrocatalysts. Recent publications highlight his leadership in emerging research areas, including techno-economic analyses of hydrogen production systems, bio-derived electrode materials for batteries, catalytic pathways for CO₂ reduction, molten carbonate fuel cells, and composite coatings with enhanced corrosion resistance. Beyond his research, Professor Savadogo serves the global scientific community through longstanding roles on advisory and editorial boards in electrochemical energy science and hydrogen technologies. His work continues to shape the future of sustainable energy materials, combining scientific rigor, innovation, and societal relevance. His contributions stand as a model of excellence in advancing technologies central to a low-carbon and sustainable global energy future.

Profiles : Scopus | Google Scholar

Featured Publications

1. Zemane, W.-W. A., & Savadogo, O. (2025). Electrochemical performances of Li-ion batteries based on LiFePO₄ cathodes supported by bio-sourced activated carbon from millet cob (MC) and water hyacinth (WH). Batteries, 11(10), 361.

2. Mihin, T., Savadogo, O., & Tartakovsky, B. (2025). Impact of non-noble bimetallic oxides on bioelectrochemical reduction of carbon dioxide to volatile fatty acids. Process Biochemistry, 159, 51–63.

3. Shanian, S., & Savadogo, O. (2024). A critical review of the techno-economic analysis of hydrogen production from water electrolysers using multi-criteria decision making (MCDM). Journal of New Materials for Electrochemical Systems, 27(2), 107–134.

4. Thiam, B., & Savadogo, O. (2024). Effects of silico-tungstic acid on the pseudocapacitive properties of manganese oxide for electrochemical capacitor applications. DeCarbon, Article 100066.

5. Shanian, S., & Savadogo, O. (2024). Techno-economic analysis of electrolytic hydrogen production by alkaline and PEM electrolysers using MCDM methods. Discover Energy, 4(1), 23. )

T. Syeda Jeelani Basri | Industrial Chemistry | Women Researcher Award

Dr. T. Syeda Jeelani Basri | Industrial Chemistry | Women Researcher Award

Associate Professor | G. Pullaiah College of Engineering & Technology | India

Dr. Syeda Jeelani Basri, M.Sc., Ph.D., is a highly accomplished chemist and academician with over 15 years of teaching and research experience in chemistry, nanoscience, and pharmaceutical sciences. She obtained her Ph.D. in Chemistry from Jawaharlal Nehru Technological University, India, focusing on the phytochemical and spectral analysis of medicinal herbs, under the guidance of Prof. G. V. Subba Reddy. Her research integrates organic, inorganic, material, and pharmaceutical chemistry, with a particular emphasis on green chemistry, nanotechnology, and natural product synthesis. Dr. Basri has made notable contributions in phytochemical extraction, characterization, and the synthesis of bioactive compounds using eco-friendly methodologies. Her scientific work is reflected in 21 research publications, including SCI, Scopus, IEEE, and UGC Care-listed journals, alongside two granted patents in green process chemistry and polyphenol enhancement in edible products. Her recent Scopus-indexed works highlight the green synthesis of gold nanoparticles, the development of CuMn₂O₄/MnO₂/MWCNT nanohybrids for supercapacitors, and AI-based pharmaceutical design demonstrating her interdisciplinary expertise bridging chemistry, artificial intelligence, and environmental applications. In addition, her IEEE publication on machine learning for friction and wear analysis underscores her engagement in computational materials science. Dr. Basri has authored three books, presented at international and national conferences, and has been actively involved in institutional leadership roles such as NAAC Criterion 3 In-charge, IQAC member, and R&D coordinator. A lifetime member of the Indian Society for Radiation and Photochemical Sciences, she also serves on the editorial board of the Glacier Journal of Scientific Research. Recognized with the prestigious Adarsh Vidya Saraswati Rashtriya Puraskar, Dr. Basri continues to advance sustainable innovations in green chemistry, phytopharmaceuticals, and nanomaterials, combining analytical precision with a passion for environmentally responsible scientific progress.

Profiles : Scopus | ORCID | Google Scholar

Featured Publications

Basri, T. S. J. (2025). Facile green synthesis of gold nanoparticles using Catunaregam spinosa extract for environmental remediation and antimicrobial activity. Chemistry Select, 10, 1–14.

Basri, T. S. J. (2025, September 26). Synergistic CuMn₂O₄/MnO₂/MWCNT nanohybrid for ultra-stable and high-energy asymmetric supercapacitors. Journal of Porous Materials.

Basri, T. S. J. (2025). Artificial intelligence for drug discovery: Accelerating the development of new pharmaceuticals. Web of Conferences, 76, 01010.

Jian Xu | Polymer Chemistry | Analytical Chemistry Award

Prof. Jian Xu | Polymer Chemistry | Analytical Chemistry Award

Dalian University of Technology | China

Profile

Orcid

Early Academic Pursuits

Dr. Xu Jian’s academic journey reflects a strong foundation in engineering and material sciences. He began his undergraduate studies in civil engineering at Ocean University of China, where he developed core competencies in structural analysis and engineering mechanics. He further deepened his knowledge with a master’s degree in civil engineering from the Technical University of Braunschweig in Germany, where he was introduced to international research methodologies and advanced engineering principles. Pursuing his passion for materials science, Dr. Xu earned a Ph.D. in composite materials from the University of Leuven, Belgium. Under the guidance of Professor I. Verpoest a prominent figure in textile composites and a member of the Royal Academy of Sciences of Belgium Dr. Xu’s doctoral work laid the groundwork for his future contributions to multi-scale modeling and fatigue damage analysis in textile composites.

Professional Endeavors

Dr. Xu’s professional career spans internationally recognized research institutions and industry-leading organizations. He began as a research assistant at the German Aerospace Center, followed by a stint as a programmer in the tech industry. His post-doctoral years saw him working as an R&D engineer at Compus GmbH in Germany and later as a research scientist at the Institute of Advanced Materials in Madrid. He has since held prominent positions at the Ningbo Institute of Materials Technology and Engineering under the Chinese Academy of Sciences and the School of Chemical Engineering at Dalian University of Technology. His roles in these institutions demonstrate his dual capability as both a leading academic researcher and an innovator in applied materials technology.

Contributions and Research Focus

Dr. Xu Jian has significantly advanced multi-scale simulation, composite process development, and automated equipment for fiber placement. He developed a dual-scale fatigue model that cuts material evaluation time by over 75%. His “3+1” impact simulation model supports fighter aircraft component design. Xu pioneered robot-assisted fiber placement systems adopted by Audi and BMW. He innovated laser-assisted in-situ curing methods for thermoplastic composites. His work on silicon carbide composites enhances nuclear material safety and performance.

Impact and Influence

Dr. Xu’s work has had far-reaching industrial and academic influence. His research outputs have been applied in aerospace fuselage design, automotive structural components, and nuclear reactor materials, marking his contributions as both cutting-edge and practically transformative. He has led or participated in over ten major national and international projects, collaborating with prestigious organizations like Airbus, BMW Group, Audi, and the German Aerospace Center. The tools, methods, and equipment developed under his leadership have been adopted in both civilian and defense-related composite engineering sectors.

Academic Citations

With 39 publications, including 25 SCI-indexed articles and high-level conference papers, Dr. Xu has established a robust academic presence. His works appear in top-tier journals such as Engineering Fracture Mechanics, Materials Science and Engineering A, Ceramics International, Composite Structures, and Composites Science and Technology. He has also contributed to four book chapters, including collaborations with his Ph.D. advisor, and has been actively involved in academic conference proceedings globally. His research is frequently cited in the context of composite fatigue modeling, meso-scale simulation, and damage mechanics.

Technical Skills and Innovations

Dr. Xu is a proficient developer of composite materials processing technologies, especially those involving robot-assisted fiber placement, thermoplastic composite welding, and multi-scale simulation software. He holds nine patents, including those for equipment related to laser-assisted forming, dual-robot resistance welding, and fiber preform laying systems. His innovative mindset has resulted in practical tools that support rapid prototyping, large-scale manufacturing, and process optimization in industrial environments.

Teaching and Mentorship Experience

As a professor and doctoral supervisor, Dr. Xu is actively involved in training the next generation of materials scientists and engineers. He has supervised more than a dozen doctoral, master’s, and postdoctoral researchers, and currently oversees a large cohort of graduate students across multiple academic levels. His teaching style emphasizes a strong linkage between theoretical understanding and hands-on application. He also serves as a reviewer and guest editor for core journals in his field, such as the International Journal of Fatigue and Composites Part B, thereby contributing to academic quality assurance and knowledge dissemination.

Legacy and Future Contributions

Dr. Xu Jian’s career reflects a deep commitment to advancing the field of composite materials through a synergy of modeling, process innovation, and industrial collaboration. His leadership in large-scale research initiatives and his successful translation of academic research into real-world technologies highlight his ongoing value to both academia and industry. Looking forward, Dr. Xu is expected to expand his influence through initiatives targeting green manufacturing, next-generation aerospace structures, and nuclear-grade composite innovations, all while continuing to cultivate international partnerships and contribute to national research strategies.

Honors and Recognitions

Dr. Xu has received numerous accolades recognizing his scientific and technological contributions. These include the First Prize of the Baden-Württemberg State Government Technological Innovation Award for his role in advancing fiber placement technologies, membership in the Academic Committee of the Ministry of Education’s Key Laboratory, and recognition as a leading talent in Ningbo. He has also led award-winning innovation teams under prestigious national programs.

Notable Publications

Resistance welding of thermoplastic composites with nanofiber films prepared by electrospinning technique

Authors: Zhao G., Chen T., Xia X., Zhao Y., Liu C., Jian X., Zhang S., Xu J.
Journal: Composites Part B: Engineering
Year: 2023

A Simple Method for Preparation of Highly Conductive Nitrogen/Phosphorus-Doped Carbon Nanofiber Films

Authors: Chen T., Chi Y., Liu X., Xia X., Chen Y., Xu J., Song Y.
Journal: Materials
Year: 2022

The role of carbon in microstructure evolution of SiBCO ceramics

Authors: Xia X., Yang F., Zhao G., Liu X., Chen T., Huang Q., Jian X., Song Y., Xu J.
Journal: Ceramics International
Year: 2022

A rate-dependent cohesive zone model with the effects of interfacial viscoelasticity and progressive damage

Authors: Zhao G., Xu J., Feng Y., Tang J., Chen Y., Xin S., Jian X., Li S., Zhang S.
Journal: Engineering Fracture Mechanics
Year: 2021

An Advanced Finite Element Modeling for the Failure of Notched Ceramic Matrix Composite With TFP Patch Reinforcement

Authors: Zhao G., Tang J., Wang J., Chen Y., Feng Y., Chen Y., Xin S., Jian X., Li S., Zhang S. et al.
Journal: Frontiers in Materials
Year: 2021

Conclusion

Dr. Xu Jian exemplifies the integration of academic rigor, technological innovation, and real-world application in the realm of composite materials and process engineering. His multidimensional research, significant patent portfolio, and leadership in industrial collaborations position him as a transformative figure in his field. With a forward-looking vision anchored in sustainable and high-performance material solutions, Dr. Xu continues to contribute meaningfully to the global scientific community and strategic industry sectors.

Liu Wenju | Catalysis | Best Researcher Award

Prof Liu Wenju | Catalysis | Best Researcher Award 

Henan University of Technology , china 

👨‍🎓Profiles

🎓 Early Academic Pursuits

Professor Liu Wenju embarked on his academic journey with a strong foundation in chemistry. He earned his B.Sc. in Applied Chemistry from Zhengzhou University in 2003, followed by an M.Sc. in Industrial Catalysis at the same institution, where he explored the catalytic oxidation of cooking oil fumes in microwave fields. His passion for advanced separation techniques and materials led him to pursue a Ph.D. in Chemical Engineering at Tianjin University, where he completed a groundbreaking thesis on the crystallization and polymorphism of Carbamazepine, a critical pharmaceutical compound. These early academic milestones laid the groundwork for a career dedicated to innovation in crystallization science and green chemical processes.

🧪 Professional Endeavors

Prof. Liu’s professional path is marked by impactful roles across academia and research institutions. He has served as a postdoctoral researcher at Tianjin University, leading pharmaceutical crystallization studies, and expanded his global perspective as a visiting scholar at the University of Cambridge, where he studied mechanochemical modifications of Salbutamol Sulfate. His role as a principal investigator on multiple funded research projects reflects his leadership in the field, especially within the National Natural Science Foundation of China (NNSFC).

🔬 Contributions and Research Focus

Prof. Liu has cultivated a distinguished research profile centered on chemical separation and crystallization, particularly within the pharmaceutical domain. His expertise includes industrial crystallization, polymorphism control, and green catalysis. Over the years, he has advanced critical insights into amorphization, polymorphic membrane crystallization, and impurity effects on crystal growth, aligning with sustainable chemistry goals. His research extends to eco-friendly material development, showcasing a commitment to environmentally conscious innovation.

🌍 Impact and Influence

The scope of Prof. Liu's research has significantly influenced pharmaceutical manufacturing practices and the development of greener catalytic systems. His work on crystal engineering and nucleation-growth dynamics has contributed to both academic understanding and practical applications. The international recognition gained through collaborations, such as with the University of Cambridge, highlights his role in bridging global research efforts and fostering knowledge exchange in the field of chemical engineering.

📚 Academic Citations & Scholarly Recognition

While specific citation metrics are not included, Prof. Liu's funded projects, especially by the NNSFC and other national and international bodies, signify his academic credibility and research influence. His work on pharmaceutical polymorphs, crystallization mechanisms, and green catalytic technologies continues to inspire new lines of inquiry and collaboration in chemical engineering research.

🛠️ Technical Skills

Prof. Liu brings advanced technical proficiency to his research. His core competencies include:

  • Pharmaceutical crystal engineering

  • Polymorph screening and control

  • Green catalytic process design
    He is adept with cutting-edge analytical tools such as:

  • PXRD (Powder X-ray Diffraction)

  • DSC (Differential Scanning Calorimetry)

  • SEM-EDS (Scanning Electron Microscopy – Energy Dispersive Spectroscopy)

  • HPLC-MS (High-Performance Liquid Chromatography – Mass Spectrometry)

  • In-situ Raman spectroscopy

👨‍🏫 Teaching & Mentoring Excellence

Although specific teaching roles are not detailed, Prof. Liu’s deep research involvement at Henan University of Technology suggests active engagement in mentoring graduate students and guiding thesis research, especially in crystallization and catalysis. His interdisciplinary knowledge positions him as an effective educator in both theoretical and applied chemistry fields.

🌱 Legacy and Future Contributions

Prof. Liu's early research into CO removal and microwave-assisted oxidation systems highlights a lifelong dedication to environmental sustainability. As he continues his academic journey, his future contributions are likely to deepen in the domains of eco-friendly crystallization technologies and pharmaceutical manufacturing innovations. His legacy will undoubtedly be one of bridging scientific rigor with practical environmental applications, shaping the next generation of chemical engineers.

📖Notable Publications

Title: Zr-doped CoZrOx solid solution catalysts with enhanced oxygen vacancy for trace ethylene removal under humid conditions
Authors: Zhang Qiaofei, Zhang Liwen, Liu Lei, Zhu Chunshan, Liu Wenju
Journal: Applied Surface Science
Year: 2025
Citations: 0

Title: Preparation of CunCo1Ox catalysts by co-precipitation method for catalytic oxidation of toluene
Authors: Hu Yanshao, Pan Da, Zhang Zheng, Dang Dan, Liu Wenju
Journal: Journal of Molecular Structure
Year: 2025
Citations: 0

Title: Multifunctional self-cleaning Zr-Porphyrin@PG membrane for wastewater treatment
Authors: Liu Wenju, Hou Yafang, Zhao Peixia, Zhang Yatao, D'Agostino Carmine
Journal: Applied Surface Science
Year: 2025
Citations: 0

Title: Equilibrium Solubility of Loxoprofen in 14 Monosolvents: Determination, Correlation, and Hansen Solubility Parameter
Authors: Shen Yanmin, Pan Shuting, Gao Yuqi, Wang Han, Liu Wenju
Journal: Journal of Chemical and Engineering Data
Year: 2025
Citations: 0

Prof. Huilan Yue | Organic Chemistry | Best Researcher Award

Prof. Huilan Yue | Organic Chemistry | Best Researcher Award

Northwest Institute of Plateau Biology, CAS, China

👨‍🎓Profiles

🎓 Education and Academic Background

Prof. Huilan Yue pursued her Ph.D. in Catalytic Chemistry from the Chengdu Institute of Biology, Chinese Academy of Sciences, under the guidance of Prof. Jian-Xin Ji. Her dissertation focused on C-C bond formation through the direct reaction of alcohols with alkenes and alkynes. Before that, she completed her M.S. in Phytochemical studies at the Northwest Institute of Plateau Biology, Chinese Academy of Sciences, where she researched the chemical constituents of Dracocephalum heterophyllum Benth. under the supervision of Prof. Yun Shao. Her academic journey began with a B.S. in Biological Sciences from Huaibei Normal University.

🏛 Professional Career

Prof. Yue is currently affiliated with the Northwest Institute of Plateau Biology, Chinese Academy of Sciences, China. She has dedicated her career to advancing catalytic chemistry and phytochemical studies, contributing significantly to understanding chemical synthesis and natural product chemistry. Her work is recognized for its interdisciplinary approach, bridging chemistry and biology to explore novel catalytic mechanisms and bioactive compounds.

🏆 Honors and Awards

Prof. Yue has received numerous accolades for her contributions to science and technology. She was honored as a Kunlun Talent Leading Talent in Qinghai Province. She also received the Qinghai Province Youth Science and Technology Award, recognizing her outstanding contributions to research. She was awarded the prestigious “Light of the West” honor from the Chinese Academy of Sciences. Additionally, she has been recognized as a Leading Talent in Natural Science and Engineering Technology Disciplines in Qinghai Province and a Top-notch Innovative Talent in Qinghai Province.

🔬 Research Contributions and Focus

Prof. Yue’s research primarily focuses on catalytic chemistry, organic synthesis, and natural product chemistry. Her work on C-C bond formation via direct reactions of alcohols with alkenes and alkynes has contributed to advancements in green chemistry and sustainable synthesis. Additionally, her research in phytochemistry has led to the discovery and characterization of bioactive compounds from plateau plants, contributing to medicinal and pharmaceutical sciences.

🌍 Impact and Influence

Prof. Yue’s research has had a profound impact on both theoretical and applied chemistry. Her contributions to catalytic reactions have paved the way for more efficient and environmentally friendly synthesis methods, while her phytochemical studies have provided valuable insights into natural product-based drug discovery. Her work has been widely cited and acknowledged in the scientific community, reinforcing her influence in the field of chemistry and biological sciences.

📖 Academic Citations and Recognition

As a leading researcher, Prof. Yue’s work has been published in high-impact scientific journals, earning significant citations. Her studies on catalytic mechanisms and phytochemical discoveries continue to be referenced by researchers in organic chemistry, medicinal chemistry, and natural product research.

🛠 Technical Expertise

Prof. Yue’s expertise spans several key areas, including:

  • Catalytic chemistry and organic synthesis

  • Green chemistry and sustainable catalytic processes

  • Phytochemical analysis and natural product extraction

  • Spectroscopic techniques for chemical characterization

  • Drug discovery and bioactive compound development

👩‍🏫 Teaching and Mentorship

Beyond her research, Prof. Yue is dedicated to mentoring young scientists and researchers in the fields of chemistry and biology. She plays an active role in training postgraduate students, guiding them in experimental research, and fostering critical thinking in scientific exploration.

🚀 Legacy and Future Contributions

Prof. Yue’s ongoing research aims to further the development of sustainable catalytic processes and the discovery of novel bioactive compounds from plateau plants. Her future work will continue to integrate chemistry and biology to address challenges in pharmaceuticals, environmental sustainability, and synthetic chemistry. As a leader in her field, she remains committed to pushing the boundaries of chemical research and contributing to scientific advancements for societal benefit.

📖Notable Publications

  • Additive-free synthesis of β-keto phosphorodithioates via geminal hydro-phosphorodithiolation of sulfoxonium ylides with P₄S₁₀ and alcohols

    • Authors: Jindong Hao, Yufen Lv, Shuyue Tian, Wei Wei, Dong Yi, et al.

    • Journal: Chinese Chemical Letters

    • Year: 2024

  • Metal-free visible-light-mediated aerobic nitrooxylation for the synthesis of nitrate esters with t-BuONO

    • Authors: Yufen Lv, Jindong Hao, Jian Huang, Wei Wei, Dong Yi, et al.

    • Journal: Chemical Communications

    • Year: 2024

  • Visible-Light Photoredox-Catalyzed Difunctionalization of Alkynes with Quinoxalin-2(1H)-Ones, P₄S₁₀, and Alcohols

    • Authors: Lianhui Song, Chao Ma, Jian Huang, Wei Wei, Dong Yi, et al.

    • Journal: Journal of Organic Chemistry

    • Year: 2024

  • Characterization of alkaloids and phenolics in Nitraria roborowskii Kom. fruit by UHPLC-triple-TOF-MS/MS and its sucrase and maltase inhibitory effects

    • Authors: Di Wu, Sirong Jiang, Gongyu Wang, Xiaohui Zhao, Huilan Yue, et al.

    • Journal: Food Chemistry

    • Year: 2024

  • Extract of Silphium perfoliatum L. improves lipid accumulation in NAFLD mice by regulating AMPK/FXR signaling pathway

    • Authors: Jiyu Xu, Wenjiang Jing Jia, Guoying Zhang, Dejun Zhang, Xiaohui Zhao, et al.

    • Journal: Journal of Ethnopharmacology

    • Year: 2024

 

Xianming Zhang | Green Chemistry | Best Researcher Award -1964

Prof. Xianming Zhang | Green Chemistry | Best Researcher Award

Ordos Institute of Technology, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Prof. Zhang’s academic journey began with a strong foundation in chemical engineering, earning his Bachelor’s degree in Chemical Engineering and Technology from Inner Mongolia University. His relentless pursuit of knowledge led him to further his studies at China University of Petroleum-Beijing, where he completed both a Master’s degree in Chemical Engineering and later a Ph.D. in Chemical Engineering and Technology. This rigorous educational background has empowered him with the technical expertise and innovative mindset required to tackle complex research problems.

🏢 Professional Endeavors

At the Ordos Institute of Technology, Prof. Zhang holds the position of Professor in the Department of Chemical Engineering. In this role, he actively leads research projects and guides academic programs that bridge theoretical concepts with practical applications. His work in developing coal-based new materials and investigating novel solvents has positioned him as a key figure in chemical engineering, fostering collaborations between academia and industry.

🔬 Contributions and Research Focus

Prof. Zhang’s research is marked by a commitment to innovation. His focus on coal-based new materials opens new pathways for sustainable resource utilization, while his investigations into ionic liquids and deep eutectic solvents offer promising alternatives for green chemistry applications. By exploring catalysis and phase equilibrium, he contributes to a deeper understanding of chemical reactions and process optimization, which are critical for advancing industrial technologies and reducing environmental impacts.

📊 Impact and Influence

The impact of Prof. Zhang’s research extends beyond academia. His work influences both industrial practices and environmental strategies by promoting sustainable chemical processes. The development of novel materials and efficient catalytic processes under his guidance has not only advanced scientific understanding but also provided practical solutions that drive technological innovation. His contributions are widely recognized in scholarly circles and have a lasting influence on the future of chemical engineering.

📚 Academic Citations and Publications

Prof. Zhang’s research findings are well-documented in a range of peer-reviewed journals and academic conferences. His publications serve as a valuable resource for fellow researchers and have been extensively cited in studies related to advanced materials and chemical process engineering. This academic recognition underscores his role as a thought leader in his field.

🛠️ Technical Skills

Prof. Zhang possesses a diverse set of technical skills that include expertise in material synthesis, process engineering, and experimental design. His proficiency with modern analytical techniques and simulation tools enables him to conduct in-depth studies on the behavior of chemical systems. These skills are essential in his ongoing research, which continuously pushes the boundaries of conventional chemical engineering.

🎓 Teaching and Mentorship

An equally dedicated educator, Prof. Zhang is deeply involved in mentoring the next generation of engineers and researchers. He combines his extensive research experience with a passion for teaching, guiding graduate and undergraduate students through complex concepts in chemical engineering. His approach to education emphasizes practical problem-solving and innovative thinking, preparing students to contribute meaningfully to the scientific community.

🔮 Legacy and Future Contributions

Looking ahead, Prof. Zhang is poised to make even greater contributions to the field of chemical engineering. His pioneering research in sustainable materials and innovative chemical processes promises to drive future advancements in environmental technology and industrial efficiency. With a legacy built on academic excellence and practical innovation, Prof. Zhang continues to inspire his peers and students, ensuring that his work will have a lasting and transformative impact on both science and society.

📖Notable Publications

  • Liquid−liquid equilibrium for ternary systems of 1-Octene + 2-Hexanone + ionic liquid: Phase equilibrium measurement and correlation

    • Authors: Xianming Zhang, Yanping Li, Yongli Wu, Yunfei Wang, Panpan Yan, Zhilei Zheng, Hongyu Peng, Yuexin Chu

    • Journal: The Journal of Chemical Thermodynamics

    • Year: 2025

  • Experimental results for the vapor–liquid equilibria of (formaldehyde + 1,3,5-trioxane + methanol + salt + water) systems and comparison with predictions

    • Authors: Xianming Zhang

    • Journal: Chinese Journal of Chemical Engineering

    • Year: 2021

  • Humic Acid Removal from Water with PAC-Al30: Effect of Calcium and Kaolin and the Action Mechanisms

    • Authors: Zhen Wu, Xian Zhang, Jinglin Pang, Xianming Zhang, Juan Li, Jiding Li, Panyue Zhang

    • Journal: ACS Omega

    • Year: 2020

  • Vapor–liquid and chemical equilibria model for formaldehyde + 1,3,5-trioxane + methanol + salt + water system

    • Authors: Xianming Zhang, Yufeng Hu, Weiting Ma, Jianguang Qi, Shuqin Mo

    • Journal: Fluid Phase Equilibria

    • Year: 2020

  • Vapor–liquid and chemical equilibria model for formaldehyde–trioxane–sulfuric acid–water mixtures

    • Authors: Siqi Jiang, Xianming Zhang, Yufeng Hu, Liuyi Yin, Jianguang Qi, Chunxiao Ren, Shuqin Mo

    • Journal: Journal of Chemical Technology & Biotechnology

    • Year: 2020

  • Theoretical Studies of the Hydrogen Abstraction from Poly(oxymethylene) Dimethyl Ethers by O₂ in Relation with Cetane Number Data

    • Authors: Xianming Zhang, Yanping Li, Yufeng Hu, Jinglin Pang, Yunfei Wang, Zhen Wu

    • Journal: ACS Omega

    • Year: 2019

  • Concentration of linoleic acid from cottonseed oil by starch complexation

    • Authors: Xianming Zhang

    • Journal: Chinese Journal of Chemical Engineering

    • Year: 2019

 

Zhiqaing Yang | Thermodynamics | Best Researcher Award

Prof. Dr. Zhiqaing Yang | Thermodynamics | Best Researcher Award

Xi’an Modern Chemistry Research Institute, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Yang’s academic journey began with a Bachelor’s degree in Chemistry and Chemical Engineering from Dalian University, where he developed a strong foundation in chemical sciences. He further pursued a Master’s degree in Applied Chemistry at MCRI, under the supervision of Prof. Lu Jian, focusing on catalysis and chemical processes related to fluorine-based compounds. Seeking to expand his expertise, he completed a Ph.D. in Power Engineering and Engineering Thermodynamics from Xi’an Jiaotong University, where he worked under Prof. Jiangtao Wu, specializing in thermodynamic properties and fluid behavior in industrial applications.

🏢 Professional Endeavors

Dr. Yang has been actively involved in research and development at MCRI, holding various positions. As an Engineer in the Department of Catalysis and Chemical Process, he focused on HFO synthesis and chemical separation techniques. Later, as an Associate Researcher, he played a crucial role in the development of thermodynamic equipment and the study of HFO properties. Expanding his research internationally, he served as a Visiting Scholar at Mines ParisTech-PSL, CTP, under the supervision of Prof. Christophe Coquelet, where he conducted experimental studies on phase equilibrium for high-temperature heat pump working fluids. Currently, as a Researcher at the State Key Laboratory of Fluorine & Nitrogen Chemicals, he leads projects focused on experimental measurement and thermodynamic predictions for insulating gases and their environmental impact.

🔬 Contributions and Research Focus

Dr. Yang’s research spans across various domains, including hydrofluoroolefin (HFO) synthesis and separation, thermodynamic property analysis, high-temperature heat pump working fluids, and environmentally friendly insulating gases. His work has significantly contributed to industrial refrigerants and insulation technologies, enhancing sustainability in chemical engineering and reducing the environmental footprint of industrial processes. His efforts in process simulation and modeling of multisystem thermodynamics during HFO preparation have improved efficiency and reliability in industrial applications.

💰 Funded Research Projects

Dr. Yang has secured multiple research grants, highlighting his leadership in high-impact projects. He is the Program Director of R&D and Application of New Environmentally Friendly Insulating Gases, funded by China Southern Power Grid Co. Ltd, with a funding of 5.5 million RMB. Additionally, he led the Technical Research on the Physical and Chemical Properties of Insulating Gases, supported by Sinochem Group Co. Ltd, with a funding of 194,000 RMB. His long-term project, Thermodynamic Properties and Process Simulation of Multisystem During Hydrofluoroolefin Preparation, received another 5.5 million RMB in funding from Sinochem Group Co. Ltd. Earlier in his career, he directed research on Thermophysical Properties of Low-GWP HFO and HFC Mixtures and Their Solubility in Lubricant, funded by the Industrial Ministry of Shaanxi Province for 200,000 RMB. He has also served as a key researcher in several national projects funded by the Industry and Ministry of Science and Technology of China.

📊 Impact and Influence

Dr. Yang’s research has had a profound impact on both academic and industrial sectors. His studies on low-GWP refrigerants and insulating gases contribute directly to global environmental efforts to reduce greenhouse gas emissions. By developing sustainable alternatives to traditional high-GWP chemicals, his work aligns with international climate policies and promotes energy-efficient chemical processes. His advancements in thermodynamic modeling and experimental research have improved industrial operations and enhanced the efficiency of chemical processes in refrigeration, insulation, and heat transfer applications.

📚 Academic Citations and Publications

Dr. Yang’s research findings have been published in renowned scientific journals and presented at leading international conferences. His work is frequently cited in chemical engineering, thermodynamics, and industrial chemistry, reinforcing his reputation as a thought leader in the field.

🛠️ Technical Skills

With extensive expertise in chemical process engineering, Dr. Yang specializes in HFO synthesis, separation techniques, and thermodynamic modeling. His skill set includes experimental measurements, phase equilibrium modeling, and high-temperature heat pump fluid analysis. He is proficient in advanced analytical techniques such as chromatography, spectroscopy, and calorimetry, which are essential for his research in chemical thermodynamics and process optimization.

🎓 Teaching and Mentorship

Dr. Yang has been actively involved in mentoring graduate students and early-career researchers, sharing his expertise in fluorine-based chemistry and thermodynamics. His collaborations with international institutions and industry partners have facilitated knowledge exchange and technological advancements, fostering the next generation of chemists and engineers.

🔮 Legacy and Future Contributions

As a pioneer in green chemistry solutions, Dr. Yang aims to continue his research in environmentally friendly gases and sustainable industrial applications. His work on thermodynamic modeling and heat transfer technologies will contribute to energy-efficient, eco-friendly industrial processes. With a passion for innovation, he remains dedicated to training future experts in chemistry and chemical engineering, ensuring that his contributions leave a lasting impact on scientific progress and environmental sustainability.

📖Notable Publications

  • Investigation of vapor liquid equilibria for HFO-1336mzz(E) + HFC-1234ze(E) binary system by a novel developed cyclic-analytical apparatus

    • Authors: Zhiqiang Yang, Yuanhao Liao, Hong Yuan, Xiaobo Tang, Christophe Coquelet, Jijun Zeng, Sheng Han, Wei Zhang, Jian Lu

    • Journal: Fluid Phase Equilibria

    • Year: 2025

  • Discovery of a novel binary azeotrope with positive synergistic insulation strength as eco-friendly SF6-alternative

    • Authors: Yuyang Yao, Zhiqiang Yang, Boya Zhang, Xingwen Li, Mai Hao, Nian Tang, Dongwei Sun, Jian Lu

    • Journal: Journal of Physics D: Applied Physics

    • Year: 2025

  • Experimental measurements and correlation of vapor–liquid equilibrium data for the difluoromethane (R32) + 1,3,3,3-tetrafluoropropene (R1234ze(E)) binary system from 254 to 348 K

    • Authors: Pierre Six, Alain Valtz, Yulong Zhou, Zhiqiang Yang, Christophe Coquelet

    • Journal: Fluid Phase Equilibria

    • Year: 2024

  • Synthesis, Characterization, and Physicochemical Properties of New [Emim][BF₃X] Complex Anion Ionic Liquids

    • Authors: Jijun, Bo Zhao, Yu An, Xiao-Bo Tang, Sheng Han, Zhi-Qiang Yang, Wei Zhang, Jian Lu

    • Journal: ACS Omega

    • Year: 2024

  • Synthesis of Perfluoro Alkyl/Alkenyl Aryl Sulfide: C−S Coupling Reaction Using Hexafluoropropylene Dimer (HFPD) as a Building Block

    • Authors: Yu An, Ji‐Jun Zeng, Xiao‐Bo Tang, Bo Zhao, Sheng Han, Zhi‐Qiang Yang, Wei Zhang, Jian Lu

    • Journal: European Journal of Organic Chemistry

    • Year: 2024

  • Isothermal Vapor–Liquid Equilibrium for the Binary System of Trans-1,3,3,3-tetrafluoropropene and 1,1,1,3,3-Pentafluoropropane

    • Authors: Nian Tang, Wenguo Gu, Dongwei Sun, Xiaobo Tang, Zhiqiang Yang, Jian Lu

    • Journal: International Journal of Thermophysics

    • Year: 2023

  • Critical properties and vapor-liquid equilibrium of two near-azeotropic mixtures containing HFOs

    • Authors: Zhiqiang Yang, Alain Valtz, Christophe Coquelet, Jiangtao Wu, Jian Lu

    • Journal: International Journal of Refrigeration

    • Year: 2022

 

Xiong He | Inorganic Chemistry | Best Researcher Award

Assist. Prof. Dr. Xiong He | Inorganic Chemistry | Best Researcher Award

Guangxi University of Science and Technology, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Xiong He began his academic journey at the Harbin Institute of Technology, where he pursued a Bachelor’s degree in Nuclear Chemical Engineering (2009-2013). During this time, he gained a solid foundation in nuclear chemistry, materials science, and energy conversion technologies. His keen interest in sustainable energy led him to continue his studies at the same institution, earning a Ph.D. in Chemical Engineering and Technology (2013-2019) under the supervision of Prof. Xin Li. His doctoral research focused on the design of hierarchical TiO₂ photoanodes for dye-sensitized solar cells (DSSCs), aiming to enhance the efficiency of solar energy harvesting and conversion. This research contributed significantly to the development of improved photovoltaic materials, which are crucial for next-generation solar energy applications.

👨‍🏫 Professional Endeavors

After completing his Ph.D., Dr. Xiong He joined Guangxi University of Science and Technology in August 2019 as an Associate Professor in the School of Electronic Engineering. In this role, he has been actively engaged in both teaching and research, with a strong focus on nanomaterials, electrocatalysis, and renewable energy technologies. His work aims to bridge the gap between academic research and practical energy applications, contributing to advancements in clean energy solutions.

🔬 Contributions and Research Focus

Dr. Xiong He’s research primarily focuses on developing high-efficiency catalysts for the electrocatalytic oxygen evolution reaction (OER), a crucial process in green hydrogen production and sustainable energy systems. His work involves designing advanced nanocatalysts, optimizing material structures, and investigating reaction mechanisms to improve energy efficiency. Additionally, his earlier research on hierarchical TiO₂ photoanodes significantly contributed to the development of dye-sensitized solar cells (DSSCs), enhancing their light absorption, charge transport, and overall efficiency. His research findings provide valuable insights into material design strategies that can be applied to various energy conversion technologies.

🌍 Impact and Influence

Dr. Xiong He’s research has made a significant impact on the fields of electrocatalysis, nanotechnology, and renewable energy. His work on catalyst development has contributed to advancing hydrogen fuel production, while his contributions to DSSCs have helped improve solar energy conversion efficiency. By integrating innovative material engineering techniques, his research has provided new strategies for developing efficient, stable, and cost-effective energy solutions. His findings are widely referenced by researchers working on sustainable energy applications, making a lasting impact on the global energy landscape.

📚 Academic Citations

Dr. Xiong He has published extensively in high-impact peer-reviewed journals, and his research has been cited by scholars in the fields of electrocatalysis, nanomaterials, and renewable energy. His contributions continue to shape the development of novel materials for energy storage and conversion, reinforcing his role as a leading researcher in clean energy technologies. His work is widely recognized for its relevance to solving energy challenges and advancing the efficiency of renewable energy systems.

🛠️ Technical Skills

Dr. Xiong He possesses a strong technical background in materials science and electrochemistry. His expertise includes nanomaterial synthesis and characterization, utilizing techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). He is also proficient in electrochemical analysis methods, including cyclic voltammetry and electrochemical impedance spectroscopy, which are essential for evaluating catalyst performance. Additionally, he has experience in photovoltaic device fabrication and efficiency testing, contributing to advancements in solar energy technologies. His skills in computational modeling for catalyst design further enhance his ability to develop and optimize high-performance materials for energy applications.

🎓 Teaching Experience

As an Associate Professor at Guangxi University of Science and Technology, Dr. Xiong He is deeply involved in teaching and mentoring students. He lectures on chemical engineering, nanomaterials, and renewable energy technologies, providing students with both theoretical knowledge and practical skills. He actively supervises undergraduate and graduate research projects, guiding students in developing innovative solutions for energy challenges. His commitment to education extends to training students in advanced laboratory techniques, ensuring that they acquire hands-on experience in material synthesis and characterization. Through his mentorship, he has inspired many students to pursue careers in scientific research and clean energy innovation.

🌟 Legacy and Future Contributions

Dr. Xiong He’s future contributions are aimed at furthering research in electrocatalysis, hydrogen energy, and solar energy conversion. He plans to expand his work on high-performance catalysts, improving their efficiency and stability for large-scale applications. Additionally, he aims to collaborate with international research teams to accelerate the development of sustainable energy solutions. His long-term vision includes bridging the gap between academic research and industrial applications, ensuring that nanomaterials and electrochemical technologies contribute effectively to real-world energy challenges. By continuing to mentor the next generation of scientists and engineers, he hopes to foster innovation and drive advancements in clean energy for a more sustainable future.

📖Notable Publications

Tuning surface hydrophilicity of a BiVO4 photoanode through interface engineering for efficient PEC water splitting

Authors: S. Yu, Shuangwei; C. Su, Chunrong; Z. Xiao, Zhehui; Q. Jin, Qianqian; Z. Sun, Zijun

Journal: RSC Advances

Year: 2025

Rapid electrodeposition synthesis of partially phosphorylated cobalt iron phosphate for application in seawater overall electrolysis

Authors: J. Cai, Jiayang; D. Qu, Dezhi; X. He, Xiong; B. Zhu, Baoning; S. Yu, Shuangwei

Journal: Electrochimica Acta

Year: 2024

Construction of Heterostructured Ni3S2@V-NiFe(III) LDH for Enhanced OER Performance

Authors: Q. Dong, Qianqian; Q. Zhong, Qijun; J. Zhou, Jie; X. He, Xiong; S. Zhang, Shaohui

Journal: Molecules

Year: 2024

Employing shielding effect of intercalated cinnamate anion in NiFe LDH for stable and efficient seawater oxidation

Authors: J. Cai, Jiayang; X. He, Xiong; Q. Dong, Qianqian; Q. Jin, Qianqian; Z. Sun, Zijun

Journal: Surfaces and Interfaces

Year: 2024

 

Bunyamin Cicek | Materials Chemistry | Material Chemistry Award

Assoc. Prof. Dr. Bunyamin Cicek | Materials Chemistry | Material Chemistry Award

Hitit University, Turkey

👨‍🎓Profiles

🎓 Academic Background and Current Affiliation

Assoc. Prof. Dr. Bunyamin Cicek is a distinguished researcher in Materials Chemistry and Biomaterials, currently affiliated with Hitit University, Turkey. With extensive experience in material science, his contributions have significantly impacted the field of biomaterials and chemical engineering.

📊 Research Contributions and Focus

Dr. Cicek's research primarily revolves around materials chemistry and biomaterials, with a strong emphasis on developing advanced materials for biomedical and industrial applications. His work integrates chemical synthesis, material characterization, and application-based research, contributing to innovations in biomaterial development and material surface modifications.

🔬 Publication Metrics and Research Impact

Dr. Cicek’s research has been well recognized within the scientific community, as reflected in his publication metrics:

H-index: 8

Total Citations: 193

Total Publications: 34

Web of Science Core Collection Publications: 24

His scholarly output demonstrates his contributions to materials chemistry and the growing significance of his research in advancing biomaterial technologies.

🏆 Recognitions and Researcher Profiles

Dr. Cicek maintains an active presence in the global research community through platforms such as: Web of Science ResearcherID, ORCiD. These profiles showcase his scientific contributions, collaborations, and ongoing research endeavors, solidifying his reputation as a leading expert in materials chemistry and biomaterials.

🌍 Future Contributions and Research Vision

Dr. Cicek continues to expand the frontiers of materials science, focusing on the development of sustainable and high-performance biomaterials. His future research aims to enhance material functionalities for medical, environmental, and industrial applications, ensuring a lasting impact on the field. His dedication to scientific advancement positions him as a key contributor to cutting-edge materials research and innovation. 🚀

📖Notable Publications

  • Production of 316L stainless steel implant materials by powder metallurgy and investigation of their wear properties

    • Authors: N. Kurgan, Y. Sun, B. Cicek, H. Ahlatci
    • Journal: Chinese Science Bulletin
    • Year: 2012
  • Wear behaviours of Pb added Mg–Al–Si composites reinforced with in situ Mg₂Si particles

    • Authors: B. Çiçek, H. Ahlatçı, Y. Sun
    • Journal: Materials & Design
    • Year: 2013
  • A study on the mechanical and corrosion properties of lead added magnesium alloys

    • Authors: B. Çiçek, Y. Sun
    • Journal: Materials & Design
    • Year: 2012
  • Kinetic investigation of AISI 304 stainless steel boronized in indirect heated fluidized bed furnace

    • Authors: P. Topuz, B. Çiçek, O. Akar
    • Journal: Journal of Mining and Metallurgy, Section B: Metallurgy
    • Year: 2016
  • Effects of alloying element and cooling rate on properties of AM60 Mg alloy

    • Authors: L. Elen, B. Cicek, E. Koc, Y. Turen, Y. Sun, H. Ahlatci
    • Journal: Materials Research Express
    • Year: 2019