Abdel-Nasser Alaghaz | Inorganic Chemistry | Research Excellence Award

Prof. Abdel-Nasser Alaghaz | Inorganic Chemistry | Research Excellence Award

Jazan University | Saudi Arabia

Dr. Abdel-Nasser M. A. Alaghaz is a distinguished Egyptian chemist and Professor of Inorganic and Analytical Chemistry at Al-Azhar University, with over two decades of dedicated academic and research experience. His research primarily focuses on coordination chemistry and phosphorus-containing ligands, with a particular emphasis on cyclodiphosph(V)azane derivatives and related compounds. Dr. Alaghaz has made significant contributions to the synthesis, characterization, and biological evaluation of transition metal complexes, including Co(II), Ni(II), Cu(II), and Pd(II). His work integrates detailed physicochemical analyses, such as thermal stability, electrical conductivity, and spectral characterization (IR, UV-Vis, NMR), to explore structure–property relationships. Many of his studies have investigated the correlation between molecular structure and biological activity, highlighting potential pharmaceutical applications and advancing the development of functional materials. Over the years, he has authored numerous high-impact publications in peer-reviewed journals, showcasing novel synthetic strategies and elucidating ligand–metal interactions. Beyond research, Dr. Alaghaz is a respected educator and mentor, guiding graduate and doctoral students, shaping curricula, and fostering scientific inquiry. His work bridges fundamental inorganic chemistry and applied bioinorganic research, influencing both academic and industrial practices. By combining theoretical insights with practical innovation, Dr. Alaghaz has significantly enriched the fields of inorganic synthesis, materials chemistry, and bioinorganic applications. His groundbreaking contributions and unwavering dedication make him a prominent figure in chemistry, inspiring future generations of scientists in Egypt and internationally.

Profiles : Scopus | ORCID | Google Scholar

Featured Publications

1. Siddiq, H. A., Alkhathami, N. D., Ageeli, A. A., Mousa, I., Alenazy, D. M., Alatawi, N. M., & Alaghaz, A.-N. M. A. (2025). Synthesis and quantum chemical calculations of nano‐sized metal (III/II) complexes of furan‐based Schiff base for promising therapeutic studies: Interaction with biomolecules, antioxidant activity, in vitro cytotoxicity, apoptotic activity, and cell cycle analysis. Applied Organometallic Chemistry.

2. Alenazy, D. M., Siddiq, H. A., Alatawi, N. M., Ageeli, A. A., Alkhathami, N. D., Mousa, I., & Alaghaz, A.-N. M. A. (2025). Synthesis, DFT, spectral characterization, cell cycle, apoptosis, cytotoxicity, DNA binding/cleavage, molecular docking, and antimicrobial insights of nano‐sized Pd (II) and Cu (II) complexes with benzothiazole‐appended ligand. Applied Organometallic Chemistry.

3. Alaghaz, A.-N. M. A., Hakami, O., Alamri, A. A., Amri, N., Souadi, G., & Aldulmani, S. A. (2025). Cell cycle arrest, apoptosis assay, cytotoxicity, molecular docking, DNA binding/cleavage, and biological evaluation of Pt(II), Ni(II), Pd(II), and Cu(II) nano‐sized complexes of 2‐(6-fluorobenzo[d]thiazol‐2‐yl)phenol: Design, synthesis, and spectral approach. Applied Organometallic Chemistry.

4. Mousa, I., Madkhali, M. M. M., Siddiq, H. A., Alaghaz, A.-N. M. A., Rezk, G. N., & El-Bindary, A. A. (2025). Synthesis, characterization, DFT calculations, and pharmacological activity of azo dye ligand and its Cu(II) complex comprising nitrogen and oxygen donor atoms. Applied Organometallic Chemistry.

5. Alkhathami, N. D., Alenazy, D. M., Mousa, I., Alatawi, N. M., Siddiq, H. A., Ageeli, A. A., & Alaghaz, A.-N. M. A. (2025). Design, synthesis, DFT, and biological evaluation of nano‐sized Pt(II) and Cu(II) complexes of 2‐(benzo[d]oxazol‐2‐yl)phenylphosphoramidic dichloride: Spectral analysis, cell cycle arrest, apoptosis assay, cytotoxicity, and DNA binding/cleavage. Applied Organometallic Chemistry.

Myrtil Kahn | Coordination Chemistry | Best Researcher Award

Dr. Myrtil Kahn | Coordination Chemistry | Best Researcher Award

CNRS | France

Profiles

Scopus
Orcid

Early Academic Pursuits

Dr. Myrtil L. Kahn began her academic journey with a PhD in molecular compounds, under the supervision of a renowned expert in the field of coordination chemistry. Her doctoral work laid a strong foundation in molecular chemistry, which she later expanded into interdisciplinary domains. Her postdoctoral research included advanced work on ferrite nanoparticles and intermetallic particles, which positioned her at the intersection of nanoscience, materials chemistry, and applied physics.

Professional Endeavors

Following her postdoctoral experience, Dr. Kahn joined CNRS and quickly rose through the ranks to become a Senior Scientist and Research Director. She currently leads the “Nano-chemistry, Organization, and Sensors” team at the Laboratory of Coordination Chemistry (LCC) and also co-directs a multidisciplinary research initiative in collaboration with another leading national laboratory. This joint effort culminated in the establishment of a CNRS-affiliated joint research laboratory, reflecting her leadership in managing strategic partnerships with key industrial and governmental stakeholders, including aerospace and space agencies.

Contributions and Research Focus

Dr. Kahn’s research centers on nanoscience and its application to broad societal challenges such as energy, environment, space, aeronautics, and health. She has significantly contributed to the design and synthesis of hybrid nano-objects and multifunctional coatings. Her work focuses on controlling the structural and functional properties of nanoparticles particularly semiconductor and magnetic oxides and integrating them into real-world devices. Utilizing a safe-by-design philosophy, she innovates at the interface of molecular chemistry, surface science, and nanotechnology. Her research also emphasizes understanding surface-ligand interactions through advanced techniques like NMR spectroscopy, which is crucial for ensuring colloidal stability and optimizing material behavior in biological and industrial environments.

Impact and Influence

Dr. Kahn has established herself as a leader in applied nanosciences, successfully bridging fundamental chemistry with device integration. Her research has attracted substantial funding through over thirty competitive contracts, nearly half of which involve industrial collaborations. These projects have led to multiple patents with international extensions, showcasing her commitment to innovation and knowledge transfer. Beyond scientific output, her leadership in organizing large-scale conferences and her role in interdisciplinary teams underscore her influence across both academic and industrial landscapes.

Academic Citations

Her research excellence is reflected in her strong citation metrics. With thousands of citations and an impressive h-index, her work enjoys sustained recognition in the global scientific community. She has authored more than a hundred publications in peer-reviewed international journals, contributed to several book chapters, and is actively involved in reviewing and editorial responsibilities within leading scientific events and journals.

Technical Skills

Dr. Kahn possesses deep technical expertise in organometallic synthesis, nanoparticle surface chemistry, colloidal stability, and functional coatings. She has extensive experience in spectroscopic analysis, particularly NMR, for the investigation of ligand dynamics and surface coordination. Her proficiency extends to hybrid material fabrication, integration of nanoparticles into sensors and devices, and the development of safe-by-design methodologies. This multidisciplinary toolkit enables her to work effectively at the interface of chemistry, physics, and biology.

Teaching Experience

While her primary role is research-intensive, Dr. Kahn actively contributes to mentoring young researchers and postdoctoral fellows. She fosters scientific development through collaborative research, co-authorship, and direct supervision. Her mentorship style is marked by encouraging innovation and interdisciplinary approaches, preparing early-career scientists for careers in both academia and industry.

Legacy and Future Contributions

Dr. Kahn’s legacy is one of impactful science, interdisciplinary collaboration, and societal relevance. Her commitment to applied nanoscience has led to the development of novel materials and processes with potential applications in biotechnology, aerospace, and environmental technology. As co-director of a cutting-edge joint research lab, she continues to expand her collaborative reach, ensuring that her contributions influence the next generation of researchers. Her ongoing projects in multifunctional nanocomposites and hybrid processes promise continued breakthroughs in high-performance materials.

Notable Publications

Competition between ordered morphologies of functionalized silver nanoparticles elucidated by a joint experimental and multiscale theoretical study

Authors: David Loffreda; Nathalie Tarrat; Corinne Lacaze‑Dufaure; Franck Rabilloud; Katia Fajerwerg; Myrtil L. Kahn; Vincent Collière; Christine Lepetit; Pierre Fau
Journal: Nano Today
Year: 2025

Understanding Ion‑Exchange Processes in the Synthesis of ZnSₓ@ZnO₁₋ₓ Heterostructures from Controlled Sulfidation of ZnO Nanocrystals

Authors: Ekaterina Bellan; Martin Jakoobi; Vincent Collière; Yannick Coppel; Julien Trébosc; Olivier Lafon; Pierre Lecante; Paul Fleurat‑Lessard; Céline Dupont; Jean‑Cyrille Hierso; Pierre Fau; Katia Fajerwerg; Lauriane Pautrot‑d’Alençon; Thierry Le Mercier; Myrtil L. Kahn
Journal: Chemistry of Materials
Year: 2024

Spontaneous Emulsification of Organometallic Complexes Applied to the Synthesis of Nanocapsules Active for H₂ Release from Ammonia‑Borane

Authors: Olivier Gazil; Ludivine Rault; Déborah Iglicki; Vincent Collière; Gizem Karacaoglan; Didier Poinsot; Moad Bouzid; Jean‑Cyrille Hierso; Myrtil L. Kahn; Nick Virgilio; Fabienne Gauffre
Journal: Langmuir (The ACS Journal of Surfaces and Colloids)
Year: 2024

Synthesis of TiO₂/SBA‑15 Nanocomposites by Hydrolysis of Organometallic Ti Precursors for Photocatalytic NO Abatement

Authors: Ons El Atti; Julie Hot; Katia Fajerwerg; Christian Lorber; Bénédicte Lebeau; Andrey Ryzhikov; Myrtil L. Kahn; Vincent Collière; Yannick Coppel; Nicolas Ratel‑Ramond; Philippe Ménini; Pierre Fau
Journal: Inorganics
Year: 2024

Conclusion

Dr. Myrtil L. Kahn stands as a prominent figure in nanoscience and coordination chemistry. Her pioneering research, strong industrial collaborations, and leadership in both national and international scientific communities demonstrate her eligibility for high-level scientific honors. Through her interdisciplinary vision and dedication to real-world impact, she continues to shape the future of materials science and remains an exemplary model for academic and industrial synergy.

 

Georgy Mochalov | Inorganic Chemistry | Best Researcher Award

Prof. Dr. Georgy Mochalov | Inorganic Chemistry | Best Researcher Award

Nizhny Novgorod State Technical University named after R.E. Alekseev, Russia

👨‍🎓Profiles

🎓 Early Academic Pursuits

Prof. Dr. Georgy Mochalov began his academic journey at the prestigious National Research Lobachevsky State University of Nizhny Novgorod, where he laid a strong foundation in the field of chemical sciences. Further sharpening his expertise, he underwent professional training at the G.G. Devyatykh Institute of Chemistry of High-Purity Substances under the Russian Academy of Sciences. This early academic background equipped him with the critical knowledge needed for his future pioneering work in high-purity chemical production.

💼 Professional Endeavors

With an impressive career spanning over 50 years, Prof. Dr. Mochalov has devoted his professional life to the advancement of chemical technologies, specifically focusing on the development of processes for synthesizing and purifying high-purity volatile silicon compounds and alkyl organometallic compounds. His professional journey is closely linked to Nizhny Novgorod State Technical University named after R.E. Alekseev, Russia, where he has played a significant role in both academic and industrial research.

🔬 Contributions and Research Focus

Prof. Dr. Mochalov is recognized for his outstanding contributions in developing technologies for the synthesis, deep purification, and analysis of high-purity volatile substances. His research focuses primarily on alkyl compounds of cadmium, zinc, tellurium, as well as hydrides and chlorides of silicon. His work also addresses the vital need for safe and sustainable waste disposal methods for hazardous materials such as silicon and germanium tetrachlorides.

🌍 Impact and Influence

Through his research and innovations, Prof. Dr. Mochalov has greatly influenced the fields of materials science and semiconductor technology. His development of high-pressure distillation processes for purifying silane and the creation of gas chromatographic methods for analyzing various volatile compounds has had a profound impact on both academia and industry, particularly in the production of ultra-pure substances critical for advanced electronic applications.

🏆 Patents and Industry Contributions

A prolific innovator, Prof. Dr. Mochalov holds 9 patents related to the synthesis and purification of volatile compounds and waste treatment technologies. His consultancy and industry engagements span 3 major projects, underscoring his role as a trusted expert for advancing technological solutions in industrial chemistry.

🧪 Technical Skills

Prof. Dr. Mochalov is skilled in developing gas chromatographic analytical techniques, high-pressure distillation processes, and designing systems for synthesizing and purifying high-purity silicon-based and organometallic compounds. His technical acumen has been instrumental in creating scalable solutions for both laboratory and industrial applications.

👨‍🏫 Teaching Experience

Alongside his research, Prof. Dr. Mochalov has mentored and guided students and young researchers at Nizhny Novgorod State Technical University. His teaching experience is enriched by decades of hands-on research and development, making him a valued academician and mentor in his department.

🌟 Legacy and Future Contributions

Prof. Dr. Mochalov’s legacy lies in his significant advancements in high-purity compound synthesis and purification, which continue to influence semiconductor and materials industries globally. Looking forward, he aims to further innovate in the field of waste management and green chemistry by enhancing methods for the safe and efficient disposal of toxic chlorides and organometallic by-products.

📖Notable Publications

Promising Catalyst for Chlorosilane Dismutation
Authors: O. Zhuchok, Y. Stolmakov, A.A. Kalinina, N. Maleev, G.M. Mochalov
Journal: Sci
Year: 2024

Plasma-Chemical Disposal of Silicon and Germanium Tetrachlorides Waste by Hydrogen Reduction
Authors: R.A. Kornev, I.B. Gornushkin, L.V. Shabarova, D. Belousova, N. Maleev
Journal: Sci
Year: 2024

Synthesis, Structure, and Biological Activity of the Germanium Dioxide Complex Compound with 2-Amino-3-Hydroxybutanoic Acid
Authors: A.V. Kadomtseva, G.M. Mochalov, M.A. Zasovskaya, A.M. Ob’’edkov
Journal: Inorganics
Year: 2024