Rodouan Touti | Computational Modeling | Research Excellence Award

Prof. Dr. Rodouan Touti | Computational Modeling | Research Excellence Award

Faculty of sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah | Morocco

Touti Rodouan is a physicist whose research spans radiation protection, medical physics, and computational materials science. His work focuses on dosimetry and assessment of radiation doses resulting from ingestion, inhalation, and topical application of radioactive substances, using solid-state nuclear track detectors such as CR-39 and LR-115. In parallel, he applies density functional theory (DFT) to investigate the structural, electronic, elastic, and optical properties of advanced materials, particularly lead-free perovskites for energy storage, optoelectronic, and photovoltaic applications. His research integrates experimental radiation measurements with first-principles modeling to address health, environmental, and sustainable energy challenges.

Citation Metrics (Scopus)

200
 150
 100
  50
     0

Citations
163

Documents
31

h-index
7

Citations

Documents

h-index

View Scopus Profile View ORCID Profile View Google Scholar Profile

Featured Publications

José Piñero | Physical Chemistry | Research Excellence Award

Prof. Dr. José Piñero | Physical Chemistry | Research Excellence Award

University of Cadiz  | Spain

Dr. José Carlos Piñero Charlo is a theoretical physicist specializing in physical chemistry and surface science, with strong expertise in advanced materials characterization. His research integrates theoretical modeling with high-resolution experimental techniques, particularly X-ray Photoelectron Spectroscopy, to elucidate surface terminations and electronic properties of semiconductor materials. He has made significant contributions to diamond-based power electronics, energy harvesting systems, and quantum sensing technologies. His recent work on perovskite quantum dots advances optoelectronic performance, reinforcing his interdisciplinary impact across materials science, nanotechnology, and energy applications.

Citation Metrics (Scopus)

  1000
  700
  400
   100
     0

Citations
906

Documents
49

h-index
16

Citations

Documents

h-index

View Scopus Profile View ORCID Profile View Google Scholar Profile

Featured Publications

Thet Naing Myint | Chemical Engineering | Research Excellence Award

Dr. Thet Naing Myint | Chemical Engineering | Research Excellence Award

MUCTR | Russia

Dr. Thet Naing Myint is a Chemical Engineer at D.I. Mendeleyev University of Chemical Technology of Russia, specializing in advanced inorganic binders and corrosion-resistant composite cement systems. He completed his PhD in Chemical Engineering with a dissertation focused on the development of composite cements with high corrosion resistance. Building on this foundation, he is currently pursuing a Doctor of Chemical Engineering degree, investigating the physicochemical principles governing the design of durable composite binders for concrete applications. His research addresses critical challenges in modern construction, particularly the degradation of concrete structures in aggressive chemical and environmental conditions. Dr. Myint integrates material chemistry, binder technology, and applied engineering to enhance durability, sustainability, and service life of concrete infrastructure. He has published his findings in peer-reviewed international journals, contributed to scholarly book publications, and holds patents related to corrosion-resistant cement formulations. Through academic and industrial collaborations in Russia and Myanmar, his work aims to translate fundamental research into practical solutions for global infrastructure development and long-term structural resilience.

View ORCID Profile

Featured Publication

Tun Naw Sut | Surface Chemistry | Best Researcher Award

Dr. Tun Naw Sut | Surface Chemistry | Best Researcher Award

Sungkyunkwan University | South Korea

Dr. Sut Tun Naw is an accomplished interdisciplinary researcher whose work advances the frontiers of nanotechnology, biomimetic materials, and lipid-based membrane engineering for biomedical and diagnostic applications. With a dual Ph.D. in Nanomedicine from Nanyang Technological University and Chemical Engineering from Sungkyunkwan University, he brings a uniquely integrated perspective to studying molecular interactions at biointerfaces. His research focuses on lipid self-assembly, supported lipid bilayers, membrane biophysics, plasmonic biosensing, antimicrobial nanostructures, and virus–membrane interactions. Dr. Sut’s contributions have significantly deepened scientific understanding of how lipid organization, membrane curvature, cholesterol content, and multivalency govern nanoscale membrane behavior. Using advanced biophysical tools including QCM-D, nanoplasmonic sensing, and engineered membrane platforms he has elucidated mechanisms underlying vesicle deformation, antimicrobial lipid synergy, protein adsorption, and virus-mimicking membrane disruption. His innovative work includes designing lipid bicelle nanostructures for antibacterial applications, developing solvent-free fabrication of antimicrobial lipid nanoparticles, and engineering hybrid supported lipid bilayers for biosensing and antiviral technologies. He has also contributed to translational research through the development of next-generation plasmonic sensor platforms for virus detection, lipid-based coatings for diagnostic assays, and membrane-mimetic structures for therapeutic delivery. With over 50 peer-reviewed publications in high-impact journals such as ACS Nano, Advanced Healthcare Materials, Langmuir, Chemical Engineering Journal, and Applied Materials Today, Dr. Sut has established himself as a leading young scientist in membrane engineering and nanobiotechnology. His roles as Guest Editor and Topic Editor further reflect his influence within the scientific community. Through creativity, rigorous experimentation, and interdisciplinary collaboration, Dr. Sut Tun Naw continues to pioneer breakthroughs with broad implications for diagnostics, virology, nanomedicine, and biomolecular engineering.

Profiles : Scopus | ORCID | Google Scholar

Featured Publications

Sut, T. N., Yoon, B. K., & Jackman, J. A. (2025). Synergistic membrane disruption of E. coli tethered lipid bilayers by antimicrobial lipid mixtures. Biomimetics, 10, 739.

Lee, C. J., Jannah, F., Sut, T. N., Haris, M., & Jackman, J. A. (2025). Curvature-sensing peptides for virus and extracellular vesicle applications. ACS Nano, 19, 36845–36875.

Kim, D., Baek, H., Lim, S. Y., Lee, M. S., Lyu, S., Lee, J., Sut, T. N., Gonçalves, M., Kang, J. Y., Jackman, J. A., & Kim, J. W. (2025). Mechanobiologically engineered mimicry of extracellular vesicles for improved systemic biodistribution and anti-inflammatory treatment efficacy in rheumatoid arthritis. Advanced Healthcare Materials, 14, 2500795.

Molla, A., Sut, T. N., Yoon, B. K., & Jackman, J. A. (2025). Headgroup-driven binding selectivity of alkylphospholipids to anionic lipid bilayers. Colloids and Surfaces B: Biointerfaces, 255, 114964.

Ruano, M., Sut, T. N., Tan, S. W., Mullen, A. B., Kelemen, D., Ferro, V. A., & Jackman, J. A. (2025). Solvent-free microfluidic fabrication of antimicrobial lipid nanoparticles. ACS Applied Bio Materials, 8, 2194–2203.

 

Jianguang Xiao | Materials Chemistry | Best Researcher Award

Prof. Jianguang Xiao | Materials Chemistry | Best Researcher Award

North University of China | China

Dr. Jianguang Xiao is an Associate Professor of Ordnance Science and Technology at North University of China, Ph.D., and supervisor for master’s degree candidates. Recognized as a Young Outstanding Talent of Shanxi Province’s “Sanjin Elite” Program, Dr. Xiao has made significant contributions to the study of reactive materials, explosion and shock dynamics, and target vulnerability assessment, particularly for UAVs, vehicles, and ammunition systems. His research integrates mechanics, thermotics, and chemistry, providing advanced modeling and simulation methods for reactive material behavior under high-velocity impact, energy release, and deflagration conditions. Dr. Xiao has led and participated in over twenty vertical and horizontal research projects, including funding from the National Natural Science Foundation of China, National Defense Foundation Projects, and Shanxi Provincial Natural Science Foundation. Notable projects include studies on the preparation and energy release characteristics of Tetrafluoroethylene-Hexafluoropropylene-Vinylidene Fluoride-based reactive materials and the development of integrated shock/deflagration material models. He has authored 28 high-level academic documents, including SCI and EI journal papers, one academic monograph, and holds three invention patents. His work has garnered 391 citations from 279 documents, achieving an h-index of 10, reflecting the significant impact of his research on the field of reactive materials and defense engineering. Dr. Xiao’s publications cover topics such as molecular dynamics simulation of chemical reactions, impact-induced deflagration behavior, and enhanced damage effects of reactive materials on concrete targets. Beyond research, Dr. Xiao actively contributes to the academic community. He serves on the youth editorial boards of journals including Journal of China Ordnance, Aeronautical Weaponry, and Journal of North University of China, and is a peer reviewer for prominent journals like Defence Technology and International Journal of Impact Engineering. He has been consecutively recognized as an Excellent Reviewer by multiple journals, emphasizing his commitment to maintaining high scholarly standards. Dr. Xiao’s interdisciplinary expertise, innovative contributions to reactive materials research, and active academic engagement make him a leading figure in his field, demonstrating both scientific excellence and practical impact.

Profiles : Scopus | ORCID | Research Gate

Featured Publications

  • Xiao, J., Zhang, J., Ma, J., et al. (2024). Mechanics–thermotics–chemistry coupling response model and numerical simulation of reactive materials under impact load. Advances in Engineering Software, 192, 103647.

  • An, D., Xiao, J.*, Ma, J., et al. (2024). Molecular dynamics simulation of chemical reactions in polytetrafluoroethylene-based reactive materials. Journal of North University of China (Natural Science Edition), 45(02), 222–228.

  • Nie, Z., Xiao, J., Wang, Y., & Xie, Z. (2022). Mechanical properties and ignition reaction characteristics of THV-based reactive materials. Journal of China Ordnance, 43(12), 3030.

  • Xiao, J., Nie, Z., Wang, Z., Du, Y., & Tang, E. (2020). Energy release behavior of Al/PTFE reactive materials powder in a closed chamber. Journal of Applied Physics, 127(16), 165106.

  • Xiao, J., Wang, Z., Nie, Z., Tang, E., & Zhang, X. (2020). Evaluation of Hugoniot parameters for unreacted Al/PTFE reactive materials by modified SHPB test. AIP Advances, 10(4), 045211.

 

Zhiqaing Yang | Thermodynamics | Best Researcher Award

Prof. Dr. Zhiqaing Yang | Thermodynamics | Best Researcher Award

Xi’an Modern Chemistry Research Institute, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Yang’s academic journey began with a Bachelor’s degree in Chemistry and Chemical Engineering from Dalian University, where he developed a strong foundation in chemical sciences. He further pursued a Master’s degree in Applied Chemistry at MCRI, under the supervision of Prof. Lu Jian, focusing on catalysis and chemical processes related to fluorine-based compounds. Seeking to expand his expertise, he completed a Ph.D. in Power Engineering and Engineering Thermodynamics from Xi’an Jiaotong University, where he worked under Prof. Jiangtao Wu, specializing in thermodynamic properties and fluid behavior in industrial applications.

🏢 Professional Endeavors

Dr. Yang has been actively involved in research and development at MCRI, holding various positions. As an Engineer in the Department of Catalysis and Chemical Process, he focused on HFO synthesis and chemical separation techniques. Later, as an Associate Researcher, he played a crucial role in the development of thermodynamic equipment and the study of HFO properties. Expanding his research internationally, he served as a Visiting Scholar at Mines ParisTech-PSL, CTP, under the supervision of Prof. Christophe Coquelet, where he conducted experimental studies on phase equilibrium for high-temperature heat pump working fluids. Currently, as a Researcher at the State Key Laboratory of Fluorine & Nitrogen Chemicals, he leads projects focused on experimental measurement and thermodynamic predictions for insulating gases and their environmental impact.

🔬 Contributions and Research Focus

Dr. Yang’s research spans across various domains, including hydrofluoroolefin (HFO) synthesis and separation, thermodynamic property analysis, high-temperature heat pump working fluids, and environmentally friendly insulating gases. His work has significantly contributed to industrial refrigerants and insulation technologies, enhancing sustainability in chemical engineering and reducing the environmental footprint of industrial processes. His efforts in process simulation and modeling of multisystem thermodynamics during HFO preparation have improved efficiency and reliability in industrial applications.

💰 Funded Research Projects

Dr. Yang has secured multiple research grants, highlighting his leadership in high-impact projects. He is the Program Director of R&D and Application of New Environmentally Friendly Insulating Gases, funded by China Southern Power Grid Co. Ltd, with a funding of 5.5 million RMB. Additionally, he led the Technical Research on the Physical and Chemical Properties of Insulating Gases, supported by Sinochem Group Co. Ltd, with a funding of 194,000 RMB. His long-term project, Thermodynamic Properties and Process Simulation of Multisystem During Hydrofluoroolefin Preparation, received another 5.5 million RMB in funding from Sinochem Group Co. Ltd. Earlier in his career, he directed research on Thermophysical Properties of Low-GWP HFO and HFC Mixtures and Their Solubility in Lubricant, funded by the Industrial Ministry of Shaanxi Province for 200,000 RMB. He has also served as a key researcher in several national projects funded by the Industry and Ministry of Science and Technology of China.

📊 Impact and Influence

Dr. Yang’s research has had a profound impact on both academic and industrial sectors. His studies on low-GWP refrigerants and insulating gases contribute directly to global environmental efforts to reduce greenhouse gas emissions. By developing sustainable alternatives to traditional high-GWP chemicals, his work aligns with international climate policies and promotes energy-efficient chemical processes. His advancements in thermodynamic modeling and experimental research have improved industrial operations and enhanced the efficiency of chemical processes in refrigeration, insulation, and heat transfer applications.

📚 Academic Citations and Publications

Dr. Yang’s research findings have been published in renowned scientific journals and presented at leading international conferences. His work is frequently cited in chemical engineering, thermodynamics, and industrial chemistry, reinforcing his reputation as a thought leader in the field.

🛠️ Technical Skills

With extensive expertise in chemical process engineering, Dr. Yang specializes in HFO synthesis, separation techniques, and thermodynamic modeling. His skill set includes experimental measurements, phase equilibrium modeling, and high-temperature heat pump fluid analysis. He is proficient in advanced analytical techniques such as chromatography, spectroscopy, and calorimetry, which are essential for his research in chemical thermodynamics and process optimization.

🎓 Teaching and Mentorship

Dr. Yang has been actively involved in mentoring graduate students and early-career researchers, sharing his expertise in fluorine-based chemistry and thermodynamics. His collaborations with international institutions and industry partners have facilitated knowledge exchange and technological advancements, fostering the next generation of chemists and engineers.

🔮 Legacy and Future Contributions

As a pioneer in green chemistry solutions, Dr. Yang aims to continue his research in environmentally friendly gases and sustainable industrial applications. His work on thermodynamic modeling and heat transfer technologies will contribute to energy-efficient, eco-friendly industrial processes. With a passion for innovation, he remains dedicated to training future experts in chemistry and chemical engineering, ensuring that his contributions leave a lasting impact on scientific progress and environmental sustainability.

📖Notable Publications

  • Investigation of vapor liquid equilibria for HFO-1336mzz(E) + HFC-1234ze(E) binary system by a novel developed cyclic-analytical apparatus

    • Authors: Zhiqiang Yang, Yuanhao Liao, Hong Yuan, Xiaobo Tang, Christophe Coquelet, Jijun Zeng, Sheng Han, Wei Zhang, Jian Lu

    • Journal: Fluid Phase Equilibria

    • Year: 2025

  • Discovery of a novel binary azeotrope with positive synergistic insulation strength as eco-friendly SF6-alternative

    • Authors: Yuyang Yao, Zhiqiang Yang, Boya Zhang, Xingwen Li, Mai Hao, Nian Tang, Dongwei Sun, Jian Lu

    • Journal: Journal of Physics D: Applied Physics

    • Year: 2025

  • Experimental measurements and correlation of vapor–liquid equilibrium data for the difluoromethane (R32) + 1,3,3,3-tetrafluoropropene (R1234ze(E)) binary system from 254 to 348 K

    • Authors: Pierre Six, Alain Valtz, Yulong Zhou, Zhiqiang Yang, Christophe Coquelet

    • Journal: Fluid Phase Equilibria

    • Year: 2024

  • Synthesis, Characterization, and Physicochemical Properties of New [Emim][BF₃X] Complex Anion Ionic Liquids

    • Authors: Jijun, Bo Zhao, Yu An, Xiao-Bo Tang, Sheng Han, Zhi-Qiang Yang, Wei Zhang, Jian Lu

    • Journal: ACS Omega

    • Year: 2024

  • Synthesis of Perfluoro Alkyl/Alkenyl Aryl Sulfide: C−S Coupling Reaction Using Hexafluoropropylene Dimer (HFPD) as a Building Block

    • Authors: Yu An, Ji‐Jun Zeng, Xiao‐Bo Tang, Bo Zhao, Sheng Han, Zhi‐Qiang Yang, Wei Zhang, Jian Lu

    • Journal: European Journal of Organic Chemistry

    • Year: 2024

  • Isothermal Vapor–Liquid Equilibrium for the Binary System of Trans-1,3,3,3-tetrafluoropropene and 1,1,1,3,3-Pentafluoropropane

    • Authors: Nian Tang, Wenguo Gu, Dongwei Sun, Xiaobo Tang, Zhiqiang Yang, Jian Lu

    • Journal: International Journal of Thermophysics

    • Year: 2023

  • Critical properties and vapor-liquid equilibrium of two near-azeotropic mixtures containing HFOs

    • Authors: Zhiqiang Yang, Alain Valtz, Christophe Coquelet, Jiangtao Wu, Jian Lu

    • Journal: International Journal of Refrigeration

    • Year: 2022

 

Zhongsheng Wang | Chemical Engineering | Best Researcher Award

Mr. Zhongsheng Wang | Chemical Engineering | Best Researcher Award

Central South University, China

👨‍🎓Profiles

🔬 Academic and Professional Background

Mr. Zhongsheng Wang is a Doctoral Candidate at Central South University, specializing in lithium battery electrolyte research. His academic journey has been marked by significant contributions to battery technology and regulation. His work has led to publications in high-impact journals, reflecting his dedication to advancing the field of energy storage.

⚡ Research and Innovations

Mr. Wang focuses on lithium battery electrolytes, with a particular interest in low-temperature lithium battery technology. His research explores novel strategies to improve battery performance, efficiency, and durability in extreme conditions. He has contributed to understanding battery interfacial reactions, proposing the bond-level control theory for electrode-electrolyte interfaces.

🏆 Completed/Ongoing Research Projects

His research spans various aspects of battery technology, including battery regulation techniques. As part of the Central South University Graduate Innovation Program, he has led multiple projects aimed at improving lithium battery performance in low-temperature environments.

📊 Citation Index and Contributions

Mr. Wang’s research has been recognized in the scientific community, with his work accumulating 8 citations. He has successfully analyzed battery system evolution processes and developed multiple low-temperature lithium battery systems, contributing to advancements in battery theory.

📑 Patents and Publications

Mr. Wang has published several papers in prestigious journals, including Advanced Functional Materials, Energy Material Advances, EcoMat, Journal of Alloys and Compounds, and Chemical Science. His innovative research has also resulted in two patents, further demonstrating his impact in the field.

🤝 Collaborations

Mr. Wang has collaborated with researchers on multiple studies, leading to publications in renowned journals such as Advanced Functional Materials and Colloids and Interface Chemistry in Chemical Science. These collaborations have strengthened the research and development of next-generation lithium batteries.

🔍 Areas of Research

  • Lithium Battery Electrolytes

  • Low-Temperature Lithium Battery Technology

  • Electrode-Electrolyte Interface Reactions

  • Battery Regulation Techniques

🌟 Future Contributions

Mr. Wang’s research continues to push the boundaries of battery technology, particularly in developing novel electrolyte formulations that enhance lithium battery performance at low temperatures. His work is expected to have a lasting impact on energy storage solutions, paving the way for next-generation batteries with improved efficiency and reliability.

📖Notable Publications

Md. Khalid Hossain Shishir | Nanotechnology | Best Researcher Award -1889

Mr. Md. Khalid Hossain Shishir | Nanotechnology | Best Researcher Award

Islamic University, Bangladesh

👨‍🎓Profiles

🎓 Early Academic Pursuits

Md. Khalid Hossain Shishir’s academic journey began with an exceptional performance in secondary and higher secondary education. He completed his Secondary School Certificate (SSC) in 2014 and Higher Secondary Certificate (HSC). These formative years laid a strong foundation in science, fostering his passion for applied chemistry and nanotechnology. Pursuing higher education at Islamic University, Kushtia, Bangladesh, he embarked on a Bachelor of Science (Engineering) in Applied Chemistry & Chemical Engineering. He displayed excellence in both theoretical and practical aspects of the discipline. He further enhanced his expertise by enrolling in a Master of Science (Engineering).

🏆 Professional Endeavors

Md. Khalid Hossain Shishir’s professional aspirations align with his strong academic background. He aims to contribute to the nanotechnology sector, focusing on its applications in biomedicine and environmental sustainability. His career objective reflects his determination to engage in multidisciplinary research, seeking innovative solutions through nanomaterials and biopolymer-based technologies. His commitment to excellence was recognized through the Dean’s Award (2024), where he was honored as the top-ranking student in the Faculty of Engineering and Technology at Islamic University, Kushtia.

🔬 Contributions and Research Focus

Shishir’s research primarily revolves around nanotechnology, biopolymers, and environmental remediation. His M.Sc. thesis, titled “Biopolymer-mediated Synthesis of Copper Oxide Nanoparticles: Antibacterial and Photocatalytic Properties”, delves into the potential of nanomaterials in antibacterial applications and photocatalytic degradation. Under the supervision of Dr. Gazi Md. Arifuzzaman Khan, his research investigates sustainable methods of nanoparticle synthesis, contributing to the advancement of green nanotechnology.

For his B.Sc. project, he worked on the “Hydrolytic Degradation of Cellulose: Viscometric Analysis”, which explored the breakdown of cellulose fibers and their impact on industrial applications. This project provided him with a strong understanding of polymer chemistry and degradation mechanisms.

🌍 Impact and Influence

Md. Khalid Hossain Shishir’s research has a far-reaching impact in multiple scientific domains:
✅ Biomedical Applications – Developing antibacterial nanoparticles that can be used in wound healing, coatings, and medical devices.
✅ Environmental Remediation – Employing nanomaterials for wastewater treatment through photocatalysis.
✅ Sustainable Chemistry – Utilizing biopolymers to create eco-friendly nanomaterials, reducing reliance on synthetic chemicals.

His work contributes significantly to the global shift toward green chemistry and sustainable engineering, addressing some of the most pressing environmental and healthcare challenges.

📚 Academic Citations and Publications

His research is expected to gain recognition in peer-reviewed journals and international conferences, adding to the body of knowledge in nanotechnology and applied chemistry. His dedication to scientific inquiry and innovation ensures that his findings will be referenced in future studies related to biopolymer-based nanomaterials.

🛠️ Technical Skills

Shishir has acquired a diverse set of technical and analytical skills, including:
✔ Nanomaterial Synthesis & Characterization (Copper Oxide Nanoparticles, Biopolymer-based Nanotechnology)
✔ Spectroscopy & Microscopy Techniques (UV-Vis, FTIR, SEM, XRD)
✔ Chemical Engineering Principles (Photocatalysis, Biopolymer Degradation)
✔ Analytical Techniques (Viscometric Analysis, Hydrolytic Degradation)
✔ Software Proficiency (ChemDraw, MATLAB, OriginPro)

🎓 Teaching and Mentorship

Beyond his research, Shishir is passionate about mentoring and teaching. He has actively engaged in:
🔹 Assisting junior students in laboratory research and analytical techniques.
🔹 Conducting academic discussions on nanomaterials and chemical engineering principles.
🔹 Providing guidance on research methodologies and scientific writing.

His ability to simplify complex scientific concepts makes him an effective mentor and educator, shaping the next generation of researchers in nanotechnology.

🚀 Legacy and Future Contributions

Looking ahead, Md. Khalid Hossain Shishir envisions a career that merges academic research with industrial innovation. His goal is to:
🔬 Advance sustainable nanotechnology by exploring novel biopolymer-based nanomaterials.
🏥 Develop biomedical applications of nanotechnology, particularly in antibacterial and drug delivery systems.
🌏 Contribute to environmental sustainability by implementing nanomaterials for wastewater treatment and pollution control.
📖 Publish high-impact research in top-tier journals to enhance global knowledge on green chemistry and nanoscience.

📖Notable Publications

Crystallographic biography on nanocrystalline phase of polymorphs titanium dioxide (TiO₂): A perspective static review

Authors: SI Sadia, MKH Shishir, S Ahmed, AR Aidid, MM Islam, MM Rana, …

Journal: South African Journal of Chemical Engineering

Year: 2024

Transmission electron microscopic and X-ray diffraction based study of crystallographic bibliography demonstrated on silver, copper and titanium nanocrystals: State of the Art

Authors: MKH Shishir, SI Sadia, S Ahmed, AR Aidid, MM Rana, MM Hasan, …

Journal: Asian Journal of Applied Chemistry Research

Year: 2024

Stoichiometry crystallographic phase analysis and crystallinity integration of silver nanoparticles: A Rietveld refinement study

Authors: MR Al-Mahmud, MKH Shishir, S Ahmed, S Tabassum, SI Sadia, …

Journal: Journal of Crystal Growth

Year: 2024

Green synthesis of crystalline silver nanoparticle by bio-mediated plant extract: A critical perspective analysis

Authors: SI Sadia, MKH Shishir, S Ahmed, MA Alam, SM Al-Reza, S Afrin, …

Journal: Nano-Structures & Nano-Objects

Year: 2024

Crystallographic phase biographs of copper nanocrystalline material: A statistical perspective review

Authors: S Ahmed, MKH Shishir, SI Sadia, SM Al-Reza, MMH Sachchu, AR Aidid, …

Journal: Nano-Structures & Nano-Objects

Year: 2024

Crystallinity integration and crystal growth behavior study of preferred oriented (111) cubic silver nanocrystal

Authors: MA Alam, SI Sadia, MKH Shishir, RK Bishwas, S Ahmed, SM Al-Reza, …

Journal: Inorganic Chemistry Communications

Year: 2025

Emma Rebeca Macías Balleza | Polymer Chemistry | Best Researcher Award

Prof. Dr. Emma Rebeca Macías Balleza | Polymer Chemistry | Best Researcher Award

University of Guadalajara, Mexico

👨‍🎓Profiles

🎓 Early Academic Pursuits

Emma Rebeca Macías Balleza began her academic journey with a Bachelor’s degree in Chemical Engineering (1990) from the University of Guadalajara, followed by a Master of Science in Chemical Engineering (1994). Her passion for materials and chemical processes led her to pursue a Doctorate in Science in Chemical Engineering at the same university, in cotutorship with a Doctorate in Physics from the University of Grenoble, France (2002). This strong foundation in multidisciplinary studies allowed her to develop expertise in polymers, nanomaterials, and complex fluid rheology.

🏛️ Professional Endeavors

Currently, she serves as a Senior Research Professor at the Department of Chemical Engineering in the University Centre of Exact Sciences and Engineering, University of Guadalajara. Over the years, she has actively contributed to industrial and academic projects, fostering international collaborations with institutions such as Université Grenoble Alpes (France), Université de Rennes (France), and the University of Santiago de Compostela (Spain). Her consultancy work extends to more than ten industry projects, further bridging the gap between theoretical research and practical applications.

🔬 Contributions and Research Focus

Her research is centered on polymer synthesis and characterization, the rheology of complex fluids, and the development of nanomaterials from agroindustrial waste for reinforcement in polymeric and construction matrices. These areas of expertise contribute significantly to sustainable materials engineering, where she explores innovative ways to utilize waste materials for high-performance applications.

🌍 Impact and Influence

Emma Macías Balleza is a recognized researcher and academic leader, having completed ten collaborative research projects and published extensively. She has played a pivotal role in shaping research policies and evaluations at both institutional and national levels. As a National System of Researchers member since 2002 and a Professor with a Desirable Profile by the Ministry of Public Education since 2000, she continuously influences the next generation of researchers.

📊 Academic Citations and Publications

Her extensive publication record includes:

  • Google Scholar: 60 documents, 746 citations, h-index 16
  • Scopus: 38 documents, 572 citations, h-index 14
  • SCI/Scopus Indexed Journals: 43 publications
    She has also contributed to three chapter books, enhancing the global knowledge base in analytical chemistry and polymer engineering.

🛠️ Technical Skills

Her technical expertise spans polymer characterization, rheological analysis, nanomaterial synthesis, and analytical chemistry techniques. She has extensive experience in material testing and the application of nanotechnology in industrial and construction materials.

👩‍🏫 Teaching Experience and Mentorship

Emma Macías Balleza is deeply involved in postgraduate education, contributing as a faculty member in Materials Science programs. She has mentored numerous students and participated in advisory roles within institutional and national evaluation committees, such as SEP and CONHACYT. She also serves as a reviewer for prestigious scientific journals, ensuring the advancement of research in her field.

🌟 Legacy and Future Contributions

As the head of the Rheology Academic Group at the University of Guadalajara, she has been instrumental in advancing research on fluid behavior in complex systems. Her contributions to the study of sustainable nanomaterials hold promise for future advancements in environmentally friendly polymers and industrial applications. Looking ahead, her work aims to further integrate circular economy principles into materials science, promoting green and efficient solutions for polymer engineering.

📖Notable Publications

  • Influence of Chemical, Morphological, Spectroscopic and Calorimetric Properties of Agroindustrial Cellulose Wastes on Drainage Behavior in Stone Mastic Asphalt Mixtures

    • Authors: L.Y. Cabello-Suárez, J. Anzaldo-Hernández, J.R. Galaviz-Gonzalez, P. Limón-Covarrubias, E.R. Macías-Balleza
    • Journal: Materials
    • Year: 2024
  • Thermoplastic Starch Biocomposite Films Reinforced with Nanocellulose from Agave tequilana Weber var. Azul Bagasse

    • Authors: M.G. Lomelí-Ramírez, B. Reyes-Alfaro, S.L. Martínez-Salcedo, E.R. Macías-Balleza, S. García-Enriquez
    • Journal: Polymers
    • Year: 2023
  • Structural Behavior of Amphiphilic Triblock Copolymer P104/Water System

    • Authors: É.B. Figueroa-Ochoa, L.M. Bravo-Anaya, R. Vaca-López, Y. Rharbi, J.F.A. Soltero-Martínez
    • Journal: Polymers
    • Year: 2023
  • Optimization of the obtaining of cellulose nanocrystals from agave tequilana weber var. Azul Bagasse by acid hydrolysis

    • Authors: M.A. Gallardo-Sánchez, T. Diaz-Vidal, A.B. Navarro-Hermosillo, S.G. Enríquez, E.R. Macías-Balleza
    • Journal: Nanomaterials
    • Year: 2021