Yi Zhang | Physical Chemistry | Best Researcher Award

Prof. Dr. Yi zhang | Physical chemistry | Best Researcher Award

Nanjing University, china

👨‍🎓Profiles

Early Academic Pursuits

Professor Yi Zhang's academic journey began with a Bachelor of Science degree in Physics from the prestigious Peking University (2002–2006). Demonstrating early promise, he pursued a Ph.D. in Condensed Matter Physics at the Institute of Physics, Chinese Academy of Sciences (2006–2011), under the supervision of Prof. Qi-Kun Xue. His formative academic years were marked by a deep immersion in solid-state physics, particularly focusing on advanced material growth techniques and surface science.

Professional Endeavors

After earning his doctorate, Prof. Zhang embarked on a globally collaborative postdoctoral fellowship (2011–2015), jointly hosted by the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory and the Stanford Institute for Materials and Energy Sciences (SIMES), under the mentorship of renowned physicist Prof. Zhi-Xun Shen. In 2015, he returned to China as a full Professor at the School of Physics, Nanjing University, where he began to lead his own independent research group.

Contributions and Research Focus

Prof. Zhang's research is at the forefront of experimental condensed matter physics. His work combines molecular beam epitaxy (MBE) and angle-resolved photoemission spectroscopy (ARPES) to explore the electronic properties of two-dimensional (2D) materials, topological insulators, and magnetic materials. Notable achievements include the MBE growth and ARPES characterization of topological Dirac semimetals (Na₃Bi), topological crystalline insulators (SnTe (111)), and 2D transition metal dichalcogenides (MoSe₂, WSe₂, NbSe₂). His pioneering studies on the band structure transitions in 2D materials and topological systems have significantly advanced our understanding of quantum materials at the atomic scale.

Impact and Influence

Professor Zhang is widely recognized for his influential scientific output. He was named a Clarivate Highly Cited Researcher in 2023, a testament to the global impact of his publications across multiple disciplines. In 2011, his research was ranked among the Top 100 Most Cited Chinese Papers Published in International Journals, highlighting his early influence in the field. His role as Principal Scientist in China's National Key R&D Program further cements his leadership in cutting-edge materials science.

Academic Cites and Honors

His prolific output has earned numerous prestigious honors:

  • 2023 Clarivate Highly Cited Researcher (Cross-Field)

  • 2015 National Program for Thousand Young Talents of China

  • 2020 & 2017 Jiangsu Province High-Level Talent Programs

  • 2011 Top 100 Most Cited Chinese Papers

  • Chinese Academy of Sciences & Institute of Physics Student Excellence Awards (2010)

These accolades reflect both the depth and breadth of his academic influence.

Technical Skills

Prof. Zhang is an expert in molecular beam epitaxy (MBE), mastering the growth of complex thin-film materials with atomic precision. His skill in angle-resolved photoemission spectroscopy (ARPES) enables him to probe electronic band structures and surface states with remarkable clarity. Additionally, his early work included scanning tunneling microscopy (STM) studies, demonstrating his versatility across multiple surface science techniques.

Teaching and Mentorship

As a professor at Nanjing University, Prof. Zhang is dedicated to nurturing the next generation of physicists. He combines rigorous training in experimental methods with a forward-thinking perspective on quantum materials, offering students and postdocs a rich, interdisciplinary research environment. Many of his mentees go on to pursue successful academic and research careers.

Legacy and Future Contributions

Prof. Yi Zhang stands at the intersection of innovation and impact. His research group continues to push the boundaries of quantum materials science, with a strong emphasis on emerging 2D magnetic and topological systems. As materials physics enters an era of quantum information and next-gen electronics, Prof. Zhang’s ongoing and future work promises to shape fundamental understanding and inspire transformative technologies.

Notable Publications

  • Title: Discovery of a Three-Dimensional Topological Dirac Semimetal, Na₃Bi
    Authors: Z.K. Liu, B. Zhou, Y. Zhang, Z.J. Wang, H.M. Weng, D. Prabhakaran, S.-K. Mo, et al.
    Journal: Science
    Year: 2014


  • Title: Giant Bandgap Renormalization and Excitonic Effects in a Monolayer Transition Metal Dichalcogenide Semiconductor
    Authors: M.M. Ugeda, A.J. Bradley, S.F. Shi, H. Felipe, Y. Zhang, D.Y. Qiu, W. Ruan, et al.
    Journal: Nature Materials
    Year: 2014​

  • Title: Crossover of the Three-Dimensional Topological Insulator Bi₂Se₃ to the Two-Dimensional Limit
    Authors: Y. Zhang, K. He, C.-Z. Chang, C.-L. Song, L.-L. Wang, X. Chen, J.-F. Jia, et al.
    Journal: Nature Physics
    Year: 2010


  • Title: Direct Observation of the Transition from Indirect to Direct Bandgap in Atomically Thin Epitaxial MoSe₂
    Authors: Y. Zhang, T.-R. Chang, B. Zhou, Y.-T. Cui, H. Yan, Z. Liu, F. Schmitt, et al.
    Journal: Nature Nanotechnology
    Year: 2014

  • Title: Topological Quantum Compiling with Reinforcement Learning
    Authors: Yuan-Hang Zhang, Pei-Lin Zheng, Yi Zhang*, Dong-Ling Deng*
    Journal: Physical Review Letters
    Year: 2020​

 

Pengfei Li | Theoretical Chemistry | Best Researcher Award -1929

Prof. Pengfei Li | Theoretical Chemistry | Best Researcher Award

Shanghai Institute of Technical Physics, Chinese Academy of Sciences, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Prof. Pengfei Li’s journey in scientific research has been deeply rooted in environmental physics and remote sensing. His passion for atmospheric studies and hyperspectral technologies developed during his formative academic years, where he excelled in blending physical science with environmental applications. His academic path ultimately led him to become a key researcher at the prestigious State Key Laboratory of Infrared Physics under the Shanghai Institute of Technical Physics, part of the Chinese Academy of Sciences.

🧑‍💼 Professional Endeavors

Currently, as a Research Fellow, Prof. Li is a leading figure in satellite-based atmospheric monitoring. His role includes spearheading research on weak gas emissions detection, a crucial area for tackling global issues like climate change and environmental pollution. His leadership in the lab is marked by interdisciplinary integration, where hyperspectral satellite technology, data assimilation, atmospheric modeling, and artificial intelligence (AI) converge to address modern environmental challenges.

🔬 Contributions and Research Focus

Prof. Li’s research is at the intersection of hyperspectral remote sensing and AI-driven environmental monitoring. His team is developing next-generation techniques for satellite-based detection of weak gas emissions, aimed at pushing the detection limits in extreme environments. This work also involves defining payload specifications for future hyperspectral satellites. The outcomes of his research hold significant relevance for addressing atmospheric pollution, climate change, and homeland security threats, providing critical insights into satellite system design and operational strategies.

🌍 Impact and Influence

With over 50 SCI-indexed publications, including 20+ first-author or corresponding-author papers in leading journals such as PNAS and One Earth, Prof. Li has made a global impact. His research has informed both the academic community and policymakers, particularly in the realms of climate change mitigation, environmental monitoring, and satellite payload engineering. His work is frequently showcased at international conferences like the United Nations Climate Change Conference, AMS Annual Meeting, and the Goldschmidt Conference, where he has delivered numerous invited talks.

🏆 Honors and Leadership Roles

Prof. Li was selected for the prestigious Chinese Academy of Sciences “Hundred Talents Program” (Category B), recognizing his innovative research and leadership potential. Beyond research, he plays a pivotal role as a review expert for China’s National Key R&D Program and serves on scientific committees, including as the Deputy Secretary-General of the Hyperspectral Remote Sensing Technology and Application Professional Committee under the China Association for Remote Sensing Applications.

📚 Academic Citations

Prof. Li’s publications are highly cited within the fields of environmental monitoring, satellite remote sensing, and atmospheric sciences, reflecting the value and influence of his contributions on an international scale. His research continues to shape the discourse around climate resilience, pollution tracking, and advanced remote sensing methods.

🛠️ Technical Skills

His technical expertise includes:  Hyperspectral satellite data processing, Atmospheric modeling and data assimilation, AI and machine learning for environmental monitoring, Payload design and specification for next-generation satellites, Quantitative remote sensing and geospatial analysis.

👨‍🏫 Teaching & Mentoring

In addition to research, Prof. Li is actively involved in mentoring graduate students and early-career scientists, fostering a culture of innovation and collaboration in hyperspectral remote sensing. His guidance has produced a growing cadre of young scientists contributing to China’s leadership in satellite-based environmental science.

🚀 Vision and Future Contributions

Prof. Li’s future goals include expanding the applications of hyperspectral technologies to global-scale monitoring of greenhouse gases and pollutants, developing real-time AI-driven detection frameworks, and enhancing China’s position in next-gen satellite missions. His work is set to continue making a transformative impact on how we monitor and respond to environmental and security-related atmospheric events.

📖Notable Publications

The effectiveness of solar radiation management using fine sea spray across multiple climatic regions
Authors: Z Song, S Yu, P Li, N Yao, L Chen, Y Sun, B Jiang, D Rosenfeld
Journal: Atmospheric Chemistry and Physics
Year: 2025

Photostationary state assumption seriously underestimates NOx emissions near large point sources at 10 to 60 m pixel resolution
Authors: L Chen, Z Song, N Yao, H Xi, J Li, P Gao, Y Chen, H Su, Y Sun, B Jiang, …
Journal: Proceedings of the National Academy of Sciences
Year: 2025

Multi-task deep learning for quantifying methane emissions from 2-D plume imagery with Low Signal-to-Noise Ratio
Authors: Q Xu, X Gu, P Li, X Gu
Journal: International Journal of Remote Sensing
Year: 2024

Less anthropogenic aerosol indirect effects are a potential cause for Northeast Pacific warm blob events
Authors: N Yao, Z Song, L Chen, Y Sun, B Jiang, P Li, J Chen, S Yu
Journal: Proceedings of the National Academy of Sciences
Year: 2024

Different contributions of meteorological conditions and emission reductions to the ozone pollution during Shanghai’s COVID-19 lockdowns in winter and spring
Authors: X Dou, M Li, Y Jiang, Z Song, P Li, S Yu
Journal: Atmospheric Pollution Research
Year: 2024

Peng Yao | Surface Chemistry | Best Researcher Award

Prof. Peng Yao | Surface Chemistry | Best Researcher Award

Shandong University, China

👨‍🎓Profiles

🏛️ Early Academic Pursuits

Prof. Peng Yao embarked on his academic journey at Northeastern University, where he pursued a Bachelor’s degree (1998-2002) in Mechanical Engineering and Automation. His keen interest in mechanical systems and automation drove him to further specialize in Mechanical Manufacturing and Automation, earning his Master’s degree (2002-2005) from the same university. His passion for research and advanced engineering led him to Tohoku University, Japan, where he obtained his Ph.D. in Nanomechanics (2008-2011). This academic path equipped him with a deep understanding of mechanical structures, automation techniques, and nanomechanical properties, shaping his future research endeavors.

🏢 Professional Endeavors

Prof. Yao is currently a Professor at the School of Mechanical Engineering, Shandong University, China. His career has been marked by an extensive engagement with mechanical engineering, precision manufacturing, and automation. His work focuses on integrating advanced nanomechanics principles into modern manufacturing techniques, bridging the gap between theoretical research and industrial applications. Over the years, he has contributed to the enhancement of automated manufacturing systems, precision engineering, and mechanical design, ensuring efficiency and innovation in the field.

🔬 Contributions and Research Focus

Prof. Yao’s research primarily revolves around nanomechanics, with a strong focus on material behavior at the nanoscale. His expertise extends to precision manufacturing, material engineering, and automation in mechanical systems. His studies have led to advancements in high-performance materials, micro-manufacturing processes, and AI-driven automation systems. By integrating nanomechanical insights into manufacturing and automation, his research has paved the way for innovative solutions in industrial production, robotics, and material science. His work plays a crucial role in developing next-generation materials with enhanced strength, flexibility, and durability.

🌍 Impact and Influence

Prof. Yao’s contributions have had a far-reaching impact on both academia and industry. His research in nanomechanics and automation has influenced the development of high-precision industrial applications, leading to the improvement of manufacturing efficiency and product reliability. His cross-border collaborations, particularly between China and Japan, have strengthened global research partnerships in mechanical engineering. Beyond research, he has inspired and mentored a new generation of engineers and researchers, contributing to the global advancement of mechanical automation and material science.

📖 Academic Citations & Recognitions

Prof. Yao's scholarly contributions have been widely recognized through numerous academic citations and research publications. His work is frequently referenced in studies related to nanomechanical materials, automation systems, and precision engineering. His publications have contributed significantly to scientific advancements in mechanical behavior at the nanoscale, strengthening his reputation as a leading researcher in the field. His research has gained attention in high-impact mechanical engineering and materials science journals, reflecting his influence in advancing industrial and scientific applications.

🛠️ Technical Skills

With an extensive background in mechanical engineering and nanomechanics, Prof. Yao possesses a strong command of advanced computational tools and experimental techniques. His expertise includes computational nanomechanics, finite element analysis (FEA), robotics and automation, and high-precision manufacturing systems. His skills in integrating artificial intelligence with mechanical automation have positioned him at the forefront of technological advancements in intelligent manufacturing. His technical proficiency allows him to develop cutting-edge solutions for industrial applications, ensuring greater efficiency and accuracy in engineering processes.

🎓 Teaching Experience

As a professor at Shandong University, Prof. Yao has played a vital role in shaping the academic and professional careers of his students. His teaching focuses on advanced mechanical design, automation engineering, and nanomechanics, equipping students with both theoretical knowledge and practical applications. Through research guidance and mentorship, he has helped numerous graduate and doctoral students achieve academic excellence and industry readiness. His approach to education bridges the gap between scientific research and industrial needs, ensuring that his students remain at the forefront of engineering innovation.

🚀 Legacy and Future Contributions

Prof. Peng Yao’s legacy is defined by his pioneering work in mechanical automation and nanomechanics, contributing significantly to the progress of modern manufacturing technologies. Looking ahead, his research aims to develop AI-driven automation systems, enhance nanomaterial applications, and foster global research collaborations. His commitment to scientific advancement and education ensures that his contributions will continue to shape the future of mechanical engineering and precision manufacturing. Through his work, he is not only pushing the boundaries of technology but also inspiring the next generation of researchers to explore the possibilities of nanomechanics and intelligent automation.

📖Notable Publications

Grinding quality evaluation and removal mechanism of resin-coated SiC and 2.5D-C-SiCs surface strategies
Authors: S. Qu, L. Li, Y. Yang, Z. Yin, P. Yao
Journal: Tribology International
Year: 2024

Intelligent rolling bearing compound fault diagnosis based on frequency-domain Gramian angular field and convolutional neural networks with imbalanced data
Authors: F. Zhang, P. Yao, X. Geng, M.S. Jiang, L. Jia
Journal: Journal of Vibration and Control
Year: 2024

Laser-assisted water jet machining of high quality micro-trap structures on stainless steel surfaces
Authors: L. Liu, P. Yao, D. Chu, S. Qu, C. Huang
Journal: Chinese Optics
Year: 2024

Temperature field in the crack-free ductile dry grinding of fused silica based on wheel wear topographies
Authors: W. Wang, Z. Li, H. Yin, S. Yu, P. Yao
Journal: Journal of Materials Processing Technology
Year: 2024

Ultra-precision grinding damage suppression strategy for 2.5D-Cf-SiCs by resin coating protection
Authors: L. Li, S. Qu, Y. Yang, G. Peng, Z. Yin
Journal: Tribology International
Year: 2024

Effect of arc deposition process on mechanical properties and microstructure of TiAlSiN gradient coatings
Authors: L. Ji, H.L. Liu, C. Huang, Y. Liu, P. Yao
Journal: Ceramics International
Year: 2024

Ashok Kumar SK | Chemical Sensors | Analytical Chemistry Award

Dr. Ashok Kumar SK | Chemical Sensors | Analytical Chemistry Award

Vellore Institute of Technology, India

👨‍🎓Profiles

🏫 Early Academic Pursuits

He began his academic journey with a Master of Science (M.Sc.) in Industrial Chemistry from Kuvempu University in 1994. His thirst for knowledge and dedication to chemistry led him to pursue a Ph.D. at Thapar University, which he successfully completed in 2006. These foundational years laid the groundwork for his illustrious career in research and academia.

💼 Professional Endeavors

He currently serves as a Professor in the Department of Chemistry, School of Advanced Sciences, at the Vellore Institute of Technology (VIT), Tamil Nadu. Over the years, he has established himself as a prominent figure in the field of supramolecular chemistry, coordination and organometallic chemistry, materials chemistry, and analytical chemistry. His office at VIT stands as a hub for innovation and guidance for aspiring chemists.

🔬 Contributions and Research Focus

His research spans a broad spectrum of chemistry: Chemical Sensors: His work on chromogenic, fluorogenic, potentiometric, and voltammetric sensors has advanced analytical techniques. Chemotherapy Agents: Development of agents aimed at enhancing cancer treatment methodologies. Inorganic Ion-Exchange Materials: Applications in separation science, ion sensing, and catalysis. Nanocomposites & Porous Carbon Materials: Pioneering their use for water purification and environmental applications. Sustainable Chemistry: Focused on solvent extraction, membrane separation, and biofuel production from biomass. These endeavors highlight his commitment to addressing real-world problems through chemical innovation.

🌟 Impact and Influence

His work has significantly impacted the fields of materials and analytical chemistry. He has cultivated groundbreaking methods for sensing ions, enhancing water purification, and contributing to sustainable fuel technologies. His membership in professional societies such as the Chemical Research Society of India and the Indian Science Congress underscores his influence and active involvement in the scientific community.

📖 Academic Citations and Recognition

With an ORCID ID of 0000-0002-1723-3447 and Researcher ID E-7817-2011, His contributions are well-documented in prestigious journals. His Google Scholar profile (N9mJuGQAAAAJ) lists numerous citations, reflecting the global acknowledgment of his research.

🛠️ Technical Skills

He is adept at various analytical and experimental techniques: Development and application of chemical sensors. Synthesizing nanocomposites and exploring their properties. Designing ion-exchange materials for separation and catalysis. His technical expertise ensures precision and innovation in his research projects.

🧑‍🏫 Teaching Experience and Mentorship

As a professor, He has not only conducted groundbreaking research but has also inspired the next generation of scientists. His lectures and guidance at VIT have equipped students with the knowledge and skills needed to excel in chemical research.

🏆 Legacy and Future Contributions

His legacy is defined by his multifaceted contributions to chemistry and his ability to translate complex research into practical applications. Moving forward, he aims to: Further explore sustainable chemistry solutions. Enhance chemotherapy agents for better efficacy. Develop advanced sensors for environmental and biomedical applications. His unwavering commitment to science ensures his continued relevance and impact on the global stage.

🌍 A Vision for the Future

His journey reflects a blend of academic rigor, innovative research, and impactful teaching. His focus on sustainability and healthcare resonates with contemporary global challenges, positioning him as a leader in chemistry with a lasting legacy.

📖Notable Publications

  1. Systematic Computational Approaches on Biosorption of Fluoride on Chitin: Crossover from Conventional to Short and Strong Hydrogen Bonds
    • Authors: Malhan, A.H., Job, N., Francis, A.M., Ashok Kumar, S.K., Thirumoorthy, K.
    • Journal: ACS ES&T Water
    • Year: 2024
  2. Trace level detection of putrescine and cadaverine in food samples using a novel rhodanine-imidazole dyad and evaluation of its biological properties
    • Authors: Joseph, S., Ashok Kumar, S.K.
    • Journal: Journal of Hazardous Materials
    • Year: 2024
  3. A highly lipophilic terpyridine ligand as an efficient fluorescent probe for the selective detection of zinc(ii) ions under biological conditions
    • Authors: Panicker, R.R., Joseph, S., Dharani, S., Ashok Kumar, S.K., Sivaramakrishna, A.
    • Journal: Analytical Methods
    • Year: 2024
  4. Methods special issue: Recent advancement on fluorescent chemosensing and bioimaging
    • Authors: Sahoo, S.K., Ashok Kumar, S.K.
    • Journal: Methods
    • Year: 2024
  5. Chromene-chromene Schiff base as a fluorescent chemosensor for Th4+ and its application in bioimaging of Caenorhabditis elegans
    • Authors: Dua, A., Saini, P., Goyal, S., Sharma, H.K., Kumar Ramasamy, S.
    • Journal: Methods
    • Year: 2024

 

Wonjae Lee | Chiral Separation | Best Researcher Award

Prof. Wonjae Lee | Chiral Separation | Best Researcher Award

Chosun University, College of Pharmacy, South Korea

👨‍🎓Profiles

🎓 Early Academic Pursuits

His academic journey began with a B.S. in Chemistry from Seoul National University. He furthered his studies with an M.S. in Chemistry at KAIST. His pursuit of excellence led him to the University of Illinois at Urbana-Champaign, USA, where he earned a Ph.D. in Chemistry . This robust academic foundation provided him with the skills and expertise necessary for impactful research in analytical chemistry.

💼 Professional Endeavors

His career has been marked by significant contributions across academia, industry, and research institutions: Medical Synthetic Lab, KIST, Korea : Worked as a researcher, honing his skills in medical synthetic research, University of Illinois at Urbana-Champaign, USA : Served as a teaching and research assistant during his doctoral studies, later continuing as a postdoctoral researcher, LG Chem R&D, Korea: Played a pivotal role as a senior researcher at the Analytical Center, contributing to advancements in analytical techniques, College of Pharmacy, Chosun University : Advanced from Assistant to Full Professor, leading innovative research and shaping the next generation of scholars, Held prestigious administrative roles, including Dean of the College of Pharmacy and Dean of the Graduate School of Clinical Pharmacy.

🔬 Contributions and Research Focus

His research primarily focuses on: Enantiomer Separation: Developing analytical methods for chiral compound separation to ensure the purity and efficacy of pharmaceutical agents, Chiral HPLC Column Development: Innovating chiral stationary phases to enhance the resolution and efficiency of chromatography techniques, Chiral Recognition Mechanism: Investigating the molecular interactions underlying chiral recognition, with implications for drug design and safety.

🌍 Impact and Influence

He has significantly impacted both academia and industry: He has pioneered methods that have transformed pharmaceutical analysis and chiral separation technologies, enabling the development of safer and more effective medications. As Chairman of the Pharmaceutical Analysis Division of the Korean Pharmaceutical Society (2014–2015), he shaped policies and initiatives that promoted innovation in pharmaceutical research.

📚 Academic Citations and Publications

Through his extensive research, Professor Lee has contributed to numerous high-impact journals and conferences. His work has garnered global recognition, reflecting his dedication to advancing analytical and pharmaceutical sciences.

👩‍🏫 Teaching Experience

As a professor at Chosun University, He has not only conducted cutting-edge research but also mentored numerous students and researchers. His dedication to teaching ensures the continuous development of skilled professionals in pharmacy and analytical chemistry.

🏆 Legacy and Future Contributions

His illustrious career continues to inspire researchers worldwide. His pioneering work in chiral analysis and pharmaceutical sciences will have long-lasting impacts on both academic and industrial sectors. Moving forward, he aims to further innovate in chiral column technologies and contribute to global pharmaceutical advancements.

📖Notable Publications