Alwyn Henriques | Reaction Mechanisms | Best Researcher Award

Mr. Alwyn Henriques | Reaction Mechanisms | Best Researcher Award

University of the West Indies, Jamaica

👨‍🎓Profiles

🎓 Early Academic Pursuits

Alwyn Henriques began his academic journey at Wolmer’s Boys’ School (2009–2013), where he excelled in a broad range of CSEC subjects including English Language, Mathematics, Biology, Chemistry, Physics, Geography, Information Technology, and Caribbean History. He continued his studies with CAPE Unit 1 courses in Chemistry, Biology, and Physics. His academic path advanced further at the University of the West Indies (2014–2021), where he completed undergraduate studies in Chemistry, reaching Levels 2 and 3, which provided him with a solid foundation in analytical and applied chemistry.

💼 Professional Endeavors

Alwyn has engaged in diverse professional roles that reflect a combination of scientific, technical, and customer service expertise. At the National Health Fund (NHF), he served as a Pharmacy Assistant in June 2018 and 2019, where he introduced and advised on the use of digital solutions like a quick prescription mobile application and self-serve kiosk services. He also assisted in medication packing, gaining practical insight into pharmaceutical distribution. In September 2017, he worked as a Chemistry Lab Technician at the Convent of Mercy (Alpha), where he prepared laboratory apparatus and ensured safety protocols for chemical experiments. His earlier experience at RADA in August 2017 involved organizing agricultural seminar documents as a file clerk.

🔬 Contributions and Research Focus

Alwyn’s most significant research contributions came during his internship at the Scientific Research Council (SRC) in July 2021. There, he explored the chemical transformation and pharmacological behavior of cannabis-derived compounds, focusing on the conversion of cannabidiol (CBD) to tetrahydrocannabinol (THC), THC spoilage to cannabinol (CBN), and the redox-based metabolism of these compounds in the body. His research also delved into wastewater chemical analysis, pharmaceutical development processes, cacao bean applications in food and medicine, and cannabis-derived renewable materials—demonstrating a strong orientation toward sustainable and innovative chemistry.

🌍 Impact and Influence

Alwyn’s multidisciplinary career showcases a commitment to socially impactful science. His promotion of digital health services at NHF and exploration of plant-based compounds for pharmaceuticals mark him as a forward-thinking individual attuned to modern healthcare, sustainability, and biotechnology trends. He contributes to Jamaica’s evolving landscape of scientific development, especially in areas of public health innovation and natural product chemistry.

🧠 Technical Skills

Alwyn’s technical skill set includes laboratory preparation of chemicals and apparatus, cannabinoid conversion and pharmacokinetics, wastewater analysis, pharmaceutical formulation, data organization, and customer support systems. His adaptability in both scientific and service-oriented environments illustrates a strong balance of precision, communication, and innovation.

👨‍🏫 Teaching Experience

Although he has not held a formal teaching post, Alwyn’s role as a lab technician involved active support of educational activities by preparing experiments and maintaining a safe and functional learning environment. This experience has equipped him with the foundational skills for future roles in academic support or technical instruction.

📚 Academic Cites and References

While no formal publications have been cited, Alwyn’s research during his SRC internship likely contributed to internal reports or scientific reviews. His professional references include Norman Biggs, a Justice of the Peace, Adriel Albert-James, a Chemistry Lecturer and Researcher, and Nickeisha Stephenson, a customer service and loan advisor, all of whom can attest to his character and capability across various fields.

🌱 Legacy and Future Contributions

Alwyn Henriques is a promising scientific professional with a unique blend of academic, research, and service-oriented experience. His passion for natural product chemistry, commitment to sustainable innovation, and fluency in digital healthcare solutions set the stage for impactful contributions in the future. As he continues to grow, he is well-positioned to play a pivotal role in the advancement of biomedical science, renewable resources, and public health technologies.

📖Notable Publication

Cannabinoid spoilage, metabolism and cannabidiol (CBD) conversion to Tetrahydrocannabinol (THC) mechanisms with energetic parameters

Authors:
Alwyn Henriques

Journal:
Journal of Cannabis Research

Year:
2025

Prof. Huilan Yue | Organic Chemistry | Best Researcher Award

Prof. Huilan Yue | Organic Chemistry | Best Researcher Award

Northwest Institute of Plateau Biology, CAS, China

👨‍🎓Profiles

🎓 Education and Academic Background

Prof. Huilan Yue pursued her Ph.D. in Catalytic Chemistry from the Chengdu Institute of Biology, Chinese Academy of Sciences, under the guidance of Prof. Jian-Xin Ji. Her dissertation focused on C-C bond formation through the direct reaction of alcohols with alkenes and alkynes. Before that, she completed her M.S. in Phytochemical studies at the Northwest Institute of Plateau Biology, Chinese Academy of Sciences, where she researched the chemical constituents of Dracocephalum heterophyllum Benth. under the supervision of Prof. Yun Shao. Her academic journey began with a B.S. in Biological Sciences from Huaibei Normal University.

🏛 Professional Career

Prof. Yue is currently affiliated with the Northwest Institute of Plateau Biology, Chinese Academy of Sciences, China. She has dedicated her career to advancing catalytic chemistry and phytochemical studies, contributing significantly to understanding chemical synthesis and natural product chemistry. Her work is recognized for its interdisciplinary approach, bridging chemistry and biology to explore novel catalytic mechanisms and bioactive compounds.

🏆 Honors and Awards

Prof. Yue has received numerous accolades for her contributions to science and technology. She was honored as a Kunlun Talent Leading Talent in Qinghai Province. She also received the Qinghai Province Youth Science and Technology Award, recognizing her outstanding contributions to research. She was awarded the prestigious “Light of the West” honor from the Chinese Academy of Sciences. Additionally, she has been recognized as a Leading Talent in Natural Science and Engineering Technology Disciplines in Qinghai Province and a Top-notch Innovative Talent in Qinghai Province.

🔬 Research Contributions and Focus

Prof. Yue’s research primarily focuses on catalytic chemistry, organic synthesis, and natural product chemistry. Her work on C-C bond formation via direct reactions of alcohols with alkenes and alkynes has contributed to advancements in green chemistry and sustainable synthesis. Additionally, her research in phytochemistry has led to the discovery and characterization of bioactive compounds from plateau plants, contributing to medicinal and pharmaceutical sciences.

🌍 Impact and Influence

Prof. Yue’s research has had a profound impact on both theoretical and applied chemistry. Her contributions to catalytic reactions have paved the way for more efficient and environmentally friendly synthesis methods, while her phytochemical studies have provided valuable insights into natural product-based drug discovery. Her work has been widely cited and acknowledged in the scientific community, reinforcing her influence in the field of chemistry and biological sciences.

📖 Academic Citations and Recognition

As a leading researcher, Prof. Yue’s work has been published in high-impact scientific journals, earning significant citations. Her studies on catalytic mechanisms and phytochemical discoveries continue to be referenced by researchers in organic chemistry, medicinal chemistry, and natural product research.

🛠 Technical Expertise

Prof. Yue’s expertise spans several key areas, including:

  • Catalytic chemistry and organic synthesis

  • Green chemistry and sustainable catalytic processes

  • Phytochemical analysis and natural product extraction

  • Spectroscopic techniques for chemical characterization

  • Drug discovery and bioactive compound development

👩‍🏫 Teaching and Mentorship

Beyond her research, Prof. Yue is dedicated to mentoring young scientists and researchers in the fields of chemistry and biology. She plays an active role in training postgraduate students, guiding them in experimental research, and fostering critical thinking in scientific exploration.

🚀 Legacy and Future Contributions

Prof. Yue’s ongoing research aims to further the development of sustainable catalytic processes and the discovery of novel bioactive compounds from plateau plants. Her future work will continue to integrate chemistry and biology to address challenges in pharmaceuticals, environmental sustainability, and synthetic chemistry. As a leader in her field, she remains committed to pushing the boundaries of chemical research and contributing to scientific advancements for societal benefit.

📖Notable Publications

  • Additive-free synthesis of β-keto phosphorodithioates via geminal hydro-phosphorodithiolation of sulfoxonium ylides with P₄S₁₀ and alcohols

    • Authors: Jindong Hao, Yufen Lv, Shuyue Tian, Wei Wei, Dong Yi, et al.

    • Journal: Chinese Chemical Letters

    • Year: 2024

  • Metal-free visible-light-mediated aerobic nitrooxylation for the synthesis of nitrate esters with t-BuONO

    • Authors: Yufen Lv, Jindong Hao, Jian Huang, Wei Wei, Dong Yi, et al.

    • Journal: Chemical Communications

    • Year: 2024

  • Visible-Light Photoredox-Catalyzed Difunctionalization of Alkynes with Quinoxalin-2(1H)-Ones, P₄S₁₀, and Alcohols

    • Authors: Lianhui Song, Chao Ma, Jian Huang, Wei Wei, Dong Yi, et al.

    • Journal: Journal of Organic Chemistry

    • Year: 2024

  • Characterization of alkaloids and phenolics in Nitraria roborowskii Kom. fruit by UHPLC-triple-TOF-MS/MS and its sucrase and maltase inhibitory effects

    • Authors: Di Wu, Sirong Jiang, Gongyu Wang, Xiaohui Zhao, Huilan Yue, et al.

    • Journal: Food Chemistry

    • Year: 2024

  • Extract of Silphium perfoliatum L. improves lipid accumulation in NAFLD mice by regulating AMPK/FXR signaling pathway

    • Authors: Jiyu Xu, Wenjiang Jing Jia, Guoying Zhang, Dejun Zhang, Xiaohui Zhao, et al.

    • Journal: Journal of Ethnopharmacology

    • Year: 2024

 

Ram Mohan Pathak | Plasma Chemistry | Best Researcher Award

Mr. Ram Mohan Pathak | Plasma Chemistry | Best Researcher Award

Indian Institute of Science, Bangalore, India

👨‍🎓Profiles

🎓 Early Academic Pursuits

Ram Mohan Pathak's academic journey began with a B.Tech. (Hons) in Chemical Engineering from Dr. K.N. Modi Institute of Engineering and Technology, affiliated with Dr. A.P.J Abdul Kalam Technical University, where he graduated with honors. He further pursued an M.Tech. in Chemical Engineering at the Indian Institute of Technology (IIT) Dhanbad, achieving an impressive 8.7/10 CGPA. His master's minor project was conducted at the prestigious Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu, India, reflecting his early inclination toward cutting-edge research.

🏆 Professional Endeavors

Currently, a Ph.D. Scholar at the Centre for Sustainable Technologies, Indian Institute of Science (IISc) Bangalore, Ram has been deeply engaged in experimental, engineering, and simulation research. His work explores advanced plasma technologies with applications in energy sustainability and combustion systems. Additionally, he has served as a Teaching Assistant and Senior Research Fellow, contributing to laboratory setup and student mentorship at both IIT Dhanbad and IISc Bangalore.

🔬 Contributions and Research Focus

Ram’s Ph.D. dissertation, set for colloquium in November 2024, focuses on:

Enhanced rotation effects on electrical, optical, and chemical properties of rotating gliding arc nitrogen plasma.

Plasma-assisted combustion for biogas applications in engines.

Influence of transitional and turbulent flow regimes on plasma characteristics.

Impact of carrier gases and flow regimes on hydrocarbon (methane & toluene) reformation/destruction.

His research is highly interdisciplinary, blending chemical engineering, plasma physics, and combustion science for sustainable energy solutions.

🌍 Impact and Influence

Ram’s research in plasma-assisted combustion and sustainable technologies has the potential to revolutionize clean energy production and pollution control strategies. His investigations into plasma flow regimes and hydrocarbon breakdown mechanisms contribute to advancements in alternative energy systems and environment-friendly combustion techniques.

📚 Academic Citations & Recognition

Ram has received the MHRD GATE Scholarship for both his M.Tech. (2017-2019) and Ph.D. (2019-2024) studies, awarded by the Ministry of Human Resource Development, Government of India. His academic excellence and research contributions are recognized nationally through this prestigious funding.

🛠️ Technical Skills

Ram is proficient in:
✅ Plasma Engineering & Diagnostics
✅ Computational Fluid Dynamics (CFD) & Simulation
✅ Design of Experiments & Factorial Analysis
✅ Chemical Kinetics & Reaction Engineering
✅ Instrumentation for Plasma and Combustion Systems

🎓 Teaching Experience

As a Teaching Assistant, Ram has:

  • Conducted laboratory training for B.Tech. students at IIT Dhanbad.
  • Trained project assistants at IISc Bangalore in experimental techniques and plasma technology applications.
  • Taught Factorial Design of Experiments, enhancing student proficiency in research methodology and data analysis.

🔥 Legacy and Future Contributions

Ram Mohan Pathak’s research legacy lies in developing sustainable plasma-based solutions for energy generation and pollutant mitigation. Moving forward, he aims to:

  • Enhance the application of plasma-assisted combustion for renewable energy integration.
  • Advance hydrocarbon destruction techniques for environmental sustainability.
  • Contribute to industrial applications of plasma technologies in energy and chemical sectors.

📖Notable Publications

Tar Formation in Gasification Systems: A Holistic Review of Remediation Approaches and Removal Methods

Authors: A. Jayanarasimhan, R. M. Pathak, A. M. Shivapuji, L. Rao

Journal: ACS Omega

Year: 2024

Chemical Kinetics Simulation of Hydrogen Generation in Rotating Gliding Arc Plasma

Authors: R. M. Pathak, J. Ananthanarasimhan, L. Rao

Journal: IEEE Transactions on Plasma Science

Year: 2022

A Novel Lumped Parameter Approach Toward Understanding Rotating Gliding Arc

Authors: R. M. Pathak, S. Nandi, L. Rao

Journal: IEEE Transactions on Plasma Science

Year: 2024

Enhanced Hydrogen Production Through Enhanced Rotation in Bi-Reforming of Methane Using Rotating Gliding Arc Plasma Under Different Operating Conditions: Experimental and …

Authors: R. M. Pathak, L. Rao

Journal: 2024 IEEE International Conference on Plasma Science (ICOPS)

Year: 2024

The Influence of Vortex Formation on the Electrical Characteristics of Argon Plasma in a Rotating Gliding Arc Discharge

Authors: R. M. Pathak, L. Rao

Journal: Journal of Physics: Conference Series

Year: 2024

Investigating Flow-Induced Changes in Coaxial Cylindrical Dielectric Barrier Discharge Using Equivalent Circuit Modelling and Chemical Workbench Simulations

Authors: R. M. Pathak, J. Ananthanarasimhan, S. Nandi, C. R. Das, L. Rao

Journal: Plasma Chemistry and Plasma Processing

Year: 2025

Sicong Ma | Theoretical and Computational Chemistry | Best Researcher Award

Assoc. Prof. Dr. Sicong Ma | Theoretical and Computational Chemistry | Best Researcher Award

Shanghai Institute of Organic Chemistry, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Sicong Ma, born in March 1992, began his academic journey with a strong foundation in applied chemistry at the China University of Petroleum (Beijing), where he completed his Bachelor of Science in 2013. He continued at the same institution for a Master's degree in Chemistry, working under the guidance of Professor Zhen Zhao until 2016. His academic path led him to Fudan University, where he earned his Ph.D. in Physical Chemistry in 2019 under Professor Zhi-Pan Liu. Here, he developed his expertise in theoretical and computational chemistry, laying the groundwork for his future contributions to catalysis and machine learning.

🏢 Professional Endeavors

After completing his Ph.D., He joined Fudan University as a postdoctoral researcher, continuing his work with Professor Zhi-Pan Liu until 2021. In August 2021, he joined the Shanghai Institute of Organic Chemistry as an Assistant Researcher. Recently promoted to Associate Professor, He has led several projects funded by prestigious institutions, including the National Natural Science Excellent Youth Fund, Shanghai Municipal Science and Technology Commission, and the China Postdoctoral Fund.

🔍 Contributions and Research Focus

His research interests span a unique blend of machine learning and catalysis. His expertise extends across both homogeneous and heterogeneous catalysis, with a particular focus on: Machine Learning and Heterogeneous Catalysis: He has conducted research on syngas-to-olefins conversions on OX-ZEO catalysts, propane hydrogenation, and similar transformations, Machine Learning and Homogeneous Catalysis: His work includes studies on the carbonylation of olefins and the development of a metal-phosphine ligand catalyst database, Zeolite Chemistry: He is also active in studying the mechanisms of zeolite formation and their applications in catalysis, contributing significantly to zeolite-related database construction.

📈 Impact and Influence

He has made substantial contributions to the field, publishing more than 20 papers in renowned journals such as Nature Catalysis, Nature Communications, and ACS Catalysis. Notably, he has served as first or corresponding author on 15 of these publications, solidifying his role as a leader in his field. His work has garnered attention and citations, reflecting his influence within theoretical and computational chemistry.

📚 Academic Achievements and Honors

Recognized for his academic excellence, He has received numerous awards and honors. He was honored with the Excellent Doctoral Dissertation Award from Fudan University in 2019, recognized as an Academic Star of Fudan University the same year, and awarded a Shanghai Super Postdoctoral Fellowship. Recently, he was inducted as a member of the Youth Innovation Promotion Association by the Chinese Academy of Sciences in 2023.

🛠️ Technical Skills

His technical expertise includes advanced machine learning algorithms for catalysis, computational modeling in chemistry, and extensive knowledge of catalysis mechanisms in both homogeneous and heterogeneous systems. His computational skills and programming knowledge enable him to create and manage large databases, crucial for his projects on zeolite and catalyst-related data.

📖 Teaching and Mentoring Experience

While focused primarily on research, He has also contributed to the academic community by mentoring postdocs and junior researchers in his lab. His guidance fosters a collaborative environment, ensuring that emerging researchers develop the skills necessary to advance in computational chemistry and catalysis.

🌐 Legacy and Future Contributions

His ongoing work promises to deepen the integration of machine learning in catalysis, with potential implications for sustainable energy solutions and efficient industrial chemical processes. As a young innovator and leader in his field, he is set to make lasting contributions, furthering both academic knowledge and practical applications in computational chemistry.

📖Notable Publications

 

Esmaeil Sheibani | Organic Chemistry | Best Researcher Award

Assist Prof Dr. Esmaeil Sheibani | Organic Chemistry | Best Researcher Award

University of Isfahan, Iran

👨‍🎓Profiles

👨‍🎓 Early Academic Pursuits

Dr. Esmaeil Sheibani began his academic journey at Tabriz University, where he earned his B.S. in Chemistry in 2002. He continued his studies at Tarbiat Modares University, completing his M.S. in Organic Chemistry in 2004. He then pursued a Ph.D. in Organic Chemistry at the University of Tehran, which he completed in 2009. During this period, he broadened his academic horizons through a PhD exchange fellowship at Lund University in Sweden, setting the foundation for his future research collaborations.

🧑‍🔬 Professional Endeavors

Following his doctoral studies, He engaged in postdoctoral research at Lund University, where he worked under Prof. Kenneth Wärnmark and received a Wallenberg Research Fellowship from 2009 to 2011. He then served as a research associate with Prof. Licheng Sun at KTH Royal Institute of Technology, supported by a Swedish Energy Agency Research Fellowship from 2012 to 2014. In addition to his role as an Assistant Professor of Organic Chemistry at the University of Isfahan, he has undertaken guest professorships at prestigious institutions, including Nanjing University of Science and Technology and Lund University.

🌟 Contributions and Research Focus

His research primarily focuses on organic semiconductor materials for solar cell applications. His collaboration with several international research groups has led to numerous high-impact publications in journals such as Chemical Engineering Journal, Advanced Materials, and ACS Energy Letters. He has authored five books and contributed to multiple book chapters, demonstrating his commitment to advancing knowledge in the field.

📊 Impact and Influence

With a citation index of 1226 and 28 published papers, Dr. Sheibani has made significant contributions to the field of organic chemistry and renewable energy. His research has not only enhanced the understanding of organic semiconductors but has also influenced the development of large-scale solar cell technologies, highlighting his role in bridging academic research and practical applications.

📈 Academic Cites

He has achieved a citation index of 1226, reflecting the broad impact of his work within the scientific community. His publications in high-impact journals underscore his reputation as a leading researcher in organic materials and their applications in renewable energy technologies.

🛠️ Technical Skills

He possesses a diverse range of technical skills, including multi-step synthesis, polymer and material chemistry, and spectroscopy. These competencies enable him to conduct innovative research and contribute to the development of new materials for solar energy applications.

👩‍🏫 Teaching Experience

In addition to his research, He is dedicated to education, teaching various undergraduate and graduate courses. His curriculum includes Organic Chemistry (I-III), Supramolecular Chemistry, Advanced Organic Chemistry, and courses focused on Renewable Energy and Materials. His approach emphasizes the integration of theoretical knowledge with practical applications.

🌱 Legacy and Future Contributions

His ongoing collaborations with prestigious universities in Sweden, China, and Switzerland position him to continue influencing the field of organic chemistry and renewable energy. His commitment to large-scale device fabrication and societal benefit underscores his vision for a sustainable future through innovative research and education.

🌍 International Teamwork

He has successfully collaborated with various high-quality research groups in China and Sweden, fostering an environment of international teamwork. This extensive network enhances his research capabilities and broadens the impact of his work, establishing him as a key contributor to global advancements in organic chemistry and renewable energy.

📖Notable Publications