Weiqing Jiang | Physical Chemistry | Best Researcher Award

Prof. Dr. Weiqing Jiang | Physical Chemistry | Best Researcher Award

Guangxi University | China

Profiles

Scopus
Orcid

Early Academic Pursuits

Professor Weiqing Jiang began her academic journey in the field of chemical technology, where she pursued and completed her doctoral studies. From the outset, she exhibited a strong interest in the development and optimization of materials that contribute to energy storage and conversion. Her early academic efforts laid a strong foundation in materials science, particularly in solid-state chemistry and electrochemical systems.

Professional Endeavors

Following her doctoral work, Professor Jiang took on a faculty position at Guangxi University, where she currently serves as a professor in the School of Physical Science and Technology. Her role encompasses both research and academic leadership, positioning her as a key figure in advancing the university’s materials science program. Over the course of her career, she has successfully completed multiple research projects supported by national and regional scientific foundations, affirming her ability to attract funding and execute high-level research programs.

Contributions and Research Focus

Professor Jiang’s primary research centers on solid-state hydrogen storage materials and electrode materials for nickel/metal-hydride (Ni/MH) rechargeable batteries. A distinctive feature of her work is the integration of experimental techniques with first-principles theoretical calculations, enabling her to uncover insights into hydrogenation and dehydrogenation mechanisms. Her findings have shown that annealing processes can significantly improve electrochemical performance and that the inclusion of more electronegative elements in metal hydrides enhances thermal stability, thus influencing both thermodynamic and kinetic behaviors. Her research provides valuable pathways for the development of advanced, high-performance energy storage materials.

Impact and Influence

Professor Jiang’s research has gained meaningful recognition, both nationally and internationally. Her work on La-Ti-Mg-Ni-based alloys for hydrogen storage was noted as particularly innovative and was evaluated as highly promising by an international award committee. This acknowledgement reflects the practical applicability and forward-thinking nature of her research, which aligns closely with global efforts toward clean energy and sustainable technology.

Academic Citations

With a citation index of over 300 across her publications in SCI-indexed journals, Professor Jiang’s work has established a clear academic footprint. Her citation count indicates sustained engagement from the scientific community, reflecting the relevance and utility of her contributions in the domain of hydrogen storage materials and electrochemical systems.

Technical Skills

Professor Jiang is proficient in a wide range of technical areas, including solid-state synthesis, structural and phase characterization of materials, electrochemical testing, and computational modeling through first-principles calculations. Her dual competency in experimental and theoretical approaches gives her a unique advantage in materials research, enabling her to validate experimental observations with predictive modeling.

Teaching Experience

As a professor, Professor Jiang plays a vital role in the academic development of undergraduate and graduate students. Her teaching integrates cutting-edge research with classroom instruction, enriching student learning with real-world scientific challenges. She likely supervises graduate theses and projects, contributing to the development of future researchers in the field of materials science.

Legacy and Future Contributions

Professor Jiang’s legacy lies in her methodical and innovative approach to solving fundamental problems in hydrogen storage and energy conversion. Moving forward, she is poised to make even greater contributions by expanding her research to interdisciplinary areas such as hydrogen fuel infrastructure, lightweight alloy design, and renewable energy integration. Her ongoing projects suggest a sustained commitment to the advancement of clean energy technologies.

Notable Publications

Atomic spin engineering of Fe-N-C by axial chlorine-ligand modulation for lightweight and efficient electromagnetic wave absorption

  • Authors: Qi Wei, Pan Zhang, Xinyu Guo, Weiqing Jiang, Xiaoma Tao, Pei Kang Shen, Zhi Qun Tian
    Journal: Journal of Colloid and Interface Science
    Year: 2025

Role of Fe, Co and Ni in dehydrogenation thermodynamics and kinetics of LiBH₄ (010) surface: a first-principles study

  • Authors: Yu Ma, Xiaohua Mo, Changhong Li, Jincheng Wang, Jiafang Qin, Chunxi Pang, Tian Liang, Yifan Qiu, Weiqing Jiang
    Journal: International Journal of Hydrogen Energy
    Year: 2025

Enhanced dehydrogenation of MgH₂ modified by Ti and S: A first-principles investigation

  • Authors: Xiaoli Zuo, Xiaohua Mo, Weiqi Zhou, Jinlin Zhang, Chunyan Hu, Weiqing Jiang
    Journal: International Journal of Hydrogen Energy
    Year: 2024

Dehydrogenation properties of LiBH₄ modified by Mg from first-principles calculations

  • Authors: Xiaohua Mo, Weiqing Jiang
    Journal: Journal of Alloys and Compounds
    Year: 2018

Effect of Al on the dehydrogenation of LiBH₄ from first-principles calculations

  • Authors: Jiang Weiqing, Cao Shilong
    Journal: International Journal of Hydrogen Energy
    Year: 2017

Conclusion

Professor Weiqing Jiang is a respected and impactful figure in the field of hydrogen storage materials. Her pioneering research, successful project leadership, recognized innovation, and academic contributions collectively demonstrate her significance in the global scientific community. Through continued exploration and mentorship, she is set to play a lasting role in shaping the future of sustainable energy research and materials science.

 

Lili Wang | Electrochemistry | Best Researcher Award

Assoc. Prof. Dr. Lili Wang | Electrochemistry | Best Researcher Award

Tianjin University of Technology, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Lili Wang began her academic journey with a strong foundation in chemistry, culminating in her graduation from Jilin University in 2012, one of China’s leading research universities. Her early academic years were marked by a growing interest in material chemistry and environmental sustainability, which later became the cornerstone of her research endeavors.

🧪 Professional Endeavors

Currently serving as an Associate Professor at the School of Chemistry, Tianjin University of Technology, Dr. Wang has built a robust academic and research career. She has led multiple funded projects, including one from the National Natural Science Foundation of China, one from the Tianjin Natural Science Foundation, and a research initiative under the Tianjin Education Commission. Additionally, she played an active role in another major general project of the National Natural Science Foundation.

🔬 Research Focus and Contributions

Dr. Wang’s research has consistently addressed critical global issues such as energy sustainability and environmental pollution. Her focus spans across:

  • Design and synthesis of environmental energy and catalytic materials

  • Electrocatalytic technology for high-value conversion of biomass and clean energy sources

  • Pollutant treatment and detection using innovative environmental catalysts

Her interdisciplinary approach links material science with green chemistry, enabling breakthroughs in both pollutant degradation and renewable energy conversion.

🌍 Impact and Influence

Over the past five years, Dr. Wang has emerged as a recognized scholar in the field of environmental and energy materials. Her work in electrocatalysis and green energy has directly contributed to the advancement of sustainable energy technologies. By tackling real-world challenges such as clean hydrogen production and biomass valorization, her research holds immense relevance for environmental remediation and carbon neutrality strategies.

📚 Academic Citations and Publications

Dr. Wang has authored over 20 SCI-indexed research articles as the first and corresponding author, which have been published in reputable international journals. These publications highlight her innovative methodologies and practical insights in materials science and catalysis. Her works have garnered citations that reflect a growing recognition from the global scientific community.

🛠️ Technical Skills

Dr. Wang is proficient in the synthesis and structural characterization of nanomaterials, electrochemical analysis, and performance testing of catalytic systems. Her laboratory expertise includes advanced techniques such as FTIR, XPS, SEM, and electrochemical impedance spectroscopy, which she applies in optimizing catalytic performance for environmental applications.

👩‍🏫 Teaching Experience

An experienced and passionate educator, Dr. Wang teaches a range of foundational and advanced chemistry courses including: Physical Chemistry, Physical Chemistry Experiment, Comprehensive Chemical Experiments. Her teaching style integrates theoretical knowledge with practical laboratory skills, fostering critical thinking and innovation among undergraduate and postgraduate students.

🌱 Legacy and Future Contributions

Dr. Wang is committed to fostering the next generation of scientists while continuing to innovate in the field of green materials and clean energy. With her ongoing research projects and student mentorship, she aims to bridge the gap between academic research and industrial application, contributing to China’s dual carbon goals and global sustainability.

📖Notable Publications

Construction of 3D hollow NiCo-layered double hydroxide nanostructures for high-performance industrial overall seawater electrolysis
Journal: Nano Research
Year: 2024
Citations: 6

Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation
Journal: Chinese Chemical Letters
Year: 2024
Citations: 4

Nanoflower core-shell Cu@Pd catalysts for glycol oxidation reaction with an enhanced performance
Journal: Colloids and Surfaces A: Physicochemical and Engineering Aspects
Year: 2023
Citations: 3

Yi Zhang | Physical Chemistry | Best Researcher Award

Prof. Dr. Yi zhang | Physical chemistry | Best Researcher Award

Nanjing University, china

👨‍🎓Profiles

Early Academic Pursuits

Professor Yi Zhang's academic journey began with a Bachelor of Science degree in Physics from the prestigious Peking University (2002–2006). Demonstrating early promise, he pursued a Ph.D. in Condensed Matter Physics at the Institute of Physics, Chinese Academy of Sciences (2006–2011), under the supervision of Prof. Qi-Kun Xue. His formative academic years were marked by a deep immersion in solid-state physics, particularly focusing on advanced material growth techniques and surface science.

Professional Endeavors

After earning his doctorate, Prof. Zhang embarked on a globally collaborative postdoctoral fellowship (2011–2015), jointly hosted by the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory and the Stanford Institute for Materials and Energy Sciences (SIMES), under the mentorship of renowned physicist Prof. Zhi-Xun Shen. In 2015, he returned to China as a full Professor at the School of Physics, Nanjing University, where he began to lead his own independent research group.

Contributions and Research Focus

Prof. Zhang's research is at the forefront of experimental condensed matter physics. His work combines molecular beam epitaxy (MBE) and angle-resolved photoemission spectroscopy (ARPES) to explore the electronic properties of two-dimensional (2D) materials, topological insulators, and magnetic materials. Notable achievements include the MBE growth and ARPES characterization of topological Dirac semimetals (Na₃Bi), topological crystalline insulators (SnTe (111)), and 2D transition metal dichalcogenides (MoSe₂, WSe₂, NbSe₂). His pioneering studies on the band structure transitions in 2D materials and topological systems have significantly advanced our understanding of quantum materials at the atomic scale.

Impact and Influence

Professor Zhang is widely recognized for his influential scientific output. He was named a Clarivate Highly Cited Researcher in 2023, a testament to the global impact of his publications across multiple disciplines. In 2011, his research was ranked among the Top 100 Most Cited Chinese Papers Published in International Journals, highlighting his early influence in the field. His role as Principal Scientist in China's National Key R&D Program further cements his leadership in cutting-edge materials science.

Academic Cites and Honors

His prolific output has earned numerous prestigious honors:

  • 2023 Clarivate Highly Cited Researcher (Cross-Field)

  • 2015 National Program for Thousand Young Talents of China

  • 2020 & 2017 Jiangsu Province High-Level Talent Programs

  • 2011 Top 100 Most Cited Chinese Papers

  • Chinese Academy of Sciences & Institute of Physics Student Excellence Awards (2010)

These accolades reflect both the depth and breadth of his academic influence.

Technical Skills

Prof. Zhang is an expert in molecular beam epitaxy (MBE), mastering the growth of complex thin-film materials with atomic precision. His skill in angle-resolved photoemission spectroscopy (ARPES) enables him to probe electronic band structures and surface states with remarkable clarity. Additionally, his early work included scanning tunneling microscopy (STM) studies, demonstrating his versatility across multiple surface science techniques.

Teaching and Mentorship

As a professor at Nanjing University, Prof. Zhang is dedicated to nurturing the next generation of physicists. He combines rigorous training in experimental methods with a forward-thinking perspective on quantum materials, offering students and postdocs a rich, interdisciplinary research environment. Many of his mentees go on to pursue successful academic and research careers.

Legacy and Future Contributions

Prof. Yi Zhang stands at the intersection of innovation and impact. His research group continues to push the boundaries of quantum materials science, with a strong emphasis on emerging 2D magnetic and topological systems. As materials physics enters an era of quantum information and next-gen electronics, Prof. Zhang’s ongoing and future work promises to shape fundamental understanding and inspire transformative technologies.

Notable Publications

  • Title: Discovery of a Three-Dimensional Topological Dirac Semimetal, Na₃Bi
    Authors: Z.K. Liu, B. Zhou, Y. Zhang, Z.J. Wang, H.M. Weng, D. Prabhakaran, S.-K. Mo, et al.
    Journal: Science
    Year: 2014


  • Title: Giant Bandgap Renormalization and Excitonic Effects in a Monolayer Transition Metal Dichalcogenide Semiconductor
    Authors: M.M. Ugeda, A.J. Bradley, S.F. Shi, H. Felipe, Y. Zhang, D.Y. Qiu, W. Ruan, et al.
    Journal: Nature Materials
    Year: 2014​

  • Title: Crossover of the Three-Dimensional Topological Insulator Bi₂Se₃ to the Two-Dimensional Limit
    Authors: Y. Zhang, K. He, C.-Z. Chang, C.-L. Song, L.-L. Wang, X. Chen, J.-F. Jia, et al.
    Journal: Nature Physics
    Year: 2010


  • Title: Direct Observation of the Transition from Indirect to Direct Bandgap in Atomically Thin Epitaxial MoSe₂
    Authors: Y. Zhang, T.-R. Chang, B. Zhou, Y.-T. Cui, H. Yan, Z. Liu, F. Schmitt, et al.
    Journal: Nature Nanotechnology
    Year: 2014

  • Title: Topological Quantum Compiling with Reinforcement Learning
    Authors: Yuan-Hang Zhang, Pei-Lin Zheng, Yi Zhang*, Dong-Ling Deng*
    Journal: Physical Review Letters
    Year: 2020​

 

Bo Wu | Physical Chemistry | Best Researcher Award

Dr. Bo Wu | Physical Chemistry | Best Researcher Award

Institute of Chemistry, Chinese Academy of Sciences, China

👨‍🎓Profiles

🎓 Academic Background

Dr. Bo Wu received her Ph.D. degree in 2016 from the Institute of Chemistry, Chinese Academy of Sciences (CAS), China. With a strong foundation in photoelectric nanomaterials and nanochemistry, she has rapidly emerged as a leading researcher in the field of fullerene-based nanocomposites and their diverse applications.

🏅 Professional Endeavors and Leadership

Dr. Wu is currently a professor at the Institute of Chemistry, CAS, where she leads pioneering research on photoelectric properties of fullerene-based nanocomposites. As a key research backbone and project leader, she has undertaken more than 10 prestigious research projects funded by the Ministry of Science and Technology of China, the National Natural Science Foundation of China (NSFC), and the Chinese Academy of Sciences. Her innovative contributions have played a crucial role in advancing the development of nanophotonic and optoelectronic materials.

🔬 Research Contributions and Innovations

Dr. Wu’s work revolves around developing novel fullerene-based nanocomposites with enhanced photoelectric properties, aiming to optimize their applications in optoelectronics, photovoltaics, and nanophotonics. Her research has contributed significantly to the design, synthesis, and functionalization of fullerene derivatives for high-performance energy materials.

🌍 Impact and Recognition

Her outstanding contributions have been widely recognized in the scientific community. She has published more than 20 high-impact journal articles in renowned scientific journals, including Nature Communications, Journal of the American Chemical Society (JACS), and Angewandte Chemie International Edition (Angew. Chem. Int. Ed.). These publications highlight her work in nanochemistry, material science, and energy conversion technologies, solidifying her reputation as an influential researcher.

🏆 Awards and Achievements

Dr. Wu has received numerous prestigious awards and recognitions:

  • 2018: Selected as a member of the Youth Innovation Promotion Association of the Chinese Academy of Sciences, where she was recognized for her exceptional performance.

  • 2023: Awarded the Outstanding Youth Foundation grant by the National Natural Science Foundation of China (NSFC), recognizing her significant contributions to the field of photoelectric nanomaterials.

  • 2023: Honored with the Young Cutting-Edge Nanochemistry Research Award, a testament to her groundbreaking work in nanotechnology.

🛠️ Technical Expertise

Dr. Wu possesses expertise in nanomaterials synthesis, optoelectronic characterization, molecular self-assembly, organic photovoltaic devices, and photoelectric conversion technologies. Her advanced research techniques have contributed to enhancing efficiency and stability in nanocomposite-based devices.

🚀 Future Contributions and Research Vision

Dr. Wu is committed to pushing the boundaries of nanochemistry and photoelectric nanomaterials. Her future research aims to develop next-generation optoelectronic materials, high-performance organic semiconductors, and innovative nanostructured energy devices. With her visionary leadership and dedication, she continues to inspire young researchers and drive scientific advancements in the field of functional nanomaterials and energy conversion technologies.

📖Notable Publications

Photoinduced Ultrafast Multielectron Transfer and Long-Lived Charge-Accumulated State in a Fullerene-Indacenodithiophene Dumbbell Triad

Authors: Chong Wang, Bo Wu, Yang Li, Chunru Wang, Chunli Bai
Journal: Proceedings of the National Academy of Sciences of the United States of America
Year: 2024

Aggregation Promotes Charge Separation in Fullerene-Indacenodithiophene Dyad

Authors: Chong Wang, Bo Wu, Yang Li, Rui Wen, Chunru Wang
Journal: Nature Communications
Year: 2024

Tianjie Qiu | Electrochemistry | Best Researcher Award

Dr. Tianjie Qiu | Electrochemistry | Best Researcher Award

Peking University, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Tianjie Qiu began his academic journey at Nankai University, where he pursued a Bachelor’s degree in Chemistry of Materials (2013-2017). During his undergraduate studies, he developed a strong foundation in materials science and chemistry, setting the stage for his research in advanced materials. Recognized for his academic excellence, he continued his studies at Peking University, one of China’s premier institutions. From 2017 to 2022, he completed his Ph.D. in Materials Science and Engineering, securing the top rank in his class in annual comprehensive quality evaluations. His early education laid the groundwork for his significant contributions to electrocatalysis and energy materials.

🏆 Professional Endeavors

Dr. Qiu has been an active researcher in the field of materials science and electrochemistry since 2017. His expertise spans multiple areas, including the design of ruthenium-based nanocatalysts, heterostructure engineering, and electrochemical energy storage. His work focuses on developing hierarchically porous materials and MOF-derived catalysts for various applications, such as water electrolysis and potassium-ion batteries. Through innovative material synthesis and characterization techniques, he has pioneered multiple breakthroughs in electrocatalysis and energy storage.

🔬 Contributions and Research Focus

Dr. Qiu’s research primarily focuses on the rational design of nanocomposites for electrochemical applications, contributing significantly to the fields of energy conversion and storage. One of his notable achievements includes the development of hierarchically porous ruthenium-carbon nanocatalysts through a bimetallic MOF-derived method, which enhances hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performance by employing precise pore-formation strategies. Additionally, he optimized the heterostructure of Ru@RuOx to improve alkaline HER activity. His work on boron/nitrogen codoped carbon nanotubes for water electrolysis led to a universal method for synthesizing RuM (M = Ir, Co, Fe, Pt, Ag) nanoalloys while systematically analyzing the structure-performance relationship of these electrocatalysts. Furthermore, in the field of potassium-ion batteries, Dr. Qiu designed superstructured nitrogen-doped microporous carbon nanorods derived from MOFs and investigated the potassium-ion adsorption mechanism using first-principles calculations. His development of multi-element doped carbon superstructures has further enhanced potassium-ion storage performance. Through these innovations, Dr. Qiu has paved the way for next-generation catalysts and battery materials, advancing electrochemical energy technologies.

📊 Impact and Influence

Dr. Qiu’s work has gained widespread recognition in the scientific community: 26 SCI-indexed publications, h-index: 17, Total Citations: 2,390, 3 ESI Highly Cited Papers, 1 Invention Patent, 2 Co-authored Books. These achievements reflect the depth and influence of his research in the fields of electrocatalysis, energy storage, and materials science. His work has been referenced extensively, contributing to the development of high-performance catalysts and battery technologies.

🛠️ Technical Skills

Dr. Qiu possesses a diverse skill set in materials synthesis, characterization, and electrochemical analysis:

  • Nanomaterials Design: MOF-derived synthesis, porous structure engineering, heteroatom doping.
  • Electrocatalysis: Hydrogen Evolution Reaction (HER), Oxygen Evolution Reaction (OER), water electrolysis.
  • Battery Materials: Potassium-ion batteries, microporous carbon anodes, phosphorus confinement.
  • Computational Analysis: First-principles calculations, energy band analysis, adsorption studies.
  • Advanced Characterization: XRD, SEM, TEM, Raman Spectroscopy, XPS, BET surface analysis.

His expertise bridges the gap between experimental materials science and computational modeling, allowing for a deep understanding of structure-property relationships in nanomaterials.

🎓 Teaching and Mentorship

Beyond research, Dr. Qiu has been actively involved in mentoring and guiding students in materials science. As a top-ranking Ph.D. scholar, he played a crucial role in training junior researchers in advanced material synthesis and electrochemical characterization. His contributions to academia extend beyond publications, fostering a new generation of scientists in nanomaterials and sustainable energy.

🌍 Legacy and Future Contributions

Dr. Qiu’s groundbreaking work in rational catalyst design and battery materials will continue to shape the future of renewable energy and sustainable technologies. His research holds immense potential for:

  • Developing next-generation hydrogen production catalysts for clean energy.
  • Enhancing potassium-ion battery technologies as an alternative to lithium-ion storage.
  • Pushing the boundaries of nanomaterial engineering for energy applications.

With his strong publication record and innovative research, Dr. Qiu is poised to become a leading figure in materials science and energy storage, driving technological advancements in sustainable energy solutions.

📖Notable Publications

  • Metal-organic framework-derived materials for electrochemical energy applications

    • Authors: Z Liang, R Zhao, T Qiu, R Zou, Q Xu
    • Journal: EnergyChem
    • Year: 2019
  • Metal–organic framework-based materials for energy conversion and storage

    • Authors: T Qiu, Z Liang, W Guo, H Tabassum, S Gao, R Zou
    • Journal: ACS Energy Letters
    • Year: 2020
  • Covalent organic framework-based materials for energy applications

    • Authors: DG Wang, T Qiu, W Guo, Z Liang, H Tabassum, D Xia, R Zou
    • Journal: Energy & Environmental Science
    • Year: 2021
  • Highly exposed ruthenium-based electrocatalysts from bimetallic metal-organic frameworks for overall water splitting

    • Authors: T Qiu, Z Liang, W Guo, S Gao, C Qu, H Tabassum, H Zhang, B Zhu, R Zou
    • Journal: Nano Energy
    • Year: 2019
  • Pristine hollow metal–organic frameworks: design, synthesis and application

    • Authors: T Qiu, S Gao, Z Liang, DG Wang, H Tabassum, R Zhong, R Zou
    • Journal: Angewandte Chemie International Edition
    • Year: 2021

Xuexue Pan | Electrochemistry | Best Researcher Award

Mr. Xuexue Pan | Electrochemistry | Best Researcher Award

Zhongshan Polytechnic, China

👨‍🎓Profiles

Early Academic Pursuits 🎓

Dr. Xuexue Pan’s academic journey began with a Ph.D. from Poznan University of Technology, Poland, where he studied under Professor François Béguin, a globally recognized expert in supercapacitors. His research focused on metal ion capacitors and the mechanisms of two-dimensional graphene-like materials in storing metal ions. He worked extensively on pre-metallization technology, multifunctional efficiency-enhancing materials, and hybrid capacitors, aiming to overcome the low capacitance and energy density limitations of traditional supercapacitors. These early research endeavors laid the groundwork for his future contributions to the field of electrochemical energy storage.

Professional Endeavors 🏢

Following his doctoral studies, Dr. Pan continued his research as a postdoctoral fellow at Poznan University of Technology (2021-2023), collaborating with Professor Qamar Abbas on the development of hybrid ion capacitors. Since June 2023, he has been a visiting associate researcher at the Functional Nanomaterials Laboratory of Al-Farabi Kazakh National University, where he focuses on hybrid fluid capacitors and battery technology. In addition to his research, he serves as a full-time teacher at Zhongshan Polytechnic, actively contributing to the academic and scientific community. He work in energy storage has earned international recognition, including his leadership in various natural science fund projects and participation in prestigious scientific research initiatives.

Contributions and Research Focus 🔬

Dr. Pan’s research is centered on electrochemical energy storage, metal ion capacitors, and hybrid ion capacitors. He specializes in developing two-dimensional graphene-like materials for efficient ion storage, advancing pre-metallization techniques for organic metal ion capacitors, and optimizing the structural design of hybrid metal ion capacitors. His innovative work has provided solutions to challenges in energy storage, including low capacitance, poor energy efficiency, and limited industrial scalability. Additionally, his expertise extends to battery electrode materials, gas-free oxidation technology, and pre-treatment processes that enhance the performance of energy storage devices. His research has been instrumental in bridging the gap between fundamental science and industrial applications.

Impact and Influence 🌍

Dr. Pan’s contributions have been widely recognized, both nationally and internationally. He has received prestigious honors such as the Young Scientist Award from the Institute of Combustion in Kazakhstan and the Best Research Award from Al-Farabi Kazakh National University. Additionally, he has won multiple national and provincial innovation and entrepreneurship awards, including the second prize in the 8th National Vocational College Polymer Materials Innovation and Entrepreneurship Competition and the second prize in the “Challenge Cup” Green Guangdong Special Competition. These accolades highlight his significant impact on the development of electrochemical energy storage technologies.

Academic Citations and Research Contributions 📚

Dr. Pan has an impressive publication record, having authored 31 high-impact journal papers in leading scientific journals such as Energy Storage Materials, Chemical Engineering Journal, and the Journal of Power Sources. He has also filed 10 national patents related to battery technology and capacitors, participated in 10 international conferences, and played a key role in four domestic research projects. Additionally, he has contributed to two major international research funds, including projects supported by the European Regional Development Fund – Polish Science Fund and the Ministry of Science and Higher Education Fund of the Republic of Kazakhstan. His research is widely cited, further establishing his as an influential figure in the field of electrochemical energy storage.

Technical Skills and Expertise ⚙️

Dr. Pan possesses extensive technical expertise in electrochemical analysis, material characterization, and energy storage systems. He is proficient in techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and BET surface area analysis. His knowledge of battery electrode materials, gas-free oxidation processes, and pre-metallization techniques has contributed to advancements in next-generation energy storage solutions. These technical skills have played a crucial role in the development of high-performance capacitors and batteries.

Teaching Experience and Mentorship 📖

As an educator, Dr. Pan is committed to mentoring young researchers and students. At Zhongshan Polytechnic, he integrates cutting-edge research into teaching, fostering a scientific mindset among students. His mentorship has led to numerous student achievements in innovation and entrepreneurship competitions. By bridging the gap between academic research and real-world applications, he continues to nurture the next generation of scientists in the field of electrochemical energy storage.

Legacy and Future Contributions 🚀

Looking ahead, Dr. Pan is dedicated to furthering his contributions to the field of electrochemical energy storage and sustainable energy solutions. He aims to expand research on hybrid capacitors, develop advanced electrode materials, and collaborate with international research institutions to accelerate industrial applications. With his strong research background, technical expertise, and passion for innovation, he is set to play a pivotal role in the advancement of high-performance supercapacitors and batteries, driving the future of sustainable energy storage technologies.

📖Notable Publications

Hydrothermal synthesis and photoluminescence of single-crystalline LaVO4:Eu3+ nanorods/nanosheaves
Authors: J. Wang, X. Pan, Z. Li, J. Ke, Z.A. Supiyeva
Journal: MRS Communications
Year: 2024

Microcrystalline-Fe2P4O12 as eco-friendly and efficient anode for high-performance dual-ion battery
Authors: Y. He, X. Pan, Q. Long, C. Li, Q. Abbas
Journal: Chemical Engineering Journal
Year: 2024

Cryolithionite-Based Pseudocapacitive Electrode for Sustainable Lithium-ion Capacitors
Authors: L. Ladenstein, X. Pan, H.Q. Nguyen, Q. Abbas, D. Rettenwander
Journal: Batteries and Supercaps
Year: 2024

Using metal–organic frameworks to create carbon-encased Ni@Ni(OH)2 for high-performance supercapacitors
Authors: J. Wang, X. Pan, P. Peng, Z.A. Supiyeva, Q. Liu
Journal: Journal of Nanoparticle Research
Year: 2024

Tao Yang | Electrochemistry | Best Researcher Award

Prof. Tao Yang | Electrochemistry | Best Researcher Award

University of Science and Technology Beijing, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Prof. Tao Yang embarked on his academic journey at the University of Science and Technology Beijing (USTB), where he pursued a doctoral degree at the State Key Laboratory of Advanced Metallurgy from 2012 to 2018. His early research laid a strong foundation in materials science and electrochemistry, setting the stage for his future contributions to sustainable energy and carbon neutrality.

👨‍🏫 Professional Endeavors

After completing his doctorate, Prof. Yang continued at USTB as a postdoctoral researcher in the School of Materials Science and Engineering (2018-2021). During this period, he expanded his expertise in electrocatalysis and nanogenerator technologies. He then advanced to an associate professor role at the Collaborative Innovation Center of Steel Technology (2018-2021), further enhancing his research impact. Since July 2021, he has served as a full professor at the Institute of Carbon Neutrality at USTB, leading groundbreaking research initiatives in sustainable energy solutions.

🔬 Contributions and Research Focus

Prof. Yang's research spans multiple critical areas in electrochemistry and energy science, including:

Electrocatalysis & Hydrogen Production: Developing advanced materials for water splitting to generate hydrogen efficiently.

Carbon Dioxide Reduction & Utilization: Innovating techniques to convert CO₂ into valuable chemical fuels, addressing climate change challenges.

Piezoelectricity & Nanogenerators: Exploring self-powered energy harvesting technologies for renewable energy applications.

Electromagnetic Wave Absorption: Investigating materials that mitigate electromagnetic interference, contributing to advanced communication and defense technologies.

📊 Impact and Influence

With over 60 SCI/EI-indexed papers as the first or corresponding author, Prof. Yang has established himself as a prolific researcher. His work has amassed 3,500 citations on Google Scholar, achieving an h-index of 36. Notably, 8 of his papers have been featured as journal covers, and 7 have been recognized as ESI Highly Cited Papers, underscoring the significance of his research in the scientific community.

🏆 Academic Recognitions

Prof. Yang's remarkable contributions have earned him numerous accolades, including:

Postdoctoral Innovative Talent Support Program

Beijing Outstanding Talent – Young Backbone Individual

Inclusion in Stanford University’s World’s Top 2% Scientists (2022-2024) These prestigious honors highlight his sustained excellence and influence in the field of carbon neutrality and energy conversion.

🛠️ Technical Skills

Prof. Yang possesses a deep expertise in advanced material characterization and electrochemical techniques, including: Electrocatalysis testing and analysis, Nanomaterial synthesis and modification, Advanced spectroscopy and microscopy techniques, Computational modeling for material behavior predictions His technical prowess enables him to push the boundaries of innovation in clean energy technologies.

🎓 Teaching and Mentorship

As a professor and doctoral supervisor at USTB, Prof. Yang plays a pivotal role in shaping the next generation of researchers. He actively mentors Ph.D. and master's students, guiding them in cutting-edge research on sustainable energy solutions. His commitment to academic excellence ensures that his students receive top-tier education and research training.

🌏 Legacy and Future Contributions

Looking ahead, Prof. Yang aims to: Expand research on scalable hydrogen production technologies, Develop novel catalysts for efficient CO₂ conversion, Advance self-powered nanogenerator applications, Contribute to global efforts in achieving carbon neutrality His work continues to drive scientific innovation and practical solutions for a more sustainable future, making him a leading figure in electrochemical energy research.

📖Notable Publications

1. Gut dysbiosis is linked to hypertension
Authors: T Yang, MM Santisteban, V Rodriguez, E Li, N Ahmari, JM Carvajal, ...
Journal: Hypertension
Year: 2015

2. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys
Authors: T Yang, YL Zhao, Y Tong, ZB Jiao, J Wei, JX Cai, XD Han, D Chen, A Hu, ...
Journal: Science
Year: 2018

3. DSC: Scheduling parallel tasks on an unbounded number of processors
Authors: T Yang, A Gerasoulis
Journal: IEEE Transactions on Parallel and Distributed Systems
Year: 1994

4. Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy
Authors: YL Zhao, T Yang, Y Tong, J Wang, JH Luan, ZB Jiao, D Chen, Y Yang, ...
Journal: Acta Materialia
Year: 2017

5. A comparison of clustering heuristics for scheduling directed acyclic graphs on multiprocessors
Authors: A Gerasoulis, T Yang
Journal: Journal of Parallel and Distributed Computing
Year: 1992

6. The gut microbiota and the brain–gut–kidney axis in hypertension and chronic kidney disease
Authors: T Yang, EM Richards, CJ Pepine, MK Raizada
Journal: Nature Reviews Nephrology
Year: 2018

7. Hypertension-linked pathophysiological alterations in the gut
Authors: MM Santisteban, Y Qi, J Zubcevic, S Kim, T Yang, V Shenoy, ...
Journal: Circulation Research
Year: 2017

Yi Zhao | Electrochemistry | Best Researcher Award

Prof. Dr. Yi Zhao | Electrochemistry | Best Researcher Award

Beijing University of Chemical Technology, China

👨‍🎓Profiles

👩‍🎓 Early Academic Pursuits

Zhao Yi, born in May 1991 in Xingtai City, Hebei Province, developed an early interest in materials science. She pursued her undergraduate studies at Yanshan University (2010-2014), where she earned a Bachelor of Engineering in Metal Materials under the guidance of Academician Tian Yongjun and Professor Jing Qin. Her passion for materials chemistry led her to Beihang University (BUAA), where she completed her Ph.D. in Materials Physics and Chemistry (2014-2020), supervised by Professor Liu Jinzhang. Her doctoral research laid a strong foundation for her future contributions to energy storage and advanced materials.

💼 Professional Endeavors

After obtaining her Ph.D., Zhao Yi embarked on a postdoctoral fellowship at the School of Materials Science and Engineering, Beijing Institute of Technology (2020-2022), working under the mentorship of Academician Wu Feng and Professor Chen Renjie. In November 2022, she joined the School of Chemistry at Beijing University of Chemical Technology as an Associate Professor. Her career trajectory showcases her dedication to interdisciplinary research and advancing the field of materials science.

🔬 Contributions and Research Focus

Zhao Yi's research primarily focuses on energy storage materials and devices, including aqueous zinc batteries and supercapacitors. She has also made significant advancements in the design of carbon-based organic materials and organic-inorganic composite electrodes. Additionally, her work on fuel cells and catalysts has contributed to the development of high-performance energy solutions. Her research is instrumental in shaping next-generation energy storage and conversion technologies.

🌍 Impact and Influence

As a principal investigator, Zhao Yi has led multiple prestigious projects, including:

  • National Natural Science Foundation of China for Distinguished Young Scholars (2023-2025)
  • Shandong Provincial Natural Science Foundation for Young Scholars (2023-2025)
  • Talent Introduction Project of Beijing University of Chemical Technology (2023-2025)
  • China Postdoctoral Science Foundation General Program (2020-2022, completed)
  • Guangdong Provincial Key Laboratory of Power Battery Safety (2021-2022, completed) Her research contributions have significantly influenced advancements in battery safety and energy storage efficiency.

📚 Academic Citations and Recognitions

Zhao Yi's scholarly work has been widely cited in high-impact journals, reflecting her research's influence in materials science and electrochemistry. She actively collaborates with esteemed academics and institutions, further elevating her standing in the field. Her publications serve as key references for researchers developing next-generation energy solutions.

🛠️ Technical Skills

With expertise in materials characterization and electrochemical analysis, Zhao Yi is proficient in:

  • Scanning Electron Microscopy (SEM)
  • X-ray Diffraction (XRD)
  • Electrochemical Impedance Spectroscopy (EIS)
  • Cyclic Voltammetry (CV)
  • Spectroscopic Techniques (UV-Vis, FTIR, Raman) Her technical acumen enables her to innovate in the fields of battery technology and catalyst development.

🎓 Teaching Experience

As an Associate Professor at Beijing University of Chemical Technology, Zhao Yi is deeply involved in mentoring students and guiding research projects. She integrates her cutting-edge research into her teaching, fostering a new generation of scientists specializing in materials chemistry and energy storage.

🚀 Legacy and Future Contributions

Zhao Yi's research is poised to shape the future of sustainable energy storage and conversion technologies. Her ongoing projects and innovative approaches are expected to contribute significantly to advancements in battery technology, supercapacitors, and fuel cells. With a strong foundation in both fundamental and applied research, she continues to push the boundaries of materials science for a cleaner and more energy-efficient world.

📖Notable Publications

Inhibiting Lattice Distortion of Ultrahigh Nickel Co-Free Cathode Material for Lithium-Ion Batterie

Authors: Y. Shang, Yang; Z. Xu, Zhichao; Y. Bao, Yifan; H. Yang, Huiying; J. Shen, Jixue
Journal: Nano Letters
Year: 2025

Research progress on rechargeable aluminum sulfur (Al-S) batteries based on different electrolyte system

Authors: X. Huo, Xiaogeng; Y. Zhao, Yi; S. Zhang, Shuaitao; Z. Li, Zhanyu; J. Li, Jianling
Journal: Journal of Power Sources
Year: 2025

Synergy of In Situ Heterogeneous Interphases with Hydrogen Bond Reconstruction Enabling Highly Reversible Zn Anode at −40 °C

Authors: A. Zhou, Anbin; H. Wang, Huirong; X. Hu, Xin; F. Wu, Feng; R. Chen, Renjie
Journal: Advanced Functional Materials
Year: 2025

Looking into failure mode identification driven by differential capacity in Ni-rich layered cathodes

Authors: X. Zhang, Xiaodong; E. Fan, Ersha; J. Lin, Jiao; F. Wu, Feng; L. Li, Li
Journal: Energy Storage Materials
Year: 2025

Construction of sub micro-nano-structured silicon-based anode for lithium-ion batteries

Authors: C. Su, Chen; M.S. Kurbanov, M. Sh; Y. Zhao, Yi; C. Zhang, Chengwei; G. Wang, Gongkai
Journal: Nanotechnology
Year: 2024

Wenjibin Sun | Analytical Chemistry | Best Researcher Award

Prof. Dr. Wenjibin Sun | Analytical Chemistry | Best Researcher Award

Guizhou University, China

👨‍🎓Profiles

🌱 Early Academic Pursuits

Dr. Wenjibin Sun embarked on his academic journey at Guizhou University, where he pursued a Ph.D. in mining and geological engineering. His dedication to research excellence led him to a prestigious joint doctoral training program at the University of Newcastle, Australia, under the China Scholarship Council (CSC) sponsorship. This international exposure enriched his expertise in unconventional oil and gas exploration, equipping him with advanced methodologies for analyzing shale gas reservoirs and their development potential.

🏆 Professional Endeavors

Currently serving as a Distinguished Professor at the Mining College, Guizhou University, Dr. Sun plays a pivotal role in mentoring Ph.D. and Master’s students. His professional journey includes extensive consultancy experience with six industry projects, where he has contributed to cutting-edge solutions in shale gas exploration and mine power disaster prevention. His contributions to the field were recognized in 2022 when he received the Guizhou Provincial Science and Technology Progress Award for his research on shale gas enrichment in northern Guizhou.

🔬 Contributions and Research Focus

Dr. Sun's research primarily revolves around unconventional oil and gas exploration and mine safety. He has made significant strides in:

  • Characterizing micro and nanopore structures in unconventional reservoirs.
  • Analyzing pore connectivity to improve oil and gas recovery efficiency.
  • Investigating shale gas enrichment mechanisms for optimized extraction.
  • Assessing rock fracture propagation and permeability, crucial for hydraulic fracturing operations.

His work in these areas has laid a strong theoretical foundation for the efficient exploitation of the Niutitang Formation shale gas reservoirs in northern Qianbei, contributing significantly to China’s energy sector.

🌍 Impact and Influence

As an influential academic, Dr. Sun is actively engaged in international collaborations and editorial activities. He serves as a peer reviewer for top-tier SCI journals, including:

  • Energy, Ocean and Petroleum Science
  • Natural gas Science and Engineering
  • Journal of Petroleum Science and Engineering
  • Natural Resources Research
  • Journal of Geomechanics and Geophysics
  • Energy and Geological Resources

His 14 publications in SCI and Scopus-indexed journals demonstrate his commitment to advancing knowledge in petroleum engineering, shale gas reservoirs, and geomechanics.

📚 Academic Citations and Recognitions

Dr. Sun’s research outputs have garnered substantial citations, reflecting the impact of his work on the scientific community. His award-winning research, particularly in shale gas fracturing technology, has been recognized in provincial and national forums, reinforcing his status as a leading expert in his field.

🛠️ Technical Skills

With deep expertise in geomechanical analysis, reservoir modeling, and unconventional resource evaluation, Dr. Sun is proficient in:

  • Microstructural characterization of rock formations using advanced imaging techniques.
  • Numerical simulation and modeling of reservoir properties.
  • Petroleum engineering software for fracture analysis and permeability studies.
  • Data-driven approaches for optimizing shale gas extraction.

🎓 Teaching and Mentorship

Dr. Sun is deeply involved in academic mentoring, having guided multiple Ph.D. and Master’s students in their research pursuits. He has also played a crucial role in training the winning team at the 14th "Challenge Cup" Provincial Competition, where students developed an integrated energy-fracturing device for shale reservoirs. His teaching philosophy emphasizes practical applications, preparing students for industry challenges.

🔬 Patents and Innovations

With nine published patents, Dr. Sun has significantly contributed to technological advancements in shale gas fracturing techniques and mining safety mechanisms. His innovations focus on improving efficiency, safety, and sustainability in oil and gas extraction.

🔮 Legacy and Future Contributions

Dr. Sun’s contributions to shale gas exploration and geomechanics have shaped industry practices and academic research. Moving forward, he aims to:

  • Enhance research in energy transition by integrating AI and machine learning into reservoir characterization.
  • Develop novel eco-friendly extraction techniques to minimize the environmental footprint of shale gas exploitation.
  • Strengthen global collaborations to bring innovative

📖Notable Publications

Impact of Slickwater Fracturing Fluid on Pore Structure and Micromechanical Properties of Clay-Rich Shale Using Fluid Intrusion and AFM Experiments

Authors: Qichi Dai, Wenjibin Sun, Yujun Zuo, Bobo Li, Zhonghu Wu, Xiaohua Tan, Hang Lei, Wei Lv, Yueqin Li

Journal: ACS Omega

Year: 2025

The Impact of Pore Heterogeneity on Pore Connectivity and the Controlling Factors Utilizing Spontaneous Imbibition Combined with Multifractal Dimensions: Insight from the Longmaxi Formation in Northern Guizhou

Authors: Wenjibin Sun, Yujun Zuo, Zhijie Wen, Bobo Li, Zhonghu Wu, Lulin Zheng, Jianyun Lin, Hao Liu, Bin Chen, Peng Rong et al.

Journal: Energy

Year: 2024

Seepage Characteristics of Coal under Complex Mining Stress Environment Conditions

Authors: Lei Zhang, Liang Luo, Jianzhong Pan, Xijian Li, Wenjibin Sun, Shixiang Tian

Journal: Energy & Fuels

Year: 2024

Study on Dynamic Characteristics of Sandstone Damaged by Loading and Unloading

Authors: Shang Hu, Yujun Zuo, Qinggang Chen, Chao Pan, Bin Chen, Peng Rong, Wenjibin Sun, Jianyun Lin, Shuyan Du, Xiaocheng Tang

Journal: Engineering Failure Analysis

Year: 2024

 

Mohamed Issa | Electrochemistry | Best Researcher Award -1744

Assoc. Prof. Dr. Mohamed Issa | Electrochemistry | Best Researcher Award

Egypt Japan University Of Science & Technology, Egypt

👨‍🎓Profiles

🏫 Early Academic Pursuits

Dr. Mohamed Issa embarked on his academic journey with a B.Sc. in Computer Engineering from the Faculty of Engineering, Zagazig University, in 2009, earning an Excellent with Honor distinction. His passion for computer systems and engineering led him to pursue higher education, obtaining an M.Sc. in Computer Engineering in 2013 from the same institution. His research during this period laid a strong foundation for his expertise in meta-heuristics, soft computing algorithms, and artificial intelligence. He further cemented his academic credentials by earning a Ph.D. in Computer Engineering in 2019 from Zagazig University, focusing on advanced computational techniques.

🎓 Professional Endeavors

Dr. Issa's professional career reflects a steady progression through academia. His tenure at Zagazig University began in 2013 as a Teaching Assistant, where he played a crucial role in guiding students in computer engineering subjects. He later advanced to Lecturer Assistant until 2019, when he earned his Ph.D. and transitioned into a full-time Assistant Professor at the Computer and Systems Department, Faculty of Engineering, Zagazig University. In parallel, he contributed to multiple institutions, including NAHDA University and the Higher Technological Institute in Tenth of Ramadan City, as a Part-time Assistant Professor, bringing his expertise in computer science to a broader student community.

His academic growth was officially recognized in 2024 when he was promoted to Associate Professor. He currently holds dual appointments:

  • Full-time Associate Professor at Egypt-Japan University for Science and Technology (E-JUST).
  • Full-time Associate Professor at Zagazig University’s Computer and Systems Department.

These roles underline his national and international contributions to higher education and research.

🧠 Contributions and Research Focus

Dr. Issa’s research contributions span multiple disciplines, with a strong focus on artificial intelligence and computational optimization. His work includes:
✅ Soft Computing Algorithms – Developing and refining computational models for intelligent systems.
✅ Meta-heuristics & Stochastic Algorithms – Enhancing optimization techniques used in engineering and artificial intelligence.
✅ Engineering Problems Optimization – Applying AI-driven approaches to solve complex real-world engineering challenges.
✅ Artificial Intelligence & Machine Learning – Advancing AI methodologies for automation and decision-making.
✅ Computer Vision – Exploring image processing and pattern recognition techniques.
✅ Parallel Computing – Leveraging multi-core and distributed systems for computational efficiency.
✅ Bioinformatics – Implementing AI algorithms for genetic data analysis and biomedical research.

His research contributions have been widely recognized, particularly in machine learning-based optimization, AI-driven decision-making systems, and bioinformatics applications.

🌍 Impact and Influence

Dr. Issa has made a significant impact in the fields of computer science, engineering optimization, and artificial intelligence. His work has influenced research directions in multiple domains, including:
🔹 Developing enhanced meta-heuristic algorithms for complex optimization problems.
🔹 Advancing AI methodologies for industrial and healthcare applications.
🔹 Contributing to bioinformatics research, particularly in sequence alignment and computational biology.

His research has been cited extensively in top-tier scientific journals, showcasing his influence in the global research community.

📊 Academic Citations & Recognition

Dr. Issa’s work has gained considerable academic recognition, reflected in the high citation counts of his publications. His peer-reviewed research in top journals such as Expert Systems with Applications, Applied Soft Computing, and Sustainable Energy Technologies and Assessments highlights his expertise in AI and optimization. His interdisciplinary approach has fostered collaborations with researchers worldwide, further elevating his academic stature.

🔧 Technical Skills

Dr. Issa is proficient in a wide range of technical and analytical tools, including:
✔ Programming Languages: Python, C++, MATLAB, Java.
✔ Optimization Techniques: Meta-heuristics, Evolutionary Algorithms, Swarm Intelligence.
✔ AI & Machine Learning: Deep Learning, Neural Networks, Reinforcement Learning.
✔ Computational Tools: TensorFlow, OpenCV, Scikit-learn, PyTorch.
✔ Parallel Computing: GPU programming, CUDA, OpenMP.

👨‍🏫 Teaching Experience & Mentorship

With over a decade of teaching experience, Dr. Issa has guided numerous undergraduate and postgraduate students. His dynamic teaching methodology integrates theoretical concepts with practical applications, ensuring students gain hands-on experience in AI, optimization, and bioinformatics. He has also mentored students in their research projects, dissertations, and international competitions, many of whom have gone on to pursue successful careers in academia and industry.

🚀 Legacy and Future Contributions

Dr. Mohamed Issa continues to drive innovation and knowledge in artificial intelligence, bioinformatics, and optimization algorithms. His future research directions include:
🔸 Developing cutting-edge AI models for next-generation computing.
🔸 Enhancing computational efficiency through advanced parallel processing.
🔸 Bridging AI and healthcare to create predictive and diagnostic tools.
🔸 Spearheading interdisciplinary collaborations to address emerging global challenges.

Through his extensive research, teaching, and mentorship, Dr. Issa is shaping the future of AI-driven innovation and contributing to scientific advancements that impact both industry and academia.

📖Notable Publications

ASCA-PSO: Adaptive sine cosine optimization algorithm integrated with particle swarm for pairwise local sequence alignment

Authors: M. Issa, D. Oliva, A.E. Hassanien, H. Ahmed, A. Ahmed

Journal: Expert Systems with Applications

Year: 2018

Low-cost bilayered structure for improving the performance of solar stills: Performance/cost analysis and water yield prediction using machine learning

Authors: A.H. Elsheikh, S. Shanmugan, R. Sathyamurthy, A.K. Thakur, M. Issa, ...

Journal: Sustainable Energy Technologies and Assessments

Year: 2022

Passive vehicle suspension system optimization using Harris Hawk Optimization algorithm

Authors: M. Issa, A. Samn

Journal: Mathematics and Computers in Simulation

Year: 2022

Enhanced arithmetic optimization algorithm for parameter estimation of PID controller

Authors: M. Issa

Journal: Arabian Journal for Science and Engineering

Year: 2023

Human activity recognition based on embedded sensor data fusion for the internet of healthcare things

Authors: M.E. Issa, A.M. Helmi, M.A.A. Al-Qaness, A. Dahou, M. Abd Elaziz, ...

Journal: Healthcare

Year: 2022

Optimal parameters extracting of fuel cell based on Gorilla Troops Optimizer

Authors: M. Abd Elaziz, L. Abualigah, M. Issa, A.A. Abd El-Latif

Journal: Fuel

Year: 2023

Analyzing COVID-19 virus based on enhanced fragmented biological Local Aligner using improved Ions Motion Optimization algorithm

Authors: M. Issa, M. Abd Elaziz

Journal: Applied Soft Computing

Year: 2020