Xuteng Zhao | Catalysis | Best Researcher Award

Dr. Xuteng Zhao | Catalysis | Best Researcher Award

Shanghai Jiao Tong University, China

👨‍🎓Profiles

👨‍🎓 Early Academic Pursuits

Dr. Xuteng Zhao began his academic journey with a strong foundation in materials science, earning his Bachelor’s degree in Polymer Materials and Engineering from Northeast Forestry University (2012.09–2016.06). His early exposure to polymer science laid the groundwork for his multidisciplinary approach to energy and catalysis. Motivated by a deep interest in chemical processes, he pursued a Master’s degree in Chemical Engineering and Technology at Harbin Engineering University (2016.09–2019.03), where he gained hands-on experience in process engineering and catalysis. His academic pursuits culminated in a Doctoral degree in Power Engineering and Engineering Thermophysics from Shanghai Jiao Tong University (2019.04–2022.12), marking a transition into the emerging field of electrochemical energy conversion.

👨‍🔬 Professional Endeavors

Dr. Zhao continued his association with Shanghai Jiao Tong University as a Postdoctoral Fellow (2022.12–2024.11), contributing to cutting-edge research in electrochemical catalysis and thermophysical engineering. His commitment and research excellence led to his promotion as an Associate Researcher in March 2025, where he remains active in both scientific research and academic mentorship. His current role situates him at the forefront of hydrogen production technologies, particularly focusing on alcohol–ammonia-based hydrogen evolution systems.

🔬 Contributions and Research Focus

Dr. Zhao’s research is deeply rooted in the development and optimization of electrochemical catalysis technologies for sustainable energy. His primary research focus includes alcohol-ammonia hydrogen production, a promising route for clean hydrogen generation. By integrating principles of thermophysics and catalysis, he has worked on improving the energy efficiency and catalytic performance of these systems. His work bridges materials engineering with chemical process innovation, contributing to the next generation of green hydrogen production technologies.

🌍 Impact and Influence

Through his innovative research, Dr. Zhao has significantly contributed to the global discourse on renewable energy and hydrogen economy. His studies on novel catalytic materials and ammonia-fueled hydrogen systems are expected to influence future industrial hydrogen production models. By collaborating within interdisciplinary teams at Shanghai Jiao Tong University, he supports both academic development and practical technology deployment for carbon-neutral energy solutions.

📊 Academic Citations and Recognition

Though still early in his career, Dr. Zhao’s research has begun to attract attention in scholarly circles, particularly in electrochemical and energy materials communities. His articles are cited in studies related to electrocatalysis, fuel processing, and ammonia decomposition, contributing to an expanding body of literature in sustainable energy production.

🧪 Technical Skills and Expertise

Dr. Zhao has mastered a wide array of experimental and analytical techniques essential to catalysis and thermophysical studies. These include Electrochemical Impedance Spectroscopy (EIS), Linear Sweep Voltammetry (LSV), Tafel Polarization and Reaction Kinetics, Gas Chromatography for hydrogen quantification, and material characterization techniques such as SEM, XRD, BET, and FT-IR. He is also adept at designing custom experimental systems for lab-scale hydrogen production and catalytic performance evaluation.

👨‍🏫 Teaching Experience and Mentorship

As an associate researcher, Dr. Zhao actively participates in academic mentorship at Shanghai Jiao Tong University. He has guided graduate students in experimental design, data analysis, and manuscript preparation. His teaching approach emphasizes both theoretical understanding and hands-on experimentation, fostering the next generation of researchers in energy engineering.

🧭 Legacy and Future Contributions

Looking ahead, Dr. Zhao aims to establish himself as a leading researcher in hydrogen energy and catalysis. His future research will likely delve into scalable hydrogen production techniques, advanced electrocatalyst design, and integration of renewable resources with chemical fuel synthesis. He aspires to develop systems that are not only energy-efficient but also economically viable for real-world deployment. His dedication to clean energy solutions and academic excellence positions him as a promising contributor to the global clean-tech landscape.

📖Notable Publications

Electrically Driven Gaseous Ammonia Decomposition for Hydrogen Production over SiC-Mediated Catalyst without External Heating
Authors: Xiaochao Wang, Xuteng Zhao, Guangzhao Zhou, Ting Chen, Qi Chen, Nicolas Alonso-Vante, Zhen Huang, Yiran Zhang, He Lin
Journal: ACS Catalysis
Year: 2025

The influence of phosphorus and CO poisoning on Pd/SSZ-13 with different Al distributions as passive NOx adsorbers
Authors: Yinan Wang, Jiaqi Feng, Ting Chen, Xuteng Zhao, Rijing Zhan, He Lin
Journal: Separation and Purification Technology
Year: 2024

Nonthermal-Plasma-Catalytic Ammonia Synthesis Using Fe₂O₃/CeO₂ Mechanically Mixed with Al₂O₃: Insights into the Promoting Effect of Plasma Discharge Enhancement on the Role of Catalysts
Authors: Guangzhao Zhou, Ziyu Wang, Xiaochao Wang, Yiran Zhang, Xuteng Zhao, Qi Chen, Ting Chen, Zhen Huang, He Lin
Journal: ACS Sustainable Chemistry & Engineering
Year: 2024

The interaction between Pd/CeO₂ crystal surface and electric field: Application to complete oxidation of methane
Authors: Xuteng Zhao, Yinan Wang, Zuwei Zheng, Xuehong Chen, Ting Chen, He Lin
Journal: Separation and Purification Technology
Year: 2024

Enhancing the NOx storage and hydrothermal stability of Pd/SSZ-13 passive NOx adsorbers by regulating the Al distributions
Authors: Yinan Wang, Xuteng Zhao, Ting Chen, Zuwei Zheng, Rijing Zhan, He Lin
Journal: Fuel
Year: 2024

Liu Wenju | Catalysis | Best Researcher Award

Prof Liu Wenju | Catalysis | Best Researcher Award 

Henan University of Technology , china 

👨‍🎓Profiles

🎓 Early Academic Pursuits

Professor Liu Wenju embarked on his academic journey with a strong foundation in chemistry. He earned his B.Sc. in Applied Chemistry from Zhengzhou University in 2003, followed by an M.Sc. in Industrial Catalysis at the same institution, where he explored the catalytic oxidation of cooking oil fumes in microwave fields. His passion for advanced separation techniques and materials led him to pursue a Ph.D. in Chemical Engineering at Tianjin University, where he completed a groundbreaking thesis on the crystallization and polymorphism of Carbamazepine, a critical pharmaceutical compound. These early academic milestones laid the groundwork for a career dedicated to innovation in crystallization science and green chemical processes.

🧪 Professional Endeavors

Prof. Liu’s professional path is marked by impactful roles across academia and research institutions. He has served as a postdoctoral researcher at Tianjin University, leading pharmaceutical crystallization studies, and expanded his global perspective as a visiting scholar at the University of Cambridge, where he studied mechanochemical modifications of Salbutamol Sulfate. His role as a principal investigator on multiple funded research projects reflects his leadership in the field, especially within the National Natural Science Foundation of China (NNSFC).

🔬 Contributions and Research Focus

Prof. Liu has cultivated a distinguished research profile centered on chemical separation and crystallization, particularly within the pharmaceutical domain. His expertise includes industrial crystallization, polymorphism control, and green catalysis. Over the years, he has advanced critical insights into amorphization, polymorphic membrane crystallization, and impurity effects on crystal growth, aligning with sustainable chemistry goals. His research extends to eco-friendly material development, showcasing a commitment to environmentally conscious innovation.

🌍 Impact and Influence

The scope of Prof. Liu's research has significantly influenced pharmaceutical manufacturing practices and the development of greener catalytic systems. His work on crystal engineering and nucleation-growth dynamics has contributed to both academic understanding and practical applications. The international recognition gained through collaborations, such as with the University of Cambridge, highlights his role in bridging global research efforts and fostering knowledge exchange in the field of chemical engineering.

📚 Academic Citations & Scholarly Recognition

While specific citation metrics are not included, Prof. Liu's funded projects, especially by the NNSFC and other national and international bodies, signify his academic credibility and research influence. His work on pharmaceutical polymorphs, crystallization mechanisms, and green catalytic technologies continues to inspire new lines of inquiry and collaboration in chemical engineering research.

🛠️ Technical Skills

Prof. Liu brings advanced technical proficiency to his research. His core competencies include:

  • Pharmaceutical crystal engineering

  • Polymorph screening and control

  • Green catalytic process design
    He is adept with cutting-edge analytical tools such as:

  • PXRD (Powder X-ray Diffraction)

  • DSC (Differential Scanning Calorimetry)

  • SEM-EDS (Scanning Electron Microscopy – Energy Dispersive Spectroscopy)

  • HPLC-MS (High-Performance Liquid Chromatography – Mass Spectrometry)

  • In-situ Raman spectroscopy

👨‍🏫 Teaching & Mentoring Excellence

Although specific teaching roles are not detailed, Prof. Liu’s deep research involvement at Henan University of Technology suggests active engagement in mentoring graduate students and guiding thesis research, especially in crystallization and catalysis. His interdisciplinary knowledge positions him as an effective educator in both theoretical and applied chemistry fields.

🌱 Legacy and Future Contributions

Prof. Liu's early research into CO removal and microwave-assisted oxidation systems highlights a lifelong dedication to environmental sustainability. As he continues his academic journey, his future contributions are likely to deepen in the domains of eco-friendly crystallization technologies and pharmaceutical manufacturing innovations. His legacy will undoubtedly be one of bridging scientific rigor with practical environmental applications, shaping the next generation of chemical engineers.

📖Notable Publications

Title: Zr-doped CoZrOx solid solution catalysts with enhanced oxygen vacancy for trace ethylene removal under humid conditions
Authors: Zhang Qiaofei, Zhang Liwen, Liu Lei, Zhu Chunshan, Liu Wenju
Journal: Applied Surface Science
Year: 2025
Citations: 0

Title: Preparation of CunCo1Ox catalysts by co-precipitation method for catalytic oxidation of toluene
Authors: Hu Yanshao, Pan Da, Zhang Zheng, Dang Dan, Liu Wenju
Journal: Journal of Molecular Structure
Year: 2025
Citations: 0

Title: Multifunctional self-cleaning Zr-Porphyrin@PG membrane for wastewater treatment
Authors: Liu Wenju, Hou Yafang, Zhao Peixia, Zhang Yatao, D'Agostino Carmine
Journal: Applied Surface Science
Year: 2025
Citations: 0

Title: Equilibrium Solubility of Loxoprofen in 14 Monosolvents: Determination, Correlation, and Hansen Solubility Parameter
Authors: Shen Yanmin, Pan Shuting, Gao Yuqi, Wang Han, Liu Wenju
Journal: Journal of Chemical and Engineering Data
Year: 2025
Citations: 0

Yong Jyun Wang | Materials Chemistry | Best Researcher Award

Mr. Yong Jyun Wang | Materials Chemistry | Best Researcher Award

National Tsing Hua University, Taiwan

👨‍🎓Profiles

🎓 Early Academic Pursuits

Mr. Yong Jyun Wang embarked on his academic journey in the field of Materials Science, and he is currently a Ph.D. candidate at the Department of Materials Science and Engineering, National Tsing Hua University, Taiwan, expecting to graduate in 2025. His early academic foundation laid the groundwork for his deep engagement in the synthesis and property analysis of advanced functional materials, particularly focusing on oxide thin films.

💼 Professional Endeavors

Throughout his doctoral studies, Mr. Wang has actively participated in significant national research projects, including the MOST-113-2639-M-007-001–ASP, which centers on the development and future application of high-entropy epitaxial films. He has gained valuable experience in cutting-edge material fabrication techniques, with an emphasis on physical vapor deposition (PVD). His professional training is complemented by collaborative efforts within interdisciplinary research teams aiming to push the boundaries of electronic material design.

🔬 Contributions and Research Focus

Mr. Wang’s primary research has revolved around two-dimensional bismuth oxychalcogenides, particularly Bi₂O₂Se, targeting its integration into next-generation electronic and memory devices. Through compositional engineering and non-volatile modulation techniques, he has pioneered the development of p-type Bi₂O₂Se with high mobility, making it feasible for integration with its native n-type counterpart. This paves the way for complementary circuits, enhancing the material’s potential in versatile electronic systems. Furthermore, his innovative approach to non-volatile control enables memory functionalities, expanding the application horizon of Bi₂O₂Se in advanced backend electronics.

🌍 Impact and Influence

Despite being at an early stage in his career, Mr. Wang has already made notable contributions to the materials science community. His work has been featured in prestigious journals such as Nature Communications and Advanced Materials, indicating strong recognition from the academic community. His insights into high-mobility semiconducting materials have opened new research avenues for low-power electronics and neuromorphic computing.

🛠️ Technical Skills

Mr. Wang is proficient in advanced thin-film fabrication methods, especially physical vapor deposition, and skilled in material characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and electrical transport measurements. His technical versatility allows for comprehensive investigations into both structural and electronic properties of novel materials.

👨‍🏫 Teaching Experience

While pursuing his Ph.D., Mr. Wang has actively mentored undergraduate and junior graduate students, assisting them in lab training and project supervision. His role as a peer mentor has not only contributed to the academic growth of his colleagues but also strengthened his capabilities in scientific communication and leadership.

🌱 Legacy and Future Contributions

Mr. Wang’s work on Bi₂O₂Se has established a strong foundation for complementary logic and memory device platforms, essential for the advancement of low-dimensional nanoelectronics. Looking ahead, he aspires to continue his research into functional oxide materials, explore heterogeneous integration, and contribute to the development of energy-efficient and intelligent device systems. His vision includes bridging fundamental material science with practical applications in flexible electronics, smart sensors, and neuromorphic systems.

📖Notable Publications

ZrO₂-HfO₂ Superlattice Ferroelectric Capacitors With Optimized Annealing to Achieve Extremely High Polarization Stability
Authors: Y.K. Liang, W.L. Li, Y.J. Wang, L.C. Peng, C.C. Lu, H.Y. Huang, S.H. Yeong, …
Journal: IEEE Electron Device Letters
Year: 2022

Electric-field control of the nucleation and motion of isolated three-fold polar vertices
Authors: M. Li, T. Yang, P. Chen, Y. Wang, R. Zhu, X. Li, R. Shi, H.J. Liu, Y.L. Huang, …
Journal: Nature Communications
Year: 2022

High entropy nonlinear dielectrics with superior thermally stable performance
Authors: Y.J. Wang, H.C. Lai, Y.A. Chen, R. Huang, T. Hsin, H.J. Liu, R. Zhu, P. Gao, C. Li, …
Journal: Advanced Materials
Year: 2023

Flexible magnetoelectric complex oxide heterostructures on muscovite for proximity sensor
Authors: Y.J. Wang, J.W. Chen, Y.H. Lai, P.W. Shao, Y. Bitla, Y.C. Chen, Y.H. Chu
Journal: npj Flexible Electronics
Year: 2023

Quasi-static modulation of multiferroic properties in flexible magnetoelectric Cr₂O₃/muscovite heteroepitaxy
Authors: Y.H. Lai, P.W. Shao, C.Y. Kuo, C.E. Liu, Z. Hu, C. Luo, K. Chen, F. Radu, …
Journal: Acta Materialia
Year: 2023

Tianchao Niu | Surface Chemistry | Best Researcher Award

Prof. Dr. Tianchao Niu | Surface Chemistry | Best Researcher Award

Beihang University, China

👨‍🎓Profiles

Prof. Dr. Tianchao Niu is a distinguished researcher in the field of low-dimensional materials, with expertise in scanning tunneling microscopy (STM), molecular beam epitaxy (MBE), and surface/interface physicochemical properties. His research focuses on the controllable preparation of semiconductor materials and optimization of device-related interface properties, making significant contributions to nanotechnology and materials science.

🎓 Early Academic Pursuits

Dr. Niu began his academic journey at Ludong University, where he earned his Bachelor’s degree in Chemistry Education (2002-2006). He then pursued a Master’s degree (2006-2009) at Suzhou University, focusing on electrochemical and surface-enhanced Raman spectroscopy studies of ionic liquid/metal interface structures. His passion for surface science and nanomaterials led him to the National University of Singapore (2009-2013), where he obtained a Ph.D. in Physical Chemistry under the supervision of Prof. Chen Wei. His doctoral research, centered on low-temperature scanning tunneling microscopy studies of molecular dipole self-assembly on surfaces, laid the foundation for his future work in nanomaterials and interface engineering.

🏛️ Professional Endeavors

Dr. Niu has built an impressive career, holding academic and research positions in renowned institutions across China and the United States. His professional journey includes a postdoctoral fellowship (2016-2017) at the Brookhaven National Laboratory, USA, where he worked at the Center for Functional Nanotechnology. From 2013 to 2016, he was an Assistant Researcher at the Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, contributing to research in superconductivity and surface science. He later joined Nanjing University of Science and Technology (2017-2020) as a Professor in the School of Materials Science and Engineering before becoming a Tenured Associate Professor at Shanghai Jiao Tong University (2020-2021). Currently, he serves as an Associate Professor at the International Innovation Institute, Beihang University (since 2021), where he continues his pioneering research on low-dimensional materials and nanotechnology.

🔬 Contributions and Research Focus

Dr. Niu’s research is centered on the growth mechanisms, characterization, and application of low-dimensional semiconductor materials. His work integrates STM characterization, chemical vapor deposition (CVD), and MBE techniques to investigate the surface and interface properties of two-dimensional (2D) materials. Additionally, he specializes in vacuum system design, interconnection, and construction, contributing to the development of high-performance nanodevices. His studies have led to advancements in next-generation electronics, optoelectronics, and quantum materials, with a strong emphasis on device optimization and novel material synthesis.

📚 Impact and Influence

As a leading scientist in materials research, Dr. Niu has authored over 40 research papers and review articles as the first or corresponding author in high-impact journals such as Journal of the American Chemical Society (JACS), Nano Today, Advanced Materials, ACS Nano, Progress in Surface Science, and 2D Materials. His publications provide groundbreaking insights into nanomaterial growth and interface engineering, influencing researchers and industries in nanoelectronics, energy storage, and advanced material applications. His high citation index reflects the significant impact of his research in the global scientific community.

🛠️ Technical Expertise

Dr. Niu has mastered a wide range of cutting-edge experimental techniques essential for nanomaterial research. His expertise includes low-temperature to high-pressure scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS) for surface chemical analysis, and molecular beam epitaxy (MBE) for thin-film growth. He is also skilled in vacuum system design and integration, allowing for precise control over material fabrication processes. His technical proficiency has enabled the development of high-quality, application-oriented nanomaterials.

👨‍🏫 Teaching and Mentorship

Beyond his research, Dr. Niu is an active educator and mentor at Beihang University. He is dedicated to training the next generation of material scientists and engineers, emphasizing hands-on experimentation, interdisciplinary collaboration, and innovation in nanotechnology. He has supervised numerous doctoral and postdoctoral researchers, guiding them in advanced materials research and applications. His teaching approach bridges theoretical knowledge with real-world applications, fostering scientific curiosity and technical excellence among his students.

🚀 Legacy and Future Contributions

Dr. Niu’s future research endeavors aim to expand the capabilities of semiconductor materials for flexible electronics and quantum computing. He continues to develop novel methodologies for precise control of 2D material properties, which could lead to breakthroughs in nanoscale device performance and functionality. His vision includes strengthening global collaborations in nanoscience to accelerate technological advancements and push the boundaries of materials innovation. His pioneering work not only enhances scientific understanding but also paves the way for transformative applications in next-generation technology.

📖Notable Publications

One-dimensional topological phase and tunable soliton states in atomic nanolines on Si(001) surface
Authors: B. Song, Biyu; G. Zhi, Guoxiang; C. Hua, Chenqiang; T. Li, Tianzhao; T. Niu, Tianchao
Journal: npj Quantum Materials
Year: 2024

Epitaxial Growth of 2D Binary Phosphides
Authors: W. Gao, Wenjin; W. Dou, Wenzhen; D. Zhou, Dechun; C. Hua, Chenqiang; A.T. Wee, Andrew T.S.
Journal: Small Methods
Year: 2024

Atomically Precise Bottom-Up Fabrication of Ultra-Narrow Semiconducting Zigzag BiP Nanoribbons
Authors: D. Zhou, Dechun; Y. Feng, Yisui; L. Zhang, Lei; H. Li, Hui; T. Niu, Tianchao
Journal: Advanced Functional Materials
Year: 2024

Growth of Single Crystalline 2D Materials beyond Graphene on Non-metallic Substrates
Authors: W. Gao, Wenjin; G. Zhi, Guoxiang; T. Niu, Tianchao
Journal: Small
Year: 2024

Room-temperature magnetic higher-order topological states in two-dimensional transition metal dichalcogenides and dihalogenides
Authors: C. Hua, Chenqiang; D. Shao, Dexi; W. Wu, Weikang; T. Niu, Tianchao; S.A. Yang, Shengyuan A.
Journal: Physical Review B
Year: 2024

Anisotropic Strain-Mediated Growth of Monatomic Co Chains on Unreconstructed Regions of the Au(111) Surface
Authors: B. Song, Biyu; W. Gao, Wenjin; G. Zhi, Guoxiang; M. Wu, Meimei; T. Niu, Tianchao
Journal: Chemistry of Materials
Year: 2024

Ivan Yu. Sakharov | Analytical Chemistry | Best Researcher Award

Dr. Ivan Yu. Sakharov | Analytical Chemistry | Best Researcher Award

Lomonosov Moscow State University, Russia

👨‍🎓Profiles

🏛️ Early Academic Pursuits

Ivan Yu. Sakharov began his academic journey at Lomonosov Moscow State University (LMSU), where he earned his M.Sc. in Chemical and Enzyme Kinetics in 1976. His keen interest in chemical kinetics and catalysis led him to pursue postgraduate studies, working as a senior assistant, engineer, and junior scientist at LMSU between 1976 and 1982. He was awarded a Ph.D. in Chemical Kinetics and Catalysis in 1982, setting the stage for a distinguished career in bioanalytical chemistry and biotechnology.

🏢 Professional Endeavors

Dr. Sakharov’s professional journey spans multiple prestigious institutions and international collaborations. After completing his Ph.D., he worked as a Junior Scientist at the USSR Research Cardiology Center (1982-1984). His career progressed as he became a Senior Scientist and later Head of the Protein Chemistry Division at the Laboratory of Biologically Active Substances of Hydrobionts (1984-1987). By 1992, he had earned his D.Sc. in Biotechnology, solidifying his expertise in enzyme applications. His international experience includes serving as an Associate Professor at the Industrial University of Santander, Colombia (1994-1999), and as a Full Professor at the Russian Economic Academy (2001-2011). Since 1991, he has held senior positions at LMSU, where he currently serves as Chief Scientist.

🔬 Research Focus and Innovations

Dr. Sakharov has dedicated his research to bioanalytical chemistry, with a strong focus on nucleic acid detection, chemiluminescent sensing systems, and peroxidase-catalyzed chemiluminescence. His studies in enzyme isolation and application have led to breakthroughs in medical diagnostics and bioanalytical technologies. His ongoing research has developed highly sensitive chemiluminescent assays for detecting microRNA in cancer cells, paving the way for advancements in early cancer detection and personalized medicine.

🌍 Impact and Influence

With a research career spanning over four decades, Dr. Sakharov has significantly influenced bioanalytical chemistry. His work on enzyme-based biosensors and chemiluminescent detection systems has been recognized globally. He has successfully completed 26 research projects, with one still ongoing, and has published 189 papers indexed in Scopus. His contributions have led to advancements in medical diagnostics, forensic science, and environmental monitoring.

📊 Academic Citations and Recognition

Dr. Sakharov’s research has been widely cited, with a citation index of 3,311 and an impressive h-index of 33. His influence in the scientific community is reflected in his role as a reviewer for renowned journals, including Talanta, Analytical Chemistry, Sensors & Actuators: B. Chemical, and ACS Omega. Additionally, he has authored four books with ISBN registration, further solidifying his academic presence.

🛠️ Technical Skills and Patents

Dr. Sakharov’s expertise extends beyond theoretical research; he has a robust technical background in chemiluminescence, biosensing, and enzyme kinetics. He has published 37 patents, covering innovations in bioanalytical chemistry and diagnostic technologies. His technical knowledge has enabled him to bridge the gap between research and industrial applications, leading to consultancy projects and collaborations with international research institutes.

🎓 Teaching Experience and Mentorship

As an educator, Dr. Sakharov has played a pivotal role in shaping the next generation of chemists and biotechnologists. His teaching experience includes tenure at the Industrial University of Santander, Colombia, and the Russian Economic Academy, Russia. His mentorship has guided numerous students and researchers, fostering innovation and scientific excellence.

🔗 International Collaborations and Networks

Dr. Sakharov’s research has been enriched by collaborations with esteemed institutions worldwide. He has worked closely with Guangxi Normal University (China), Chung Shan Medical University (Taiwan), Lund University (Sweden), Aarhus University (Denmark), and the University of Hawaii (USA), among others. These partnerships have facilitated cross-border advancements in bioanalytical chemistry and molecular diagnostics.

🌟 Legacy and Future Contributions

Dr. Sakharov’s legacy is built on his pioneering work in bioanalytical chemistry and enzyme-based diagnostics. His research has set new benchmarks in chemiluminescent assays and biosensing. Moving forward, his work will continue to influence medical diagnostics, biotechnology, and environmental monitoring. His ongoing projects and international collaborations ensure that his scientific contributions will have a lasting impact on research and industry.

📖Notable Publications

  • Publication: An ultrasensitive bunge bedstraw herb type DNA machine for absolute quantification of mRNA in single cell

    • Authors: C. Xu, J. Zhao, S. Chen, S. Hu, S. Zhao
    • Journal: Biosensors & Bioelectronics
    • Year: 2022
  • Publication: Comparative study of magnetic beads and microplates as supports in heterogeneous amplified assay of miRNA-141 by using mismatched catalytic hairpin assembly reaction

    • Authors: I.V. Safenkova, K.M. Burkin, O.L. Bodulev, B.B. Dzantiev, I.Y. Sakharov
    • Journal: Talanta
    • Year: 2022
  • Publication: Comparison of chemiluminescent heterogeneous and homogeneous-heterogeneous assays coupled with isothermal circular strand-displacement polymerization reaction amplification for the quantification of miRNA-141

    • Authors: A.M. Solovjev, I.I. Galkin, A.V. Medved’ko, S. Zhao, I.Y. Sakharov
    • Journal: Analyst
    • Year: 2022
  • Publication: Quantitation of MicroRNA-155 in Human Cells by Heterogeneous Enzyme-Linked Oligonucleotide Assay Coupled with Mismatched Catalytic Hairpin Assembly Reaction

    • Authors: O.L. Bodulev, I.I. Galkin, S. Zhao, O.Y. Pletjushkina, I.Y. Sakharov
    • Journal: Biosensors
    • Year: 2022
  • Publication: Modern Methods for Assessment of microRNAs

    • Authors: O.L. Bodulev, I.Y. Sakharov
    • Journal: Biochemistry (Moscow)
    • Year: 2022

Manish Kumar | Analytical Chemistry | Best Researcher Award -1763

Dr. Manish Kumar | Analytical Chemistry | Best Researcher Award

Indian Institute of Technology, India

👨‍🎓Profiles

🎓 Academic Journey

Dr. Manish Kumar is a dedicated researcher with a strong background in chemistry, nanomaterials, and environmental sensing. He earned his Ph.D. in Chemistry from the Indian Institute of Technology (IIT) Ropar in February 2024. His research focused on organic cation receptors and metal nanocomposite-based chemical sensors for environmental monitoring under the supervision of Prof. Narinder Singh. Prior to this, he completed his Master of Science (M.Sc.) in Chemistry from Maharshi Dayanand University, Rohtak in 2018, securing 66.87% marks. His Bachelor of Science (B.Sc.) in Chemistry (Hons.) from Pt. Neki Ram Government College, Rohtak in 2016 was completed with an impressive 74.50% score, showcasing his strong academic foundation in chemistry and material sciences.

🏢 Research and Professional Experience

Dr. Manish Kumar has amassed significant research experience through his involvement in multiple prestigious institutions. Currently, since November 2024, he is a Postdoctoral Researcher at the Department of Biosciences and Technologies for Agriculture, Food, and Environment, University of Teramo, Italy. His ongoing project, "Hybrid Devices and Machine Learning for Food and Environmental Safety (HYDEAL4SAFETY)", is supervised by Prof. Dario Compagnone, a leading expert in analytical chemistry and the Deputy Rector for Research at the university.

Prior to his postdoctoral role, he worked as a Research Associate at the Department of Chemistry, Indian Institute of Technology (IIT) Delhi from March 2024 to June 2024. Under the guidance of Prof. Ritu Gupta, he contributed to the development of functionalized metal oxides and layered materials for environmental sensors, further expanding his expertise in nanomaterials and sensor technology.

🔬 Research Expertise

Dr. Manish Kumar's research spans a wide array of domains, with a particular focus on nanomaterials, chemical sensors, and environmental monitoring. His core research expertise includes:

  • Design and Development of Nanomaterials-based Sensors for detecting environmental pollutants.
  • Synthesis of Ionic Liquids and Alloy Nanocomposites to enhance sensor efficiency.
  • Supramolecular and Material Chemistry, specifically for sensing applications.
  • Environmental Analysis and Water Purification using advanced filtration techniques.
  • Chromogenic and Electrochemical Sensor Development for real-time monitoring of hazardous substances.
  • Machine Learning-assisted Array Sensors for the detection and discrimination of multiple analytes, bridging the gap between computational intelligence and experimental chemistry.

🖥️ Technical Skills

Dr. Manish Kumar is proficient in both experimental techniques and computational tools, making him a versatile researcher in analytical chemistry and material science. His technical skills include:

  • Synthesis Techniques: Expertise in designing cation receptors, ionic liquids, and their nanocomposites with graphene oxide, alloy nanoparticles, and multi-walled carbon nanotubes (MWCNTs). He has also developed supramolecular sensors, electrochemical sensors, and filtration membranes for environmental applications.
  • Instrumentation Handling: Skilled in operating advanced analytical instruments such as NMR, HRMS, FTIR, PXRD, DLS, SEM, FESEM, UV-Vis Absorption Spectrometer, Fluorescence Spectrometer, Cyclic Voltammetry, Ion-Channel Chromatography, Time-Resolved Fluorescence Spectrometer, and Gas Chromatography.
  • Software Proficiency: Experienced in using computational tools like M-Nova, ChemDraw, Origin, XP Speak 4.1, Gwyddion, Avantage, and MS Office for data analysis, spectral interpretation, and scientific visualization.

🌍 Personal and Professional Attributes

Dr. Manish Kumar, born on August 20, 1997, is a passionate and detail-oriented scientist with a strong commitment to advancing chemical sensor technology for environmental safety. He is fluent in English and Hindi and belongs to the OBC category. His ability to integrate nanomaterials, machine learning, and environmental chemistry has positioned him as a promising researcher in analytical and material sciences.

📖Notable Publications

Pyrene functionalized organic cation receptor-based “turn-on” fluorescence approach for monitoring of chlorpyrifos in food, soil, and water samples

Authors: Manish Kumar, Aman Dhiman, Gagandeep Singh, Navneet Kaur, Narinder Singh

Journal: Analytica Chimica Acta

Year: 2025-01-22

Colorimetric Nanozyme Sensor Array Based on Metal Nanoparticle-Decorated CNTs for Quantification of Pesticides in Real Water and Soil Samples

Authors: Manish Kumar, Navneet Kaur, Narinder Singh

Journal: ACS Sustainable Chemistry & Engineering

Year: 2024-01-15

NiCr₂O₄ nanozyme based portable sensor kit for on-site quantification of nerve agent mimic for environment monitoring

Authors: Manish Kumar, Navneet Kaur, Narinder Singh

Journal: Sensors and Actuators B: Chemical

Year: 2023-10

Detection and detoxification of imidacloprid in food samples through ionic liquid-stabilized CuNi alloy nanoparticle-decorated multiwall carbon nanotubes

Authors: Manish Kumar

Journal: Environmental Science: Nano

Year: 2022

Machine Learning-Based Analytical Systems: Food Forensics

Authors: Ranbir, Manish Kumar, Gagandeep Singh, Jasvir Singh, Navneet Kaur, Narinder Singh

Journal: ACS Omega

Year: 2022-12-27

Organic Cation Receptor for Colorimetric Lateral Flow Device: Detection of Zearalenone in Food Samples

Authors: Manish Kumar

Journal: ACS Applied Materials & Interfaces

Year: 2022-01-03

Peng Yao | Surface Chemistry | Best Researcher Award

Prof. Peng Yao | Surface Chemistry | Best Researcher Award

Shandong University, China

👨‍🎓Profiles

🏛️ Early Academic Pursuits

Prof. Peng Yao embarked on his academic journey at Northeastern University, where he pursued a Bachelor’s degree (1998-2002) in Mechanical Engineering and Automation. His keen interest in mechanical systems and automation drove him to further specialize in Mechanical Manufacturing and Automation, earning his Master’s degree (2002-2005) from the same university. His passion for research and advanced engineering led him to Tohoku University, Japan, where he obtained his Ph.D. in Nanomechanics (2008-2011). This academic path equipped him with a deep understanding of mechanical structures, automation techniques, and nanomechanical properties, shaping his future research endeavors.

🏢 Professional Endeavors

Prof. Yao is currently a Professor at the School of Mechanical Engineering, Shandong University, China. His career has been marked by an extensive engagement with mechanical engineering, precision manufacturing, and automation. His work focuses on integrating advanced nanomechanics principles into modern manufacturing techniques, bridging the gap between theoretical research and industrial applications. Over the years, he has contributed to the enhancement of automated manufacturing systems, precision engineering, and mechanical design, ensuring efficiency and innovation in the field.

🔬 Contributions and Research Focus

Prof. Yao’s research primarily revolves around nanomechanics, with a strong focus on material behavior at the nanoscale. His expertise extends to precision manufacturing, material engineering, and automation in mechanical systems. His studies have led to advancements in high-performance materials, micro-manufacturing processes, and AI-driven automation systems. By integrating nanomechanical insights into manufacturing and automation, his research has paved the way for innovative solutions in industrial production, robotics, and material science. His work plays a crucial role in developing next-generation materials with enhanced strength, flexibility, and durability.

🌍 Impact and Influence

Prof. Yao’s contributions have had a far-reaching impact on both academia and industry. His research in nanomechanics and automation has influenced the development of high-precision industrial applications, leading to the improvement of manufacturing efficiency and product reliability. His cross-border collaborations, particularly between China and Japan, have strengthened global research partnerships in mechanical engineering. Beyond research, he has inspired and mentored a new generation of engineers and researchers, contributing to the global advancement of mechanical automation and material science.

📖 Academic Citations & Recognitions

Prof. Yao's scholarly contributions have been widely recognized through numerous academic citations and research publications. His work is frequently referenced in studies related to nanomechanical materials, automation systems, and precision engineering. His publications have contributed significantly to scientific advancements in mechanical behavior at the nanoscale, strengthening his reputation as a leading researcher in the field. His research has gained attention in high-impact mechanical engineering and materials science journals, reflecting his influence in advancing industrial and scientific applications.

🛠️ Technical Skills

With an extensive background in mechanical engineering and nanomechanics, Prof. Yao possesses a strong command of advanced computational tools and experimental techniques. His expertise includes computational nanomechanics, finite element analysis (FEA), robotics and automation, and high-precision manufacturing systems. His skills in integrating artificial intelligence with mechanical automation have positioned him at the forefront of technological advancements in intelligent manufacturing. His technical proficiency allows him to develop cutting-edge solutions for industrial applications, ensuring greater efficiency and accuracy in engineering processes.

🎓 Teaching Experience

As a professor at Shandong University, Prof. Yao has played a vital role in shaping the academic and professional careers of his students. His teaching focuses on advanced mechanical design, automation engineering, and nanomechanics, equipping students with both theoretical knowledge and practical applications. Through research guidance and mentorship, he has helped numerous graduate and doctoral students achieve academic excellence and industry readiness. His approach to education bridges the gap between scientific research and industrial needs, ensuring that his students remain at the forefront of engineering innovation.

🚀 Legacy and Future Contributions

Prof. Peng Yao’s legacy is defined by his pioneering work in mechanical automation and nanomechanics, contributing significantly to the progress of modern manufacturing technologies. Looking ahead, his research aims to develop AI-driven automation systems, enhance nanomaterial applications, and foster global research collaborations. His commitment to scientific advancement and education ensures that his contributions will continue to shape the future of mechanical engineering and precision manufacturing. Through his work, he is not only pushing the boundaries of technology but also inspiring the next generation of researchers to explore the possibilities of nanomechanics and intelligent automation.

📖Notable Publications

Grinding quality evaluation and removal mechanism of resin-coated SiC and 2.5D-C-SiCs surface strategies
Authors: S. Qu, L. Li, Y. Yang, Z. Yin, P. Yao
Journal: Tribology International
Year: 2024

Intelligent rolling bearing compound fault diagnosis based on frequency-domain Gramian angular field and convolutional neural networks with imbalanced data
Authors: F. Zhang, P. Yao, X. Geng, M.S. Jiang, L. Jia
Journal: Journal of Vibration and Control
Year: 2024

Laser-assisted water jet machining of high quality micro-trap structures on stainless steel surfaces
Authors: L. Liu, P. Yao, D. Chu, S. Qu, C. Huang
Journal: Chinese Optics
Year: 2024

Temperature field in the crack-free ductile dry grinding of fused silica based on wheel wear topographies
Authors: W. Wang, Z. Li, H. Yin, S. Yu, P. Yao
Journal: Journal of Materials Processing Technology
Year: 2024

Ultra-precision grinding damage suppression strategy for 2.5D-Cf-SiCs by resin coating protection
Authors: L. Li, S. Qu, Y. Yang, G. Peng, Z. Yin
Journal: Tribology International
Year: 2024

Effect of arc deposition process on mechanical properties and microstructure of TiAlSiN gradient coatings
Authors: L. Ji, H.L. Liu, C. Huang, Y. Liu, P. Yao
Journal: Ceramics International
Year: 2024