Junjie Fu | Inorganic Chemistry | Research Excellence Award

Dr. Junjie Fu | Inorganic Chemistry | Research Excellence Award

Xuchang University | China

Dr. Junjie Fu is a researcher at Xuchang University, China, specializing in thin-film photovoltaic materials and device engineering. His work focuses on Ag₂S and kesterite (CZTSSe) solar cells, with emphasis on interface engineering, defect control, solvent processing, and doping strategies. He has contributed to advancing solution-processed thin-film solar technologies through high-impact studies published in Advanced Functional Materials, Energy & Environmental Science, Nano Research, and Chemical Engineering Journal. Dr. Fu’s research addresses efficiency loss, stability, and scalability challenges, supporting the development of low-cost, high-performance, and sustainable photovoltaic devices.

Citation Metrics (Scopus)

  1000
  700
  400
   100
     0

Citations
813

Documents
24

h-index
17

Citations

Documents

h-index

View Scopus Profile

Featured Publications

Msenhemba Mchihi | Physical Chemistry | Research Excellence Award

Dr. Msenhemba Mchihi | Physical Chemistry | Research Excellence Award

Yaba College of Technology | Nigeria

Dr. Msenhemba Moses Mchihi is a physical chemist whose research focuses on corrosion inhibition, green chemistry, nanomaterials, electrochemistry, adsorption studies, and computational chemistry. His work centers on developing eco-friendly corrosion inhibitors derived from plant extracts, green-synthesized metal oxide nanoparticles, and nanocomposites for protecting mild steel and aluminum in acidic and alkaline environments. Through extensive electrochemical, gravimetric, spectroscopic, microscopic, gas chromatography, and density functional theory (DFT) analyses, he has contributed significantly to understanding the mechanisms, thermodynamics, and kinetics of corrosion inhibition using sustainable materials. His research also extends to adsorption studies involving heavy-metal removal from aqueous solutions using low-cost agricultural wastes such as coconut shell activated carbon and rice husk, highlighting his commitment to environmental remediation. Dr. Mchihi has authored numerous publications in reputable chemistry journals, including studies on CuO-based nanocomposites, plant-mediated zinc oxide nanoparticles, green inhibitors such as Ficus sur, Justicia schimperi, Annonamuricata, Bauhinia tomentosa, and mixtures of Codiaeum variegatum and Ficus benjamina. He has also contributed a chemistry textbook on mole concept and chemical calculations. His scholarly excellence has earned him distinctions such as the Best Staff Award of the Chemical Science Department at Yaba College of Technology and recognition from the University of Ibadan Postgraduate College. In addition to research, he has presented at multiple national and international scientific conferences and serves in administrative roles, including Examination Officer and Seminar Coordinator at Yaba College of Technology.

Profiles : Scopus | ORCID | Google Scholar

Featured Publications

1. Mchihi, M. M., Olatunde, A. M., & Odozi, N. W. (2025). Electrochemical and gravimetric studies of the corrosion inhibitory properties of green synthesized copper oxide nanoparticles mediated by Ficus sur for mild steel in HCl. Jordan Journal of Chemistry, 20(2), 81–93.

2. Mchihi, M. M., Odozi, N. W., & Odimuko, A. B. (2025). Deciphering properties of Dryopteris marginalis as green corrosion inhibitor for mild steel in HCl: Electrochemical, gas chromatography and DFT studies. Sustainable Chemistry One World, 7, 100103.

3. Mchihi, M. M., Olatunde, A. M., & Odozi, N. W. (2025). CuO-based nanocomposite: Synthesis, characterization, and evaluation of the corrosion inhibition effectiveness for mild steel in HCl. Journal of Electrochemical Science and Engineering, 15(4), 2715.

4. Mchihi, M. M., Odozi, N. W., Nurudeen, A. O., Emesiani, M. C., & Seriki, B. O. (2024). Assessment of Helianthus tuberosus leaves extract as eco-friendly corrosion inhibitor for aluminum in sodium hydroxide: Insights from electrochemical, gravimetry, and computational consideration. Moroccan Journal of Chemistry, 12(4), 1462–1483.

5. Odozi, N. W., Emesiani, M. C., Charles, C. D., Seriki, B. O., & Mchihi, M. M. (2024). Electrochemical studies of the corrosion inhibitory potential of Annona muricata leaves extract on aluminum in hydrochloric acid medium. FUDMA Journal of Sciences, 8(3), 395–401.

P.Chandar Rao | Chemical Physics | Best Researcher Award

Dr. P. Chandar Rao | Chemical Physics | Best Researcher Award

Lecturer | Kakatiya University | India

Dr. Panthagani Chandar Rao, a distinguished researcher at Kakatiya University, has made remarkable contributions to the field of luminescent materials, nanophosphors, and nanotechnology. With a Ph.D. in Physics, his research focuses primarily on the design, synthesis, and characterization of lanthanide-doped phosphors and advanced optical materials for modern photonic and display applications. Dr. Rao has developed eco-friendly and cost-effective strategies for fabricating Eu²⁺-doped BaMgAl₁₀O₁₇ nanophosphors that exhibit narrow-band blue emission with high luminescence efficiency, contributing to sustainable and high-performance optoelectronic devices. His studies reveal how modifications in synthesis parameters, including low-temperature processes and the use of MCCA additives, influence the structural and photoluminescent properties of nanophosphors, providing insights critical for active display technologies. He has also investigated unusual red-shifts and enhanced photoluminescence under ultraviolet A excitation, highlighting his focus on material optimization for practical applications. Beyond phosphors, Dr. Rao explores nanobiomaterials derived from natural leaves, bridging materials science and green nanotechnology, as well as the broader applications of nanotechnology in luminescent devices. His work extends to thin-film materials, including V₂O₅, where he studies structural, linear, nonlinear, and optical properties using low-cost sol-gel techniques. As an active member of the Luminescence Society of India, the Indian Physics Teachers Association, and the Indian Science Congress, Dr. Rao combines research excellence with academic mentorship, fostering the next generation of scientists. To date, he has authored four high-quality publications, garnering 30 citations, and maintains an h-index of 2 in Scopus, reflecting the growing impact of his research contributions in luminescent nanomaterials and sustainable nanotechnology.

Profiles : Scopus | Research Gate

Featured Publications

  • Chandar Rao, P., Durga Prasad, K. A. K., Sreelatha, C. J., & Haranath, D. (2025). Eco-friendly and cost-effective synthesis approach with no waste generation in developing narrow-band and efficient blue-emitting Eu²⁺-doped BaMgAl₁₀O₁₇ nanophosphor. Journal of Materials Science: Materials in Electronics.

  • Chandar Rao, P., Jaiswal, V. V., Mishra, S., et al. (2021). Influence of MCCA on structure and photoluminescence of Eu²⁺ doped BaMgAl₁₀O₁₇: Eu²⁺ nanophosphor for use in active displays. Chemical Physics Letters, 769, 138410.

  • Jaiswal, V. V., Chandar Rao, P., et al. (2021). Luminescence enhancement of high temperature hexagonal phase of Ba₀.₉₉MgAl₁₀O₁₇:Eu₀.₀₁ nanophosphor synthesized at moderately low temperature. Materials Science & Engineering B, 263, 114791.

  • Chandar Rao, P., Shivani, Jaiswal, V. V., et al. (2020). Unusual red-shift and enhanced photoluminescence of BaMgAl₁₀O₁₇:Eu²⁺ phosphor under ultraviolet A excitation for modern lighting systems. Journal of Nanoscience and Nanotechnology, 20, 3854–3858.

  • Ravinder, G., Sreelatha, C. J., Ganesh, V., Shakir, M., Anis, M., & Chandar Rao, P. (2019). Thickness dependent structural, spectral, linear, nonlinear, and z-scan optical studies of V₂O₅ thin films prepared by a low-cost sol-gel spin coating technique. Materials Research Express, 6, 096403.

Weiqing Jiang | Physical Chemistry | Best Researcher Award

Prof. Dr. Weiqing Jiang | Physical Chemistry | Best Researcher Award

Guangxi University | China

Profiles

Scopus
Orcid

Early Academic Pursuits

Professor Weiqing Jiang began her academic journey in the field of chemical technology, where she pursued and completed her doctoral studies. From the outset, she exhibited a strong interest in the development and optimization of materials that contribute to energy storage and conversion. Her early academic efforts laid a strong foundation in materials science, particularly in solid-state chemistry and electrochemical systems.

Professional Endeavors

Following her doctoral work, Professor Jiang took on a faculty position at Guangxi University, where she currently serves as a professor in the School of Physical Science and Technology. Her role encompasses both research and academic leadership, positioning her as a key figure in advancing the university’s materials science program. Over the course of her career, she has successfully completed multiple research projects supported by national and regional scientific foundations, affirming her ability to attract funding and execute high-level research programs.

Contributions and Research Focus

Professor Jiang’s primary research centers on solid-state hydrogen storage materials and electrode materials for nickel/metal-hydride (Ni/MH) rechargeable batteries. A distinctive feature of her work is the integration of experimental techniques with first-principles theoretical calculations, enabling her to uncover insights into hydrogenation and dehydrogenation mechanisms. Her findings have shown that annealing processes can significantly improve electrochemical performance and that the inclusion of more electronegative elements in metal hydrides enhances thermal stability, thus influencing both thermodynamic and kinetic behaviors. Her research provides valuable pathways for the development of advanced, high-performance energy storage materials.

Impact and Influence

Professor Jiang’s research has gained meaningful recognition, both nationally and internationally. Her work on La-Ti-Mg-Ni-based alloys for hydrogen storage was noted as particularly innovative and was evaluated as highly promising by an international award committee. This acknowledgement reflects the practical applicability and forward-thinking nature of her research, which aligns closely with global efforts toward clean energy and sustainable technology.

Academic Citations

With a citation index of over 300 across her publications in SCI-indexed journals, Professor Jiang’s work has established a clear academic footprint. Her citation count indicates sustained engagement from the scientific community, reflecting the relevance and utility of her contributions in the domain of hydrogen storage materials and electrochemical systems.

Technical Skills

Professor Jiang is proficient in a wide range of technical areas, including solid-state synthesis, structural and phase characterization of materials, electrochemical testing, and computational modeling through first-principles calculations. Her dual competency in experimental and theoretical approaches gives her a unique advantage in materials research, enabling her to validate experimental observations with predictive modeling.

Teaching Experience

As a professor, Professor Jiang plays a vital role in the academic development of undergraduate and graduate students. Her teaching integrates cutting-edge research with classroom instruction, enriching student learning with real-world scientific challenges. She likely supervises graduate theses and projects, contributing to the development of future researchers in the field of materials science.

Legacy and Future Contributions

Professor Jiang’s legacy lies in her methodical and innovative approach to solving fundamental problems in hydrogen storage and energy conversion. Moving forward, she is poised to make even greater contributions by expanding her research to interdisciplinary areas such as hydrogen fuel infrastructure, lightweight alloy design, and renewable energy integration. Her ongoing projects suggest a sustained commitment to the advancement of clean energy technologies.

Notable Publications

Atomic spin engineering of Fe-N-C by axial chlorine-ligand modulation for lightweight and efficient electromagnetic wave absorption

  • Authors: Qi Wei, Pan Zhang, Xinyu Guo, Weiqing Jiang, Xiaoma Tao, Pei Kang Shen, Zhi Qun Tian
    Journal: Journal of Colloid and Interface Science
    Year: 2025

Role of Fe, Co and Ni in dehydrogenation thermodynamics and kinetics of LiBH₄ (010) surface: a first-principles study

  • Authors: Yu Ma, Xiaohua Mo, Changhong Li, Jincheng Wang, Jiafang Qin, Chunxi Pang, Tian Liang, Yifan Qiu, Weiqing Jiang
    Journal: International Journal of Hydrogen Energy
    Year: 2025

Enhanced dehydrogenation of MgH₂ modified by Ti and S: A first-principles investigation

  • Authors: Xiaoli Zuo, Xiaohua Mo, Weiqi Zhou, Jinlin Zhang, Chunyan Hu, Weiqing Jiang
    Journal: International Journal of Hydrogen Energy
    Year: 2024

Dehydrogenation properties of LiBH₄ modified by Mg from first-principles calculations

  • Authors: Xiaohua Mo, Weiqing Jiang
    Journal: Journal of Alloys and Compounds
    Year: 2018

Effect of Al on the dehydrogenation of LiBH₄ from first-principles calculations

  • Authors: Jiang Weiqing, Cao Shilong
    Journal: International Journal of Hydrogen Energy
    Year: 2017

Conclusion

Professor Weiqing Jiang is a respected and impactful figure in the field of hydrogen storage materials. Her pioneering research, successful project leadership, recognized innovation, and academic contributions collectively demonstrate her significance in the global scientific community. Through continued exploration and mentorship, she is set to play a lasting role in shaping the future of sustainable energy research and materials science.

 

Jeba Reeda V S | Organic Chemistry | Best Researcher Award

Dr. Jeba Reeda V S | Organic Chemistry | Best Researcher Award

Easwari Engineering College, India

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Jeba Reeda V S embarked on her academic journey with a strong foundation in Physics, earning both her B.Sc. and M.Sc. degrees with distinction. Her passion for understanding the fundamental nature of materials and molecular interactions led her to pursue a Ph.D. in Physics at Manonmaniam Sundaranar University, Tirunelveli. Specializing in Density Functional Theory (DFT) and Spectroscopy, her doctoral research laid the groundwork for a deeper exploration of quantum chemistry and bioactive molecular systems.

🏛️ Professional Endeavors

Currently serving as an Assistant Professor at Easwari Engineering College, Chennai, Dr. Reeda plays a pivotal role in both teaching and institutional development. She teaches Engineering Physics and Materials Science, while also contributing to academic quality through her involvement in NBA and NAAC accreditation processes. Her commitment to student mentoring and academic coordination further reflects her dedication to nurturing the next generation of scientists and engineers.

🔬 Contributions and Research Focus

Dr. Reeda’s research is centered around computational physics, particularly the application of DFT and spectroscopy in the analysis of bioactive compounds. Her work integrates quantum chemical calculations, molecular docking, and simulation methods to investigate the structural and electronic properties of compounds with antimicrobial and antioxidant properties. She has published 31 peer-reviewed research papers in SCI and Scopus-indexed journals, making significant contributions to drug design, materials science, and molecular interaction studies.

🌍 Impact and Influence

Despite the absence of major funded projects or patents, Dr. Reeda’s scholarly impact is evident in her citation index of 415, indicating the relevance and quality of her published work. Her interdisciplinary approach bridges theoretical and applied sciences, and she has presented her findings at numerous national and international conferences. Her efforts in organizing and co-convening events like NCETEA-2024 have also facilitated greater collaboration across fields such as energy and environmental research.

📊 Academic Citations

With 31 published papers and 415 citations, Dr. Reeda’s academic footprint is growing steadily. Her work is frequently cited in studies related to molecular spectroscopy, quantum modeling, and bioactive material design. This growing citation index reflects both the technical rigor and applied relevance of her research within the scientific community.

🧪 Technical Skills

Dr. Reeda brings expertise in several high-level analytical and computational techniques. These include Density Functional Theory (DFT), molecular docking simulations, vibrational and electronic spectroscopy, and structural analysis of biomolecules. Her proficiency in these tools allows her to effectively investigate molecular behavior and predict functional properties of novel compounds.

👩‍🏫 Teaching Experience

With hands-on experience in teaching core undergraduate subjects like Engineering Physics and Materials Science, Dr. Reeda combines theoretical instruction with real-world relevance. She engages actively in curriculum development and fosters research-driven learning environments. Her dedication to mentoring students highlights her role as both educator and guide, supporting their academic growth and critical thinking.

🌟 Legacy and Future Contributions

Dr. Reeda’s scholarly journey is marked by persistence, quality, and innovation. Although she has not yet ventured into patenting or large-scale industrial collaborations, her current trajectory shows immense promise. In the years ahead, her goals include securing funded research, expanding into applied projects with societal impact, and building international collaborations. Her passion for inclusive learning and interdisciplinary science signals a bright and impactful future in academia and research.

📖Notable Publications

Conformational stability, quantum computational (DFT), vibrational, electronic and non-covalent interactions (QTAIM, RDG and IGM) of antibacterial compound N-(1-naphthyl …
Authors: VSJ Reeda, S Sakthivel, P Divya, S Javed, VB Jothy
Journal: Journal of Molecular Structure, Volume 1298, Article 137043
Year: 2024

Vibrational spectroscopic, quantum computational (DFT), reactivity (ELF, LOL and Fukui), molecular docking studies and molecular dynamic simulation on (6-methoxy-2-oxo-2H …
Authors: VSJ Reeda, VB Jothy
Journal: Journal of Molecular Liquids, Volume 371, Article 121147
Year: 2023

Synthesis, solvent polarity (polar and nonpolar), structural and electronic properties with diverse solvents and biological studies of (E)-3-((3-chloro-4-fluorophenyl) imino …
Authors: VSJ Reeda, VB Jothy, M Asif, M Nasibullah, NS Alharbi, G Abbas, …
Journal: Journal of Molecular Liquids, Volume 380, Article 121709
Year: 2023

Fungicide compound 2,3-dichloronaphthalene-1,4-dione: Non-covalent interactions (QTAIM, RDG and ELF), combined vibrational spectroscopic investigations using DFT approach …
Authors: P Divya, VSJ Reeda, VB Jothy
Journal: Journal of Molecular Liquids, Volume 400, Article 124544
Year: 2024

Molecular structure and quantum descriptors of cefradine by using vibrational spectroscopy (IR and Raman), NBO, AIM, chemical reactivity and molecular docking
Authors: MK Chaudhary, T Karthick, BD Joshi, P Prajapati, MSA de Santana, …
Journal: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Volume 246, Article 118976
Year: 2021

Shizhen Zhao | Organic Chemistry | Best Researcher Award

Dr. Shizhen Zhao | Organic Chemistry | Best Researcher Award

Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, China

👨‍🎓Profiles

👨‍🎓 Early Academic and Research Foundations

Dr. Shizhen Zhao has pursued a career deeply rooted in environmental geochemistry and pollutant dynamics. From the early stages of his academic training, he has been engaged in the study of organic pollutants, combining field-based investigations with advanced numerical simulations to understand their transport, transformation, and long-term impact on ecosystems.

🧪 Professional Endeavors and Research Projects

Currently serving at the Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Dr. Zhao leads multiple high-impact environmental research initiatives. A central focus of his current work is the International Science and Technology Cooperation Project titled:
“Historical evolution of the aquatic environment in the CKDu region of Sri Lanka: Sedimentation of an ancient impoundment lake.”
This project addresses the agricultural water environment in Sri Lanka, specifically examining its links with the chronic kidney disease of unknown cause (CKDu)—a significant public health crisis. The project is conducted through China-Sri Lanka bilateral cooperation and aims to reconstruct historical water environment changes using sediment geochemistry and assess their spatiotemporal correlation with CKDu.

🌱 Contributions and Research Focus

Dr. Zhao’s research stands out in its integration of geochemical tools (e.g., ICP-MS, GC-MS, LC-MS/MS, HPLC) with epidemiological data and historical sediment analysis from ancient water tanks (AWTs). His team applies external observation methods, soil and air pollutant analysis, and field sampling techniques, aiming to uncover the origins, behavior, and human health risks of organic contaminants in vulnerable regions. This work represents a pioneering fusion of environmental forensics, historical ecology, and public health research.

🌍 International Cooperation and Collaboration

With over three years of active collaboration with Sri Lankan institutions and nearly 20 academic exchange visits, Dr. Zhao has built strong international ties. His research team also works closely with scholars from Hong Kong, sharing a decade-long history of cooperative projects and joint publications. These collaborations ensure multidisciplinary expertise, complementary methodologies, and smooth project execution.

🧾 Recognitions and Achievements

Dr. Zhao’s excellence has been recognized by several prestigious awards and talent programs, including:

  • Youth Innovation Promotion Association Award, Chinese Academy of Sciences

  • Tu Guangchi Young Scholar B Talent Program

  • Pearl River Talent—Overseas Young Talent Introduction Plan, Guangdong Province

He has also published 5 papers as first/corresponding author in the top-tier journal Environmental Science & Technology, with 2 selected as supplementary cover features—a rare distinction.

📊 Academic Output and Impact

Dr. Zhao has published over 22 SCI-indexed papers, many in high-impact journals. His research contributes significantly to understanding pollutant source attribution, environmental risks, and geochemical reconstruction of aquatic systems in Southeast Asia. His field investigations, especially in CKDu-endemic zones, are backed by rich epidemiological datasets and extensive regional insights.

🛠️ Technical and Field Capabilities

Equipped with advanced instruments and field tools, Dr. Zhao’s laboratory supports:

  • Sediment coring and borehole sampling

  • Chemical characterization of soils and surface sediments

  • Pollutant analysis using ICP-MS, GC-MS, LC-MS/MS
    These resources, combined with strong logistical coordination, enable comprehensive field-to-lab research pipelines.

🔮 Legacy and Future Contributions

Dr. Shizhen Zhao is a rising leader in the fields of environmental geochemistry, sedimentology, and transboundary water health research. Through cutting-edge science and sustained international cooperation, he is paving the way for new understandings of how environmental degradation intersects with human disease. His work not only deepens the knowledge of CKDu but also lays a robust scientific foundation for future environmental health policies and remediation strategies in affected regions.

📖Notable Publications

Aqueous secondary formation substantially contributes to hydrophilic organophosphate esters in aerosols
Journal: Nature Communications
Year: 2025
Citations: 1

Polycyclic aromatics in the Chang’E 5 lunar soils
Journal: Nature Communications
Year: 2025
Citations: 0

Legacy and currently-used pesticides in sedimentary archives: Anthropogenic footprint in the Pearl River Estuary
Journal: Science of the Total Environment
Year: 2025
Citations: 0

Quantification of micro- and nano-plastics in atmospheric fine particles by pyrolysis-gas chromatography-mass spectrometry with chromatographic peak reconstruction
Journal: Journal of Hazardous Materials
Year: 2025
Citations: 0

Heavy metals in atmospheric fine particulate matter (PM2.5) in Dhaka, Bangladesh: Source apportionment and associated health risks
Journal: Environmental Research
Year: 2025
Citations: 0

The Intrinsic Link between Optical Properties and Toxicity of Extractable Organic Matter in Combustion Particles: Mediated by Polycyclic Aromatic Compounds
Journal: Environment and Health
Year: 2025
Citations: 0

Krittiya Sreebunpeng | Physical Chemistry | Best Researcher Award

Assist. Prof. Dr. Krittiya Sreebunpeng | Physical Chemistry | Best Researcher Award

Chandrakasem Rajabhat University Thailand

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Krittiya Sreebunpeng laid a solid foundation in physics through her studies at King Mongkut’s University of Technology Thonburi (KMUTT). She earned her B.S. in Physics in 2009 with a project on the calibration of radiating-time digital machines for radiation diagnosis. She went on to complete her M.S. in Physics in 2011 with a stellar GPA of 3.66, investigating the optical and scintillation properties of Pr³⁺-doped Lu₃Al₅O₁₂ crystals. Her passion for materials science culminated in a Ph.D. in Physics (2015), where her thesis focused on the luminescence and scintillation behavior of Pr³⁺-doped Lu₃Al₅O₁₂ and Y₃Al₅O₁₂ single crystal scintillators.

🔬 Research Focus and Contributions

Dr. Sreebunpeng’s core research revolves around scintillation materials, radiation detectors, crystal growth, and transparent ceramics, with extensions into nuclear safety and physics education. Her contributions to scintillator development have significantly advanced materials used in radiation detection. Two of her key completed research projects include:

  1. Photoluminescence and scintillation properties of K⁺, Pr- and Mg²⁺, Pr-doped garnet crystals (2019, funded by the National Research Council of Thailand).

  2. Fabrication of Mg²⁺ co-doped Ce:(Lu₂Y)(Al₅₋ₓGaₓ)O₁₂ ceramic scintillators for fast timing applications, supported by the Ministry of Higher Education, Science, Research, and Innovation.

🌏 Global Exposure and Training

Dr. Sreebunpeng’s academic journey includes international research stints and specialized technical training. She conducted summer research at the Shanghai Institute of Optics and Fine Mechanics (SIOM), China in 2018–2019. In 2015, she enhanced her expertise with research training at the National Centre for Nuclear Research in Poland and the Institute of Physics in Prague, Czech Republic. Her participation in radiation safety and research communication workshops reflects her commitment to well-rounded scientific practice.

👩‍🏫 Teaching Experience and Academic Roles

Dr. Sreebunpeng currently serves as a lecturer in Physics at the Faculty of Science, Chandrakasem Rajabhat University since 2016. Prior to that, she was a teaching assistant at KMUTT (2009–2015) and briefly taught general physics at Muban Chombueng Rajabhat University. Her dedication to pedagogy is reflected in her continual engagement with training programs on science teaching methods, research writing techniques, and technology tools such as EndNote and XRD analysis.

🛠️ Technical Skills and Experimental Expertise

She possesses robust technical expertise in scintillator material synthesis, optical characterization, and radiation detector analysis. Her hands-on skills cover crystal growth, transparent ceramics, photoluminescence spectroscopy, X-ray diffraction (XRD), and radiation protection protocols. These proficiencies are complemented by her training in mind-mapping techniques, scientific writing, and academic communication.

🏅 Impact, Recognition, and Influence

Dr. Sreebunpeng’s research has contributed to the development of advanced scintillation materials essential in medical imaging and nuclear safety. She was selected for Thailand’s “New Generation Researcher” program and has also played a crucial role as a local trainer for the Institute for the Promotion of Teaching Science and Technology (IPST). Her involvement in the academic and research communities demonstrates her growing influence in both applied and educational physics.

🌱 Legacy and Future Directions

Looking ahead, Dr. Sreebunpeng is poised to deepen her impact in nuclear materials science and radiation detection technologies, while continuing her dedication to science education and public awareness. Her multidisciplinary approach—spanning research, teaching, and training—places her as a vital contributor to Thailand’s scientific advancement, especially in the realms of radiation safety and detector innovation.

📖Notable Publications

Temperature-dependent characteristics, light yield nonproportionality, and intrinsic energy resolution of Ce,Mg:Lu₂Y(Al,Ga)₅O₁₂ garnet ceramics
Authors: K. Sreebunpeng, Wa. Chewpraditkul, N. Pattanaboonmee, W. Chewpraditkul, R. Kucerkova, V. Babin, Y. Wang, D. Zhu, C. Hu, M. Nikl, J. Li
Journal: Radiation Physics and Chemistry
Year: 2025

Effect of Ga³⁺ content on the luminous properties of Ce³⁺-doped Lu₂YGaxAl₅₋ₓO₁₂ phosphor ceramics for potential lighting application
Authors: Y. Wang, Z. Cheng, J. Ye, D. Zhu, C. Hu, Z. Zhou, T. Li, Wa. Chewpraditkul, K. Sreebunpeng, W. Chewpraditkul, J. Li
Journal: Journal of Luminescence
Year: 2025

Luminescence and scintillation properties of fast Ce,Mg:Lu₂YGaxAl₅₋ₓO₁₂ ceramic scintillators fabricated from co-precipitated powders
Authors: K. Sreebunpeng, Wa. Chewpraditkul, W. Chewpraditkul, R. Kucerkova, A. Beitlerova, M. Nikl, T. Szczesniak, M. Grodzixja-Kobylka, D. Zhu, C. Hu, J. Li
Journal: Optical Materials
Year: 2024

Luminescence and light yield of Ce³⁺-doped (60−x)SiO₂–xBaF₂–20Al₂O₃–20Gd₂O₃ scintillation glasses: The effect of BaF₂ admixture
Authors: P. Lertloypanyachai, Wa. Chewpraditkul, N. Pattanaboonmee, N. Yawai, K. Sreebunpeng, T. Nimphaya, A. Beitlerova, M. Nikl, W. Chewpraditkul
Journal: Optik
Year: 2023

Optical, luminescence and scintillation properties of Mg²⁺-codoped (Lu,Y)₃Al₂Ga₃O₁₂:Pr garnet crystals: The effect of Y
Authors: K. Sreebunpeng, Wa. Chewpraditkul, W. Chewpraditkul, A. Yoshikawa, M.E. Witkowski, W. Drozdowski, M. Nikl
Journal: [Journal name incomplete]
Year: 2022

Abu Bin Ihsan | Polymer Chemistry | Analytical Chemistry Award

Assoc. Prof. Dr. Abu Bin Ihsan | Polymer Chemistry | Analytical Chemistry Award

Eastern University, Bangladesh

👨‍🎓Profiles

📚 Early Academic Pursuits

Dr. Abu Bin Ihsan embarked on his academic journey in Pharmacy at Khulna University, Bangladesh, where he developed an early fascination for material chemistry and pharmaceutical sciences. His undergraduate research focused on the “Kinetic investigation on the acid hydrolysis of bromazepam catalyzed by micelles of anionic surfactants” conducted at the Department of Chemistry, University of Dhaka. He further pursued his Master of Pharmacy (M. Pharm.) from the University of Development Alternative (UODA), achieving a CGPA of 3.56, and later earned his Ph.D. from Hokkaido University, Japan, under the prestigious MEXT scholarship. His doctoral research in polymeric biomaterials and supramolecular chemistry laid a strong foundation for his future innovations in pharmaceutical and biomedical science.

💼 Professional Endeavors

After returning to Bangladesh in 2021 following nearly 11 years of doctoral and postdoctoral research in Japan, Dr. Ihsan began his career as a senior consultant with JICA for healthcare project development in Bangladesh. He served as Chairman of the Department of Pharmacy at ASA University and later took the initiative to establish and lead the Department of Pharmacy at Eastern University (EU) as the Founding Chairperson. Under his leadership, the department received approval from the University Grants Commission (UGC) and the Pharmacy Council of Bangladesh (PCB) to launch its B.Pharm (Hons.) program, with enrollment capacity increasing from 30 to 50 students per semester within a year.

🧪 Contributions and Research Focus

Dr. Ihsan’s research is profoundly interdisciplinary, focusing on pharmaceutical chemistry, bioengineering, materials chemistry, nanochemistry, supramolecular systems, drug delivery systems, and functional biomaterials. He has worked extensively on hydrogels, polyampholytes, adhesive biomaterials, and collagen-based drug delivery systems. One of his major contributions includes the design of shear-induced adhesive materials, outperforming conventional fibrin glues and opening up prospects in stimuli-responsive bioadhesives.

🌍 Impact and Influence

Dr. Ihsan has published 25 original research articles, including in high-impact journals such as Nature Materials, where one of his articles became a Highly Cited Paper in materials science. He also contributed 3 book chapters, 2 review articles, and filed 1 patent. His research has accumulated 3,811 citations, showcasing the broad impact of his contributions on the global scientific community. His collaborative research with Japanese pharmaceutical industries has also resulted in novel drug formulations, some of which are under patent consideration.

📊 Academic Citations

With an impressive total impact factor of 191.375 and citations exceeding 3,800, Dr. Ihsan’s work has garnered international recognition. His research on polymeric hydrogels and biomaterials has not only been academically influential but also featured on journal covers and highlighted in Essential Science Indicators by Thomson Reuters.

🛠️ Technical Skills

Throughout his academic and research career, Dr. Ihsan has developed profound expertise in polymer synthesis, materials characterization, hydrogel design, micellar catalysis, drug delivery systems, and advanced analytical techniques. He has also mastered critical scientific tools and procedures necessary for biomaterials development and pharmaceutical applications.

👨‍🏫 Teaching Experience

As a dedicated educator, Dr. Ihsan emphasizes both theoretical and practical knowledge dissemination. At Eastern University, he played a pivotal role in curriculum development, infrastructure setup, and faculty recruitment. He initiated the establishment of nine laboratories, an animal house, a medicinal plant garden, a seminar library, and the Pharma Club, promoting both academic excellence and co-curricular engagement.

🌱 Legacy and Future Contributions

Dr. Ihsan envisions a holistic approach to pharmaceutical education in Bangladesh. He is working towards establishing a new Department of Public Health under the Faculty of Life Science at Eastern University. With his visionary leadership and cross-continental academic experiences, he is poised to drive innovation and excellence in health science education and research, contributing meaningfully to national development and global pharmaceutical advancements.

📖Notable Publications

Innovative approaches in bioadhesive design: A comprehensive review of crosslinking methods and mechanical performance

Authors: Asef Raj, Sabrina Sharmin, Safrin Jannat, Saika Ahmed, Abu Bin Ihsan
Journal: Biomaterials Advances
Year: 2025

Advanced Functional Polymers: Properties and Supramolecular Phenomena in Hydrogels and Polyrotaxane-based Materials

Authors: Abu Bin Ihsan, Abu Bin Imran, Md. Abu Bin Hasan Susan
Journal: Chemistry Africa
Year: 2023

Effects of Glycon and Temperature on Self-Assembly Behaviors of α-Galactosyl Ceramide in Water

Authors: Ryo Miyazaki, Mahmuda Nargis, Abu Bin Ihsan, Noriyuki Nakajima, Masahiro Hamada, Yasuhito Koyama
Journal: Langmuir
Year: 2021

Shear‐Induced Adhesion of Alternating Peptides Prepared by Ugi Four‐Center Three‐Component Reaction

Authors: Abu Bin Ihsan, Masataka Taniguchi, Yasuhito Koyama
Journal: Macromolecular Rapid Communications
Year: 2021

Thermoresponsive Structure and Dye Encapsulation of Micelles Comprising Bolaamphiphilic Quercetin Polyglycoside

Authors: Mahmuda Nargis, Abu Bin Ihsan, Yasuhito Koyama
Journal: Langmuir
Year: 2020

Effects of Sugar Chain Length of Quercetin-3-O-Glycosides on Micellization in Aqueous Media

Author: Abu Bin Ihsan
Journal: Chemistry Letters
Year: 2020

Bo Wu | Physical Chemistry | Best Researcher Award

Dr. Bo Wu | Physical Chemistry | Best Researcher Award

Institute of Chemistry, Chinese Academy of Sciences, China

👨‍🎓Profiles

🎓 Academic Background

Dr. Bo Wu received her Ph.D. degree in 2016 from the Institute of Chemistry, Chinese Academy of Sciences (CAS), China. With a strong foundation in photoelectric nanomaterials and nanochemistry, she has rapidly emerged as a leading researcher in the field of fullerene-based nanocomposites and their diverse applications.

🏅 Professional Endeavors and Leadership

Dr. Wu is currently a professor at the Institute of Chemistry, CAS, where she leads pioneering research on photoelectric properties of fullerene-based nanocomposites. As a key research backbone and project leader, she has undertaken more than 10 prestigious research projects funded by the Ministry of Science and Technology of China, the National Natural Science Foundation of China (NSFC), and the Chinese Academy of Sciences. Her innovative contributions have played a crucial role in advancing the development of nanophotonic and optoelectronic materials.

🔬 Research Contributions and Innovations

Dr. Wu’s work revolves around developing novel fullerene-based nanocomposites with enhanced photoelectric properties, aiming to optimize their applications in optoelectronics, photovoltaics, and nanophotonics. Her research has contributed significantly to the design, synthesis, and functionalization of fullerene derivatives for high-performance energy materials.

🌍 Impact and Recognition

Her outstanding contributions have been widely recognized in the scientific community. She has published more than 20 high-impact journal articles in renowned scientific journals, including Nature Communications, Journal of the American Chemical Society (JACS), and Angewandte Chemie International Edition (Angew. Chem. Int. Ed.). These publications highlight her work in nanochemistry, material science, and energy conversion technologies, solidifying her reputation as an influential researcher.

🏆 Awards and Achievements

Dr. Wu has received numerous prestigious awards and recognitions:

  • 2018: Selected as a member of the Youth Innovation Promotion Association of the Chinese Academy of Sciences, where she was recognized for her exceptional performance.

  • 2023: Awarded the Outstanding Youth Foundation grant by the National Natural Science Foundation of China (NSFC), recognizing her significant contributions to the field of photoelectric nanomaterials.

  • 2023: Honored with the Young Cutting-Edge Nanochemistry Research Award, a testament to her groundbreaking work in nanotechnology.

🛠️ Technical Expertise

Dr. Wu possesses expertise in nanomaterials synthesis, optoelectronic characterization, molecular self-assembly, organic photovoltaic devices, and photoelectric conversion technologies. Her advanced research techniques have contributed to enhancing efficiency and stability in nanocomposite-based devices.

🚀 Future Contributions and Research Vision

Dr. Wu is committed to pushing the boundaries of nanochemistry and photoelectric nanomaterials. Her future research aims to develop next-generation optoelectronic materials, high-performance organic semiconductors, and innovative nanostructured energy devices. With her visionary leadership and dedication, she continues to inspire young researchers and drive scientific advancements in the field of functional nanomaterials and energy conversion technologies.

📖Notable Publications

Photoinduced Ultrafast Multielectron Transfer and Long-Lived Charge-Accumulated State in a Fullerene-Indacenodithiophene Dumbbell Triad

Authors: Chong Wang, Bo Wu, Yang Li, Chunru Wang, Chunli Bai
Journal: Proceedings of the National Academy of Sciences of the United States of America
Year: 2024

Aggregation Promotes Charge Separation in Fullerene-Indacenodithiophene Dyad

Authors: Chong Wang, Bo Wu, Yang Li, Rui Wen, Chunru Wang
Journal: Nature Communications
Year: 2024

Yang Liu | Organic Chemistry | Best Researcher Award

Dr. Yang Liu | Organic Chemistry | Best Researcher Award

Shaanxi University of Technology, China

👨‍🎓Profiles

🎓 Education Background

Dr. Yang Liu pursued his academic journey in the field of chemistry, specializing in organic synthesis and materials chemistry. He earned his Ph.D. in Organic Chemistry from Wuhan University (2007-2010), one of China’s top institutions known for its excellence in scientific research. Prior to that, he completed his M.S. in Pesticide Science at Huazhong Normal University (2004-2007), where he developed expertise in chemical applications for agriculture and materials science. His strong educational foundation has equipped him with the skills to advance research in organic synthesis and material chemistry.

🏛️ Professional Experience

Dr. Liu has been an integral part of the Shaanxi University of Technology since 2011, where he has contributed extensively to research and education in organic and materials chemistry. His tenure at the university has been marked by innovative research, mentorship of students, and collaborations in interdisciplinary scientific projects. His work focuses on the development of new organic compounds and material applications, helping to bridge the gap between fundamental chemistry and industrial applications.

🔬 Research Interests and Contributions

Dr. Liu’s research primarily revolves around organic synthesis and materials chemistry, two fundamental areas that drive advancements in pharmaceuticals, polymers, and functional materials. His expertise in organic chemistry enables him to design and synthesize novel compounds, while his focus on materials chemistry allows him to explore their potential applications in nanotechnology, coatings, and sustainable materials. His contributions have significant implications for industrial development, environmental sustainability, and advanced material engineering.

📚 Academic Impact and Influence

Dr. Liu’s research has contributed to the advancement of chemical synthesis techniques and material applications, influencing both academic research and industry practices. His work is instrumental in addressing challenges in organic material development, pesticide formulation, and new material innovations. As a researcher and educator, he has played a vital role in training the next generation of chemists and materials scientists at Shaanxi University of Technology.

🛠️ Technical Expertise

With a strong background in organic chemistry, Dr. Liu possesses expertise in synthetic methodologies, reaction mechanisms, and material characterization techniques. His work involves advanced chemical analysis, spectroscopic methods (NMR, IR, UV-Vis), chromatography techniques (HPLC, GC-MS), and material testing. His interdisciplinary approach integrates chemical engineering and materials science, making significant contributions to applied chemistry research.

🎓 Teaching and Mentorship

As a professor at Shaanxi University of Technology, Dr. Liu has been dedicated to mentoring students, guiding research projects, and promoting scientific innovation. His teaching focuses on organic chemistry, reaction mechanisms, and materials chemistry, ensuring that students develop both theoretical knowledge and practical skills. His mentorship has helped students engage in cutting-edge research and contribute to the field of applied chemistry.

🌍 Future Contributions and Legacy

Dr. Yang Liu’s work continues to shape the future of organic synthesis and materials science, contributing to sustainable chemical development, novel material applications, and advancements in industrial chemistry. As global industries focus more on green chemistry and innovative material design, his expertise will play a crucial role in developing environmentally friendly and high-performance materials. His contributions to academic research, student mentorship, and interdisciplinary scientific collaboration ensure a lasting impact on the field of chemistry.

📖Notable Publications

The Development and Preparation of Novel Gel Emulsion Systems Based on a Cholesterol Star-Shaped Derivative
Authors: Shuaihua Liu, Tian Yao, Donghui Xia, Quan Liu, Guanghui Tian, Yang Liu
Journal: Molecules
Year: 2025

The Development and Preparation of Novel Gel Emulsion Systems Based on a Cholesterol Star-Shaped Derivative
Authors: Yang Liu
Journal: Molecules
Year: 2025

Synthesis of a Cholesterol Derivative and Its Application in Gel Emulsion Preparation
Authors: Yang Liu, Shuaihua Liu, Qiang Zhang, Guanghui Tian
Journal: Molecules
Year: 2024

Progress in Preparation and Application of Gel-Emulsions
Authors: Yang Liu, Shuaihua Liu, Junhong Wang, Qiang Zhang, Guanghui Tian
Journal: Journal of Materials Science and Chemical Engineering
Year: 2024

The mini-review for synthesis of core@Ag nanocomposite
Authors: Rui Wu, Fagen Zhang, Xiaohui Ji, Yang Liu, Xiaohua Guo, Gunghui Tian, Bo Liu
Journal: Arabian Journal of Chemistry
Year: 2022