José Piñero | Physical Chemistry | Research Excellence Award

Prof. Dr. José Piñero | Physical Chemistry | Research Excellence Award

University of Cadiz  | Spain

Dr. José Carlos Piñero Charlo is a theoretical physicist specializing in physical chemistry and surface science, with strong expertise in advanced materials characterization. His research integrates theoretical modeling with high-resolution experimental techniques, particularly X-ray Photoelectron Spectroscopy, to elucidate surface terminations and electronic properties of semiconductor materials. He has made significant contributions to diamond-based power electronics, energy harvesting systems, and quantum sensing technologies. His recent work on perovskite quantum dots advances optoelectronic performance, reinforcing his interdisciplinary impact across materials science, nanotechnology, and energy applications.

Citation Metrics (Scopus)

  1000
  700
  400
   100
     0

Citations
906

Documents
49

h-index
16

Citations

Documents

h-index

View Scopus Profile View ORCID Profile View Google Scholar Profile

Featured Publications

Junjie Fu | Inorganic Chemistry | Research Excellence Award

Dr. Junjie Fu | Inorganic Chemistry | Research Excellence Award

Xuchang University | China

Dr. Junjie Fu is a researcher at Xuchang University, China, specializing in thin-film photovoltaic materials and device engineering. His work focuses on Ag₂S and kesterite (CZTSSe) solar cells, with emphasis on interface engineering, defect control, solvent processing, and doping strategies. He has contributed to advancing solution-processed thin-film solar technologies through high-impact studies published in Advanced Functional Materials, Energy & Environmental Science, Nano Research, and Chemical Engineering Journal. Dr. Fu’s research addresses efficiency loss, stability, and scalability challenges, supporting the development of low-cost, high-performance, and sustainable photovoltaic devices.

Citation Metrics (Scopus)

  1000
  700
  400
   100
     0

Citations
813

Documents
24

h-index
17

Citations

Documents

h-index

View Scopus Profile

Featured Publications

Kichang Kwon | Materials Chemistry | Research Excellence Award

Dr. Kichang Kwon | Materials Chemistry | Research Excellence Award

Korea Research Institute of Standards and Science | South Korea

Kichang Kwon is a Principal Research Scientist at the Korea Research Institute of Standards and Science (KRISS), specializing in chemical and materials metrology and low-dimensional nanomaterials. He earned his Ph.D. in Materials Science from Seoul National University and completed postdoctoral research at the National University of Singapore. Since joining KRISS, his research has focused on synthesizing and integrating two-dimensional nanomaterials for nanoelectronic devices, including chemoresistive gas sensors, neuromorphic electronics, and electrocatalysts for alkaline anion exchange membrane water electrolysis, advancing next-generation sensing and sustainable energy technologies.

Citation Metrics (Scopus)

 5500
 4000
 2500
 1000
     0

Citations
4,417

Documents
81

h-index
37

Citations

Documents

h-index

View Scopus Profile View ORCID Profile View Google Scholar Profile

Featured Publications

Jiqiang Hu | Surface Chemistry | Research Excellence Award

Assoc. Prof. Dr. Jiqiang Hu | Surface Chemistry | Research Excellence Award

Harbin Institute of Technology | China

Jiqiang Hu is an Associate Professor and Doctoral Supervisor at the Institute of Composite Materials and Structures, School of Aeronautics and Astronautics, Harbin Institute of Technology. His research focuses on the development, performance characterization, and engineering application of lightweight polymer and fiber-reinforced composites for aerospace and advanced structural applications. He specializes in interfacial modification strategies, damage and fracture mechanics, and thermomechanical behavior of thermoplastic composites such as CF/PPS, CF/PEEK, and carbon nanofiber-reinforced systems. Dr. Hu’s work integrates advanced experimental techniques with multiscale theoretical modeling and numerical methods, including FFT-based frameworks and non-local elastic–plastic damage models, to understand structure–property relationships and failure mechanisms. His research has led to significant improvements in interlaminar shear strength, fracture toughness, and interfacial adhesion through surface functionalization and molecular-level design. He has published over 20 SCI papers in leading journals such as Composites Part B, Composites Science and Technology, Engineering Fracture Mechanics, and ACS Applied Nano Materials. As principal investigator, he has led multiple projects funded by national foundations and postdoctoral programs, contributing to high-performance composite technologies for next-generation aerospace structures.

Citation Metrics (Scopus)

1600
1100
600
100
0

Citations
1,554

Documents
53

h-index
23

Citations

Documents

h-index

View Scopus Profile View Google Scholar Profile View ORCID Profile

Featured Publications

Msenhemba Mchihi | Physical Chemistry | Research Excellence Award

Dr. Msenhemba Mchihi | Physical Chemistry | Research Excellence Award

Yaba College of Technology | Nigeria

Dr. Msenhemba Moses Mchihi is a physical chemist whose research focuses on corrosion inhibition, green chemistry, nanomaterials, electrochemistry, adsorption studies, and computational chemistry. His work centers on developing eco-friendly corrosion inhibitors derived from plant extracts, green-synthesized metal oxide nanoparticles, and nanocomposites for protecting mild steel and aluminum in acidic and alkaline environments. Through extensive electrochemical, gravimetric, spectroscopic, microscopic, gas chromatography, and density functional theory (DFT) analyses, he has contributed significantly to understanding the mechanisms, thermodynamics, and kinetics of corrosion inhibition using sustainable materials. His research also extends to adsorption studies involving heavy-metal removal from aqueous solutions using low-cost agricultural wastes such as coconut shell activated carbon and rice husk, highlighting his commitment to environmental remediation. Dr. Mchihi has authored numerous publications in reputable chemistry journals, including studies on CuO-based nanocomposites, plant-mediated zinc oxide nanoparticles, green inhibitors such as Ficus sur, Justicia schimperi, Annonamuricata, Bauhinia tomentosa, and mixtures of Codiaeum variegatum and Ficus benjamina. He has also contributed a chemistry textbook on mole concept and chemical calculations. His scholarly excellence has earned him distinctions such as the Best Staff Award of the Chemical Science Department at Yaba College of Technology and recognition from the University of Ibadan Postgraduate College. In addition to research, he has presented at multiple national and international scientific conferences and serves in administrative roles, including Examination Officer and Seminar Coordinator at Yaba College of Technology.

Profiles : Scopus | ORCID | Google Scholar

Featured Publications

1. Mchihi, M. M., Olatunde, A. M., & Odozi, N. W. (2025). Electrochemical and gravimetric studies of the corrosion inhibitory properties of green synthesized copper oxide nanoparticles mediated by Ficus sur for mild steel in HCl. Jordan Journal of Chemistry, 20(2), 81–93.

2. Mchihi, M. M., Odozi, N. W., & Odimuko, A. B. (2025). Deciphering properties of Dryopteris marginalis as green corrosion inhibitor for mild steel in HCl: Electrochemical, gas chromatography and DFT studies. Sustainable Chemistry One World, 7, 100103.

3. Mchihi, M. M., Olatunde, A. M., & Odozi, N. W. (2025). CuO-based nanocomposite: Synthesis, characterization, and evaluation of the corrosion inhibition effectiveness for mild steel in HCl. Journal of Electrochemical Science and Engineering, 15(4), 2715.

4. Mchihi, M. M., Odozi, N. W., Nurudeen, A. O., Emesiani, M. C., & Seriki, B. O. (2024). Assessment of Helianthus tuberosus leaves extract as eco-friendly corrosion inhibitor for aluminum in sodium hydroxide: Insights from electrochemical, gravimetry, and computational consideration. Moroccan Journal of Chemistry, 12(4), 1462–1483.

5. Odozi, N. W., Emesiani, M. C., Charles, C. D., Seriki, B. O., & Mchihi, M. M. (2024). Electrochemical studies of the corrosion inhibitory potential of Annona muricata leaves extract on aluminum in hydrochloric acid medium. FUDMA Journal of Sciences, 8(3), 395–401.

Ting Han | Organic Chemistry | Young Scientist Award

Assist. Prof. Dr. Ting Han | Organic Chemistry | Young Scientist Award

Texas Woman’s University | United States

Dr. Ting Han is a dynamic early-career scientist whose research spans organic synthesis, porphyrin chemistry, photocatalysis, functional materials, and molecular sensing technologies. He completed his Ph.D. in Organic Chemistry at the University of North Texas, where he specialized in macrocyclic compounds, cross-coupling reactions, and the synthesis of π-extended porphyrins and semiconductor-like 2D organic materials. With six years of combined teaching and research experience, Dr. Han has developed strong expertise in experimental design, analytical instrumentation, method development, and advanced spectroscopic techniques, including fluorescence, phosphorescence, transient absorption, and spectroelectrochemistry. His research accomplishments include designing and synthesizing over 20 novel organic molecules, developing new porphyrin-based photocatalysts for environmental remediation, and advancing biosensor technologies for detecting pollutants, biomolecules, and hazardous chemicals. Dr. Han has published 15 peer-reviewed articles in prominent journals such as Chemical Communications, Materials Chemistry Frontiers, Journal of Materials Chemistry B, Analyst, ACS Sensors, and Microchimica Acta, with a cumulative citation count of 294 and an H-index of 8. His innovative work also led to three granted Chinese patents in sensing and nanomaterial applications. In addition to his research, he is an experienced educator skilled in teaching General and Organic Chemistry, mentoring students, and designing laboratory and online learning experiences. After serving as a Visiting Lecturer at Texas Woman’s University, Dr. Han joined the institution as an Assistant Professor, where he continues building an active research group focused on functional organic materials, sustainable chemistry, and next-generation sensing platforms. His multidisciplinary expertise and impactful contributions reflect significant promise as a rising scientist in the field of organic and materials chemistry.

Profiles : Scopus | ORCID | Google Scholar

Featured Publications

  • Han, T., Starrett, N., Martin, K., Bueno Arroyo, J., Wang, S., & Rawashdeh-Omary, M. (in press). Green synthetic strategies for porphyrins: Toward sustainable functional macrocycles. ChemistrySelect.

  • Han, T., Wang, S., Salazar, G. A., & Rawashdeh-Omary, M. (2025). Porous porphyrin-based photocatalysts: Recent progress and applications in environmental remediation. Materials Chemistry Frontiers.

  • Han, T., Sharma, P., Khetrapal, N., & Wang, H. (2024). Conjugated porphyrin trimers linked through benzo[4,5]imidazo[2,1-a]isoindole bridges. Chemical Communications, 60(77), 10696–10699.

  • Han, T., Jang, Y., Arvidson, J., D’Souza, F., & Wang, H. (2022). Optical and photophysical properties of platinum benzoporphyrins with C2v and D2h symmetry. Journal of Porphyrins and Phthalocyanines, 26(6–7), 458–468.

  • Han, T., & Wang, G. (2019). Peroxidase-like activity of acetylcholine-based colorimetric detection of acetylcholinesterase activity and inhibitor organophosphorus. Journal of Materials Chemistry B, 7(16), 2613–2618.

 

Deepak Mohite | Materials Chemistry | Green Chemistry Award

Mr. Deepak Mohite | Materials Chemistry | Green Chemistry Award

K.H. College Gargoti | India

Mr. Deepak Bandopant Mohite is an emerging material chemistry researcher whose work focuses on developing innovative and sustainable catalytic materials with strong relevance to green chemistry. He holds an M.Sc. in Organic Chemistry and has qualified for prestigious national examinations including CSIR-NET-JRF, SET, and GATE, reflecting his solid academic foundation. Currently, he is serving as an Assistant Professor of Chemistry at Karmaveer Hire Arts, Science, Commerce and Education College, Gargoti, affiliated with Shivaji University, Kolhapur, where he has gained two years of full-time teaching and research experience. Alongside his academic role, he is pursuing a Ph.D. at Shivaji University, Kolhapur. His doctoral research “Catalytic studies of titania-coated magnetic mixed metal oxide with interlayer alumina, zirconia, and silica” involves the design, synthesis, and characterization of advanced heterogeneous catalysts that are efficient, reusable, and environmentally benign. Mr. Mohite’s work aims to reduce the ecological footprint of chemical transformations by developing catalysts that offer high activity, selectivity, and recyclability while minimizing waste and energy consumption. His research integrates principles of green chemistry with material innovation, focusing on magnetic mixed metal oxides that can be easily recovered and reused, thereby supporting cleaner industrial processes. He has published his findings in the Journal of Molecular Structure (SCI/Scopus indexed), demonstrating the scientific merit and relevance of his work. Additionally, he holds a granted German patent, reflecting his capability to translate research ideas into applicable technological solutions. Through his contributions, Mr. Mohite is advancing sustainable material development and environmentally responsible catalysis with potential impact across chemical and industrial sectors.

Profile : Scopus

Featured Publication

Mohite, D. B., Pandhare, A. B., Chavan, A. S., Kadam, M. R., Nikam, P. N., Junghare, N. V., Ayyar, M., Rajendran, S., Khan, M. A., Delekar, S. D., Patil, R. P., Santhamoorthy, M., & Santhoshkumar, S. (2026). CoFe₂O₄–Al₂O₃–TiO₂ nanocatalyst: Magnetically retrievable platform for medicinal precursors. Journal of Molecular Structure, 1352(Part 2), 144521.

Myrtil Kahn | Coordination Chemistry | Best Researcher Award

Dr. Myrtil Kahn | Coordination Chemistry | Best Researcher Award

CNRS | France

Profiles

Scopus
Orcid

Early Academic Pursuits

Dr. Myrtil L. Kahn began her academic journey with a PhD in molecular compounds, under the supervision of a renowned expert in the field of coordination chemistry. Her doctoral work laid a strong foundation in molecular chemistry, which she later expanded into interdisciplinary domains. Her postdoctoral research included advanced work on ferrite nanoparticles and intermetallic particles, which positioned her at the intersection of nanoscience, materials chemistry, and applied physics.

Professional Endeavors

Following her postdoctoral experience, Dr. Kahn joined CNRS and quickly rose through the ranks to become a Senior Scientist and Research Director. She currently leads the “Nano-chemistry, Organization, and Sensors” team at the Laboratory of Coordination Chemistry (LCC) and also co-directs a multidisciplinary research initiative in collaboration with another leading national laboratory. This joint effort culminated in the establishment of a CNRS-affiliated joint research laboratory, reflecting her leadership in managing strategic partnerships with key industrial and governmental stakeholders, including aerospace and space agencies.

Contributions and Research Focus

Dr. Kahn’s research centers on nanoscience and its application to broad societal challenges such as energy, environment, space, aeronautics, and health. She has significantly contributed to the design and synthesis of hybrid nano-objects and multifunctional coatings. Her work focuses on controlling the structural and functional properties of nanoparticles particularly semiconductor and magnetic oxides and integrating them into real-world devices. Utilizing a safe-by-design philosophy, she innovates at the interface of molecular chemistry, surface science, and nanotechnology. Her research also emphasizes understanding surface-ligand interactions through advanced techniques like NMR spectroscopy, which is crucial for ensuring colloidal stability and optimizing material behavior in biological and industrial environments.

Impact and Influence

Dr. Kahn has established herself as a leader in applied nanosciences, successfully bridging fundamental chemistry with device integration. Her research has attracted substantial funding through over thirty competitive contracts, nearly half of which involve industrial collaborations. These projects have led to multiple patents with international extensions, showcasing her commitment to innovation and knowledge transfer. Beyond scientific output, her leadership in organizing large-scale conferences and her role in interdisciplinary teams underscore her influence across both academic and industrial landscapes.

Academic Citations

Her research excellence is reflected in her strong citation metrics. With thousands of citations and an impressive h-index, her work enjoys sustained recognition in the global scientific community. She has authored more than a hundred publications in peer-reviewed international journals, contributed to several book chapters, and is actively involved in reviewing and editorial responsibilities within leading scientific events and journals.

Technical Skills

Dr. Kahn possesses deep technical expertise in organometallic synthesis, nanoparticle surface chemistry, colloidal stability, and functional coatings. She has extensive experience in spectroscopic analysis, particularly NMR, for the investigation of ligand dynamics and surface coordination. Her proficiency extends to hybrid material fabrication, integration of nanoparticles into sensors and devices, and the development of safe-by-design methodologies. This multidisciplinary toolkit enables her to work effectively at the interface of chemistry, physics, and biology.

Teaching Experience

While her primary role is research-intensive, Dr. Kahn actively contributes to mentoring young researchers and postdoctoral fellows. She fosters scientific development through collaborative research, co-authorship, and direct supervision. Her mentorship style is marked by encouraging innovation and interdisciplinary approaches, preparing early-career scientists for careers in both academia and industry.

Legacy and Future Contributions

Dr. Kahn’s legacy is one of impactful science, interdisciplinary collaboration, and societal relevance. Her commitment to applied nanoscience has led to the development of novel materials and processes with potential applications in biotechnology, aerospace, and environmental technology. As co-director of a cutting-edge joint research lab, she continues to expand her collaborative reach, ensuring that her contributions influence the next generation of researchers. Her ongoing projects in multifunctional nanocomposites and hybrid processes promise continued breakthroughs in high-performance materials.

Notable Publications

Competition between ordered morphologies of functionalized silver nanoparticles elucidated by a joint experimental and multiscale theoretical study

Authors: David Loffreda; Nathalie Tarrat; Corinne Lacaze‑Dufaure; Franck Rabilloud; Katia Fajerwerg; Myrtil L. Kahn; Vincent Collière; Christine Lepetit; Pierre Fau
Journal: Nano Today
Year: 2025

Understanding Ion‑Exchange Processes in the Synthesis of ZnSₓ@ZnO₁₋ₓ Heterostructures from Controlled Sulfidation of ZnO Nanocrystals

Authors: Ekaterina Bellan; Martin Jakoobi; Vincent Collière; Yannick Coppel; Julien Trébosc; Olivier Lafon; Pierre Lecante; Paul Fleurat‑Lessard; Céline Dupont; Jean‑Cyrille Hierso; Pierre Fau; Katia Fajerwerg; Lauriane Pautrot‑d’Alençon; Thierry Le Mercier; Myrtil L. Kahn
Journal: Chemistry of Materials
Year: 2024

Spontaneous Emulsification of Organometallic Complexes Applied to the Synthesis of Nanocapsules Active for H₂ Release from Ammonia‑Borane

Authors: Olivier Gazil; Ludivine Rault; Déborah Iglicki; Vincent Collière; Gizem Karacaoglan; Didier Poinsot; Moad Bouzid; Jean‑Cyrille Hierso; Myrtil L. Kahn; Nick Virgilio; Fabienne Gauffre
Journal: Langmuir (The ACS Journal of Surfaces and Colloids)
Year: 2024

Synthesis of TiO₂/SBA‑15 Nanocomposites by Hydrolysis of Organometallic Ti Precursors for Photocatalytic NO Abatement

Authors: Ons El Atti; Julie Hot; Katia Fajerwerg; Christian Lorber; Bénédicte Lebeau; Andrey Ryzhikov; Myrtil L. Kahn; Vincent Collière; Yannick Coppel; Nicolas Ratel‑Ramond; Philippe Ménini; Pierre Fau
Journal: Inorganics
Year: 2024

Conclusion

Dr. Myrtil L. Kahn stands as a prominent figure in nanoscience and coordination chemistry. Her pioneering research, strong industrial collaborations, and leadership in both national and international scientific communities demonstrate her eligibility for high-level scientific honors. Through her interdisciplinary vision and dedication to real-world impact, she continues to shape the future of materials science and remains an exemplary model for academic and industrial synergy.

 

Dilip Kumar Meena | Materials Chemistry | Best Researcher Award

Dr. Dilip Kumar Meena | Materials Chemistry | Best Researcher Award

Hemwati Nandan Bahuguna Garhwal University (A Central University) | India

Profiles

Scopus
Google scholar

Early Academic Pursuits

Dr. Dilip Kumar Meena began his academic journey with a strong foundation in Physics, completing his undergraduate studies from Rajasthan University, followed by postgraduate education from one of India’s premier institutes, the Indian Institute of Technology, Ropar. His early inclination towards solid-state physics and materials science laid the groundwork for advanced research, which he pursued rigorously during his doctoral studies at the Indian Institute of Science, Bangalore. These formative academic experiences nurtured his scientific rigor and critical thinking, equipping him with a comprehensive understanding of physical sciences and experimental research methodologies.

Professional Endeavors

Dr. Meena currently serves as an Assistant Professor at HNB Garhwal University, where he combines academic instruction with active research. His transition from a research fellow to a faculty member reflects his progressive academic trajectory and dedication to both research and teaching. During his academic career, he earned prestigious fellowships including Junior and Senior Research Fellowships, demonstrating his competence in securing competitive research opportunities and contributing to high-impact scientific work.

Contributions and Research Focus

Dr. Meena’s research primarily revolves around thermoelectric materials, nanostructured composites, and solid-state physics. He has extensively studied materials such as Sb₂Te₃, Bi₂Te₃, and ZnTe for their thermoelectric applications, focusing on improving their electrical and thermal conductivity through material processing techniques like melt solidification and top-down synthesis. His work on conduction reversal and thermal conductivity suppression in nanocomposites showcases a clear understanding of electron and phonon transport mechanisms in advanced materials. Additionally, his research on crystal growth and characterization of Weyl semimetals indicates a deep engagement with topological materials and quantum phenomena.

Impact and Influence

Dr. Meena’s publications in reputed international journals such as Journal of Alloys and Compounds, Applied Physics A, and Material Research Express reflect the global relevance of his research. His contributions have helped expand knowledge in energy-efficient thermoelectric devices, a field critical to sustainable energy technologies. Furthermore, his involvement in organizing academic seminars and delivering conference presentations illustrates his role in promoting scientific dialogue and interdisciplinary collaboration.

Academic Citations

Dr. Meena’s work has been cited in the scientific community for its novelty and technical strength. His research outputs provide critical insights into thermoelectric material design, structural transformation through solid-state reactions, and enhanced understanding of composite behavior at nanoscale. His growing citation record indicates a rising academic footprint in the domain of energy materials and applied physics.

Technical Skills

Dr. Meena possesses robust technical expertise in material synthesis, thermal conductivity measurements, X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermoelectric property characterization. He has hands-on experience with melt growth techniques, solid-state calcination kinetics, and compositional engineering of nanomaterials. His interdisciplinary skills also extend to experimental data analysis, scientific writing, and collaborative research project development.

Teaching Experience

As an Assistant Professor, Dr. Meena is actively involved in undergraduate and postgraduate teaching. His pedagogy emphasizes conceptual clarity, experimental validation, and research-oriented learning. He mentors students on academic projects, guiding them through laboratory work, literature review, and research dissemination. His participation in workshops such as scientific paper writing and his leadership in organizing university-level seminars underscore his commitment to holistic student development.

Legacy and Future Contributions

Dr. Meena is poised to contribute significantly to the advancement of materials science, particularly in the development of next-generation thermoelectric materials for energy conversion technologies. His future research aims to explore eco-friendly synthesis routes, functional composites, and device-level integration of energy materials. By nurturing a research-oriented academic culture and engaging in international collaborations, he is set to influence both academia and industry in the domain of sustainable energy.

Notable Publications

Structural transformation of MnTiO₃ with manganese dioxide and titanium dioxide influenced by solid-state calcination kinetics
Authors: Ritushree Shaily, Abhishek Parsad, Kuldeep Kumar, Dilip Kumar Meena
Journal: Next Materials
Year: 2025

Polymer-mixed Sb₂Te₃/Te nanocomposites exhibiting p-type to n-type conduction reversal and thermal conductivity reduction
Authors: Dilip Kumar Meena, Rapaka S. C. Bose, A. M. Umarji, D. Arvindha Babu
Journal: Materials Research Express
Year: 2023

Melt Solidification Rate-Dependent Structural and Thermoelectric Properties of Sb₂Te₃/Te Nanocomposites
Authors: Dilip Kumar Meena, Rapaka S. C. Bose, K. Ramesh
Journal: Journal of Alloys and Compounds
Year: 2022

Impact of Melt Solidification Rate on Structural and Thermoelectric Properties of n-type Bi₂Te₃ Alloy
Authors: Dilip Kumar Meena, Rapaka S. C. Bose, S. Vinoth, K. Annapurna, K. Ramesh
Journal: Applied Physics A
Year: 2022

Role of grain alignment and oxide impurity in thermoelectric properties of textured n-type Bi–Te–Se alloy
Authors: Rapaka S. C. Bose, Dilip Kumar Meena, Paolo Mele, K. Ramesh
Journal: Journal of Physics D: Applied Physics
Year: 2021

Conclusion

Dr. Dilip Kumar Meena exemplifies the qualities of a forward-thinking academic and dedicated researcher. With a strong foundation in experimental physics, impactful publications, and an active teaching role, he is steadily building a legacy of scientific contribution and academic leadership. His trajectory indicates not only a commitment to research excellence but also a vision to shape the future of applied sciences through innovation and education.

Mehejbin Mujawar | Materials Chemistry | Best Researcher Award

Ms. Mehejbin Mujawar | Materials Chemistry | Best Researcher Award

Shivaji University, Kolhapur, India

👨‍🎓Profiles

🎓 Early Academic Pursuits

Ms. Mehejbin Mujawar began her academic journey with a strong foundation in science. She completed her S.S.C. (Semi-English) with First Class with Distinction and her H.S.C. (Science) with First Class from Kolhapur. With a deep interest in chemistry, she pursued a B.Sc. in Chemistry from Shivaji University, Kolhapur, achieving First Class with Distinction. She further pursued an M.Sc. in Organic Chemistry from the same university, securing an A+ Grade. Additionally, she holds a D.T.Ed. (Marathi) with an A+ Grade and completed MS-CIT, showcasing her strong digital and educational skills.

💼 Professional Endeavors

Ms. Mujawar serves as a dedicated educator at Raje Ramrao Mahavidyalaya, Jath, Sangli, working as a Lecturer in Analytical Chemistry at the postgraduate level and an Assistant Professor in Chemistry at the undergraduate level. She actively supervises M.Sc. and B.Sc. research projects, including work on “An Efficient Synthesis of O-Propargylated Salicylaldehydes.” Her role as a university examiner, evaluator, and expert adds significant value to academic assessment and quality assurance.

🧪 Contributions and Research Focus

Her research focuses on Material Science, Nanomaterials, and Superhydrophobic Surfaces. Her Ph.D. thesis, submitted to Shivaji University, is titled: “Studies on the Fabrication of Candle Soot Based Porous Superhydrophobic Surfaces for Oil-Water Separation.” This work explores the development of sustainable nanomaterials for environmental cleanup applications.

🌍 Impact and Influence

Ms. Mujawar has authored numerous research publications, including 13 international and 4 national papers, and has delivered presentations at 11 international, 6 national, and 1 state-level events. She holds an Indian Design Patent for a “Fluorescence Spectroscopy-Based Nanoparticle Interaction Device.” Her academic excellence has been recognized through a Merit Scholarship from Shivaji University.

📚 Academic Engagement and Leadership

She plays an active role in academic and institutional leadership. Her contributions include coordination in NAAC Criterion-II, serving as NSS Programme Officer, and participation in several committees such as admission, examination, women empowerment, student feedback, and research development. She has also organized and coordinated seminars, workshops, study tours, and training courses, bridging theory with applied learning.

📖 Academic Citations and Presentations

Her research contributions are well recognized across the fields of nanoscience, materials chemistry, and environmental technology. Her papers and presentations at prestigious platforms reflect the relevance and reach of her scholarly work.

🧠 Technical & Analytical Skills

Ms. Mujawar is proficient in nanoparticle synthesis, surface analysis, fluorescence spectroscopy, and related analytical techniques. She is also skilled in computer applications and digital tools, making her research and teaching approaches technologically adept.

👩‍🏫 Teaching Experience

A passionate educator, she has consistently delivered high-quality instruction at both undergraduate and postgraduate levels. She has mentored numerous students in their academic research and is committed to inspiring a deep-rooted interest in chemistry and innovation among learners. Her teaching philosophy focuses on empowering students to discover their passions and reach their full potential.

🌟 Legacy and Future Contributions

Looking ahead, Ms. Mujawar aims to expand her research in sustainable and functional nanomaterials and contribute to green chemistry innovations. With a strong record in teaching, research, and institutional development, she is poised to make lasting contributions to both the scientific community and future generations of scholars.

📖Notable Publications

Nanomaterials and Superhydrophobic Surfaces: An Overview
Authors: M Mujawar, S Kulal
Journal: Asian Journal of Chemical Sciences, Volume 15 (3), Pages 55–67
Year: 2025

Fluorescence Spectroscopy-Based Nanoparticle Interaction Device
Authors: S Chougale, M Mehejbin, P Sanadi, S Kumbhar, V More, A Chougale
Journal/Patent: Indian Patent IN 200,828
Year: 2025

SUPERHYDROPHOBIC SURFACES AND NANOTECHNOLOGY: A BRIEF REVIEW
Author: MR Mujawar
Journal: International Journal of Engineering Technology Research & Management, Volume 9 (5)
Year: 2025

Nature-Inspired Modified Superhydrophobic Stainless Steel Mesh of Candle Soot-Wax Nanocomposite for Oil-Water Separation
Authors: M Mujawar, D Kumbhar, A Sargar, S Kulal
Journal: Next Research, Volume 2 (3), Pages 1–7
Year: 2025

Development of a Cost-Effective Candle Soot-Polymer Composite Mesh for Efficient Oil-Water Separation
Authors: M Mujawar, D Malavekar, P Sanadi, D Kumbhar, R Sawant, JH Kim, and others
Journal: Physica Scripta, Volume 100 (6)
Year: 2025