Liu Wenju | Catalysis | Best Researcher Award

Prof Liu Wenju | Catalysis | Best Researcher Award 

Henan University of Technology , china 

👨‍🎓Profiles

🎓 Early Academic Pursuits

Professor Liu Wenju embarked on his academic journey with a strong foundation in chemistry. He earned his B.Sc. in Applied Chemistry from Zhengzhou University in 2003, followed by an M.Sc. in Industrial Catalysis at the same institution, where he explored the catalytic oxidation of cooking oil fumes in microwave fields. His passion for advanced separation techniques and materials led him to pursue a Ph.D. in Chemical Engineering at Tianjin University, where he completed a groundbreaking thesis on the crystallization and polymorphism of Carbamazepine, a critical pharmaceutical compound. These early academic milestones laid the groundwork for a career dedicated to innovation in crystallization science and green chemical processes.

🧪 Professional Endeavors

Prof. Liu’s professional path is marked by impactful roles across academia and research institutions. He has served as a postdoctoral researcher at Tianjin University, leading pharmaceutical crystallization studies, and expanded his global perspective as a visiting scholar at the University of Cambridge, where he studied mechanochemical modifications of Salbutamol Sulfate. His role as a principal investigator on multiple funded research projects reflects his leadership in the field, especially within the National Natural Science Foundation of China (NNSFC).

🔬 Contributions and Research Focus

Prof. Liu has cultivated a distinguished research profile centered on chemical separation and crystallization, particularly within the pharmaceutical domain. His expertise includes industrial crystallization, polymorphism control, and green catalysis. Over the years, he has advanced critical insights into amorphization, polymorphic membrane crystallization, and impurity effects on crystal growth, aligning with sustainable chemistry goals. His research extends to eco-friendly material development, showcasing a commitment to environmentally conscious innovation.

🌍 Impact and Influence

The scope of Prof. Liu's research has significantly influenced pharmaceutical manufacturing practices and the development of greener catalytic systems. His work on crystal engineering and nucleation-growth dynamics has contributed to both academic understanding and practical applications. The international recognition gained through collaborations, such as with the University of Cambridge, highlights his role in bridging global research efforts and fostering knowledge exchange in the field of chemical engineering.

📚 Academic Citations & Scholarly Recognition

While specific citation metrics are not included, Prof. Liu's funded projects, especially by the NNSFC and other national and international bodies, signify his academic credibility and research influence. His work on pharmaceutical polymorphs, crystallization mechanisms, and green catalytic technologies continues to inspire new lines of inquiry and collaboration in chemical engineering research.

🛠️ Technical Skills

Prof. Liu brings advanced technical proficiency to his research. His core competencies include:

  • Pharmaceutical crystal engineering

  • Polymorph screening and control

  • Green catalytic process design
    He is adept with cutting-edge analytical tools such as:

  • PXRD (Powder X-ray Diffraction)

  • DSC (Differential Scanning Calorimetry)

  • SEM-EDS (Scanning Electron Microscopy – Energy Dispersive Spectroscopy)

  • HPLC-MS (High-Performance Liquid Chromatography – Mass Spectrometry)

  • In-situ Raman spectroscopy

👨‍🏫 Teaching & Mentoring Excellence

Although specific teaching roles are not detailed, Prof. Liu’s deep research involvement at Henan University of Technology suggests active engagement in mentoring graduate students and guiding thesis research, especially in crystallization and catalysis. His interdisciplinary knowledge positions him as an effective educator in both theoretical and applied chemistry fields.

🌱 Legacy and Future Contributions

Prof. Liu's early research into CO removal and microwave-assisted oxidation systems highlights a lifelong dedication to environmental sustainability. As he continues his academic journey, his future contributions are likely to deepen in the domains of eco-friendly crystallization technologies and pharmaceutical manufacturing innovations. His legacy will undoubtedly be one of bridging scientific rigor with practical environmental applications, shaping the next generation of chemical engineers.

📖Notable Publications

Title: Zr-doped CoZrOx solid solution catalysts with enhanced oxygen vacancy for trace ethylene removal under humid conditions
Authors: Zhang Qiaofei, Zhang Liwen, Liu Lei, Zhu Chunshan, Liu Wenju
Journal: Applied Surface Science
Year: 2025
Citations: 0

Title: Preparation of CunCo1Ox catalysts by co-precipitation method for catalytic oxidation of toluene
Authors: Hu Yanshao, Pan Da, Zhang Zheng, Dang Dan, Liu Wenju
Journal: Journal of Molecular Structure
Year: 2025
Citations: 0

Title: Multifunctional self-cleaning Zr-Porphyrin@PG membrane for wastewater treatment
Authors: Liu Wenju, Hou Yafang, Zhao Peixia, Zhang Yatao, D'Agostino Carmine
Journal: Applied Surface Science
Year: 2025
Citations: 0

Title: Equilibrium Solubility of Loxoprofen in 14 Monosolvents: Determination, Correlation, and Hansen Solubility Parameter
Authors: Shen Yanmin, Pan Shuting, Gao Yuqi, Wang Han, Liu Wenju
Journal: Journal of Chemical and Engineering Data
Year: 2025
Citations: 0

Obinna Chigoziem Akakuru | Environmental Chemistry | Best Researcher Award

Assist. Prof. Dr. Obinna Chigoziem Akakuru | Environmental Chemistry | Best Researcher Award

Federal University of Technology – Owerri, Nigeria

👨‍🎓Profiles

🎓 Early Academic Pursuits

Assist. Prof. Dr. Obinna Chigoziem Akakuru began his academic journey with a strong foundation in the geosciences, focusing on hydrogeology and hydrology during his formative years. His early academic success was marked by securing the prestigious TETFund Full Ph.D. Scholarship in 2014, enabling him to pursue advanced research in groundwater systems and environmental studies. His commitment to academic excellence was further reinforced through the Engr. Emmanuel Iwuanyanwu Grant for Ph.D. studies (2015), which supported his doctoral research in hydrogeochemistry and water resource management.

🧑‍💼 Professional Endeavors

Currently serving as an Assistant Professor at the Federal University of Technology – Owerri, Nigeria, Dr. Akakuru has established himself as a key figure in the geosciences community. His role involves conducting cutting-edge research, mentoring students, and contributing to the advancement of knowledge in water resources and environmental sustainability. His professional career is also marked by collaborations on national and international projects, emphasizing hydrogeological modeling, pollution assessment, and the integration of artificial intelligence (AI) and machine learning (ML) in solving complex environmental problems.

🔬 Contributions and Research Focus

Dr. Akakuru’s research portfolio is interdisciplinary, bridging hydrogeology, hydrology, hydrogeochemistry, and pollution modeling with emerging technologies like artificial intelligence and machine learning. His work addresses pressing issues such as sustainable groundwater management, environmental contamination, and geostatistical modeling for optimal resource utilization. He is particularly renowned for his contributions to groundwater exploitation and management in southeastern Nigeria, a project that secured him a $63,000 grant from the TETFund National Research Fund (2023).

🌍 Impact and Influence

Dr. Akakuru’s research has far-reaching impacts, particularly in regions facing water scarcity and environmental degradation. His models for pollution control and petroleum geology have informed both academic discussions and policy-making decisions. By integrating AI and machine learning techniques into geoscience applications, he has introduced innovative methodologies for groundwater modeling, water quality prediction, and environmental risk assessment, positioning himself as a forward-thinking scholar in the global geoscience community.

📚 Academic Citations

With numerous peer-reviewed publications, Dr. Akakuru’s research is widely cited in hydrogeology, environmental science, and geoinformatics literature. His work is contributing to the growing body of knowledge on sustainable water resource management and pollution modeling, making significant academic contributions to both theoretical and applied research domains.

🛠️ Technical Skills

Dr. Akakuru possesses a diverse technical skill set, including hydrogeological mapping, geostatistical analysis, AI/ML-based environmental modeling, and pollution risk assessment. His expertise extends to the application of software tools for spatial analysis and modeling, such as GIS platforms, statistical software, and machine learning frameworks, enabling data-driven insights into environmental processes.

👨‍🏫 Teaching Experience

As an Assistant Professor, Dr. Akakuru is actively involved in teaching and mentoring undergraduate and postgraduate students in areas such as hydrogeology, water resources management, geostatistics, and environmental science. His pedagogical approach emphasizes critical thinking, research-based learning, and the practical application of geoscientific principles. Many of his students have gone on to make notable contributions in academia and the water resources industry.

🏆 Awards and Recognitions

Dr. Akakuru’s dedication to research excellence has earned him prestigious awards and funding, including the NCIPC Grant (2024) valued at $125,000 annually for five years, for his role in the Fairfield Heritage Prevention Coalition. These recognitions underscore his commitment to community-centered research and public health initiatives.

🚀 Legacy and Future Contributions

Looking ahead, Dr. Akakuru aims to expand his research on climate-resilient groundwater management, AI-powered hydrogeological modeling, and environmental pollution mitigation strategies. He aspires to influence water policy formulation and environmental sustainability practices both in Nigeria and globally. Through his academic and professional journey, Dr. Akakuru continues to inspire the next generation of scientists while driving forward innovative solutions to environmental challenges.

📖Notable Publications

Publication: Hydrogeochemical facies and pollution status of groundwater resources of Owerri and environs, Southeastern Nigeria
Authors: OC Akakuru, B Akudinobi, AI Opara, SO Onyekuru, OU Akakuru
Journal: Environmental Monitoring and Assessment 193, 1-26
Year: 2021

Publication: The chemistry of chitin and chitosan justifying their nanomedical utilities
Authors: OU Akakuru, H Louis, PI Amos, OC Akakuru, EI Nosike, EF Ogulewe
Journal: Biochem Pharmacol (Los Angel) 7 (241), 2167-0501.1000241
Year: 2018

Publication: Hydrogeochemical evolution, water quality indices, irrigation suitability and pollution index of groundwater (PIG) around Eastern Niger Delta, Nigeria
Authors: OC Akakuru, CU Eze, OC Okeke, AI Opara, AO Usman, O Iheme, …
Journal: International Journal of Energy and Water Resources, 1-23
Year: 2022

Publication: Hydrochemical characterization of abandoned quarry and mine water for domestic and irrigation uses in Abakaliki, southeast Nigeria
Authors: MO Eyankware, PN Obasi, OO Omo-Irabor, OC Akakuru
Journal: Modeling Earth Systems and Environment 6, 2465-2485
Year: 2020

Publication: Appraisal of groundwater to risk contamination near an abandoned limestone quarry pit in Nkalagu, Nigeria, using enrichment factor and statistical approaches
Authors: MO Eyankware, OC Akakuru
Journal: International Journal of Energy and Water Resources 7 (4), 603-621
Year: 2023

Zhongchuang Liu | Environmental Chemistry | Chemical Environmental Award

Dr. Zhongchuang Liu | Environmental Chemistry | Chemical Environmental Award

Chongqing Electric Power College, China

👨‍🎓Profiles

🎓 Academic Background

Dr. Zhongchuang Liu is a distinguished environmental scientist specializing in ecological restoration, environmental quality assessment, and biological resource utilization. He holds a Ph.D. in Environmental Science and Engineering and is currently based at the Department of Environmental Engineering Technology, College of Power Engineering, Chongqing Electric Power College, China. His research focuses on developing sustainable solutions for environmental remediation and resource management, contributing to cleaner ecosystems and improved environmental policies.

🌱 Research Areas and Expertise

Dr. Liu’s expertise encompasses several critical areas in environmental science. His work in ecological restoration involves the phytoremediation of heavy metal-contaminated soil and polluted water bodies, utilizing plants to naturally cleanse ecosystems. His research in environmental quality assessment includes regional water and soil monitoring, investigating soil microenvironment changes, and assessing the ecological impact and risks of environmental pollutants. Additionally, his studies in biological resource utilization focus on the preparation and application of plant biomass charcoal and the sustainable disposal of vegetable and fruit waste, promoting a circular economy and reducing environmental pollution.

🎤 Conference Leadership and Contributions

Dr. Liu plays a key role in the international scientific community by leading discussions on environmental remediation and waste management. As the Chair of the International Symposium on Environmental Remediation and Sustainable Development (ERSD 2023), he guided expert discussions on innovative strategies for environmental sustainability. He has also served on the committee for the 6th International Conference on Recycling and Waste Management (2023), contributing his expertise in sustainable waste treatment and recycling technologies. His leadership in these conferences has facilitated the exchange of knowledge and advancements in environmental protection.

📝 Editorial Roles in Scientific Journals

In addition to his research contributions, Dr. Liu holds significant editorial positions in scientific publishing, ensuring the dissemination of high-quality research in environmental science. He serves as an Editorial Board Member for Plos One, a Lead Guest Editor for Environmental Science and Pollution Research, a Primary Guest Editor for JoVE – Journal of Visualized Experiments, and a Section Editor for Special Issues in Letters in Organic Chemistry. Through his editorial work, he supports the publication of innovative research in ecological restoration, pollution control, and sustainable development, fostering scientific progress in these fields.

🌍 Impact and Future Contributions

Dr. Liu’s research has a profound impact on environmental sustainability, bridging scientific innovation with practical solutions for ecosystem restoration and resource management. His work has contributed to the development of effective phytoremediation techniques, improved ecological risk assessment methodologies, and promoted sustainable waste management strategies. Looking ahead, he aims to enhance the efficiency of phytoremediation technologies, develop advanced environmental monitoring systems, and promote sustainable practices in waste management to further contribute to global environmental conservation efforts.

📖Notable Publications

Co-hydrothermal carbonization of styrofoam and sawdust: fuel properties evaluation and effect of water recirculation on hydrochar properties

Authors: N. Sultana, Nasrin; M. Atikul Islam, Md; Z.C. Liu, Zhong Chuang; B.H. Hameed, Bassim H.; M.A. Islam, Md Azharul

Journal: Biomass Conversion and Biorefinery

Year: 2025

Role of metal and non-metal dopants in modulating g-C3N4 for photocatalytic applications

Authors: R. Muhammad, Rizwan; A. Zada, Amir; S. Azizi, Shohreh; Z.C. Liu, Zhong Chuang; M.H. Eisa, M. H.

Journal: International Journal of Hydrogen Energy

Year: 2025

Control strategies for microplastic pollution in groundwater

Authors: Z.C. Liu, Zhong Chuang; A.U.R. Bacha, Aziz Ur Rahim; L. Yang, Lei

Journal: Environmental Pollution

Year: 2023

Bunyamin Cicek | Materials Chemistry | Material Chemistry Award

Assoc. Prof. Dr. Bunyamin Cicek | Materials Chemistry | Material Chemistry Award

Hitit University, Turkey

👨‍🎓Profiles

🎓 Academic Background and Current Affiliation

Assoc. Prof. Dr. Bunyamin Cicek is a distinguished researcher in Materials Chemistry and Biomaterials, currently affiliated with Hitit University, Turkey. With extensive experience in material science, his contributions have significantly impacted the field of biomaterials and chemical engineering.

📊 Research Contributions and Focus

Dr. Cicek's research primarily revolves around materials chemistry and biomaterials, with a strong emphasis on developing advanced materials for biomedical and industrial applications. His work integrates chemical synthesis, material characterization, and application-based research, contributing to innovations in biomaterial development and material surface modifications.

🔬 Publication Metrics and Research Impact

Dr. Cicek’s research has been well recognized within the scientific community, as reflected in his publication metrics:

H-index: 8

Total Citations: 193

Total Publications: 34

Web of Science Core Collection Publications: 24

His scholarly output demonstrates his contributions to materials chemistry and the growing significance of his research in advancing biomaterial technologies.

🏆 Recognitions and Researcher Profiles

Dr. Cicek maintains an active presence in the global research community through platforms such as: Web of Science ResearcherID, ORCiD. These profiles showcase his scientific contributions, collaborations, and ongoing research endeavors, solidifying his reputation as a leading expert in materials chemistry and biomaterials.

🌍 Future Contributions and Research Vision

Dr. Cicek continues to expand the frontiers of materials science, focusing on the development of sustainable and high-performance biomaterials. His future research aims to enhance material functionalities for medical, environmental, and industrial applications, ensuring a lasting impact on the field. His dedication to scientific advancement positions him as a key contributor to cutting-edge materials research and innovation. 🚀

📖Notable Publications

  • Production of 316L stainless steel implant materials by powder metallurgy and investigation of their wear properties

    • Authors: N. Kurgan, Y. Sun, B. Cicek, H. Ahlatci
    • Journal: Chinese Science Bulletin
    • Year: 2012
  • Wear behaviours of Pb added Mg–Al–Si composites reinforced with in situ Mg₂Si particles

    • Authors: B. Çiçek, H. Ahlatçı, Y. Sun
    • Journal: Materials & Design
    • Year: 2013
  • A study on the mechanical and corrosion properties of lead added magnesium alloys

    • Authors: B. Çiçek, Y. Sun
    • Journal: Materials & Design
    • Year: 2012
  • Kinetic investigation of AISI 304 stainless steel boronized in indirect heated fluidized bed furnace

    • Authors: P. Topuz, B. Çiçek, O. Akar
    • Journal: Journal of Mining and Metallurgy, Section B: Metallurgy
    • Year: 2016
  • Effects of alloying element and cooling rate on properties of AM60 Mg alloy

    • Authors: L. Elen, B. Cicek, E. Koc, Y. Turen, Y. Sun, H. Ahlatci
    • Journal: Materials Research Express
    • Year: 2019

 

Wei Lv | Materials Chemistry | Best Researcher Award

Dr. Wei Lv | Materials Chemistry | Best Researcher Award

North China Electric Power University, China

👨‍🎓Profiles

🎓 Academic Background

Dr. Wei Lv obtained his Ph.D. in Materials Chemistry from Central Iron & Steel Research Institute in 2018, specializing in the development of advanced materials for energy storage applications. His strong academic foundation has fueled his contributions to the field of energy storage and biomedicine.

🏛️ Professional Endeavors

Currently, Dr. Wei Lv serves as an Associate Professor at North China Electric Power University, China. His work bridges the gap between materials chemistry and practical energy storage solutions, making significant strides in both academic research and industrial applications.

🔬 Research Focus & Contributions

Dr. Wei Lv’s research primarily revolves around:
✔️ Aqueous Batteries & Key Materials 🔋 – Developing next-generation sustainable and high-performance energy storage solutions.
✔️ Energy Storage Materials ⚡ – Exploring novel materials for improving battery efficiency, capacity, and stability.
✔️ Biomedical Applications 🏥 – Investigating the role of energy storage materials in medical and healthcare technologies.

Through innovative research, he has made substantial contributions to the understanding and advancement of energy storage materials and their applications in sustainable technologies.

📚 Publications & Academic Impact

Dr. Lv has authored multiple SCI-indexed papers, significantly contributing to materials chemistry and energy storage research. His work has been widely cited, demonstrating its influence in the scientific community.

🛠️ Technical Expertise

Dr. Wei Lv possesses expertise in various cutting-edge research methodologies, including:
✔️ Battery Electrode Material Design & Synthesis
✔️ Electrochemical Performance Evaluation
✔️ Advanced Materials Characterization Techniques
✔️ Biocompatibility Testing for Biomedical Applications
✔️ Sustainable Energy Storage Technologies

🎓 Teaching & Mentorship

As an Associate Professor, Dr. Wei Lv actively mentors undergraduate and postgraduate students, providing them with guidance on research methodologies, experimental techniques, and scientific writing. His mentorship plays a crucial role in shaping the next generation of researchers in materials science and energy storage.

🌍 Future Contributions & Research Vision

Dr. Lv is committed to advancing sustainable energy storage solutions and biomedical applications. His future research aims to:
🔹 Develop eco-friendly and high-performance battery materials for renewable energy applications.
🔹 Explore novel materials for biomedical energy storage technologies.
🔹 Bridge materials chemistry with real-world applications in energy and medicine..

📖Notable Publications

In situ synthetic C encapsulated δ-MnO₂ with O vacancies: a versatile programming in bio-engineering

Authors: W. Lv, Z. Shen, J. Liu, J. Meng, C. Xu

Journal: Science Bulletin

Year: 2025

Discovering Cathodic Biocompatibility for Aqueous Zn–MnO₂ Battery: An Integrating Biomass Carbon Strategy

Authors: W. Lv, Z. Shen, X. Li, Y. Tian, C. Xu

Journal: Nano-Micro Letters

Year: 2024

Niobium fluoride-modified hydrogen evolution reaction of magnesium borohydride diammoniate

Authors: Y. Lv, B. Zhang, H. Huang, D. Sun, Y. Wu

Journal: Journal of Materials Science and Technology

Year: 2023

Emma Rebeca Macías Balleza | Polymer Chemistry | Best Researcher Award

Prof. Dr. Emma Rebeca Macías Balleza | Polymer Chemistry | Best Researcher Award

University of Guadalajara, Mexico

👨‍🎓Profiles

🎓 Early Academic Pursuits

Emma Rebeca Macías Balleza began her academic journey with a Bachelor’s degree in Chemical Engineering (1990) from the University of Guadalajara, followed by a Master of Science in Chemical Engineering (1994). Her passion for materials and chemical processes led her to pursue a Doctorate in Science in Chemical Engineering at the same university, in cotutorship with a Doctorate in Physics from the University of Grenoble, France (2002). This strong foundation in multidisciplinary studies allowed her to develop expertise in polymers, nanomaterials, and complex fluid rheology.

🏛️ Professional Endeavors

Currently, she serves as a Senior Research Professor at the Department of Chemical Engineering in the University Centre of Exact Sciences and Engineering, University of Guadalajara. Over the years, she has actively contributed to industrial and academic projects, fostering international collaborations with institutions such as Université Grenoble Alpes (France), Université de Rennes (France), and the University of Santiago de Compostela (Spain). Her consultancy work extends to more than ten industry projects, further bridging the gap between theoretical research and practical applications.

🔬 Contributions and Research Focus

Her research is centered on polymer synthesis and characterization, the rheology of complex fluids, and the development of nanomaterials from agroindustrial waste for reinforcement in polymeric and construction matrices. These areas of expertise contribute significantly to sustainable materials engineering, where she explores innovative ways to utilize waste materials for high-performance applications.

🌍 Impact and Influence

Emma Macías Balleza is a recognized researcher and academic leader, having completed ten collaborative research projects and published extensively. She has played a pivotal role in shaping research policies and evaluations at both institutional and national levels. As a National System of Researchers member since 2002 and a Professor with a Desirable Profile by the Ministry of Public Education since 2000, she continuously influences the next generation of researchers.

📊 Academic Citations and Publications

Her extensive publication record includes:

  • Google Scholar: 60 documents, 746 citations, h-index 16
  • Scopus: 38 documents, 572 citations, h-index 14
  • SCI/Scopus Indexed Journals: 43 publications
    She has also contributed to three chapter books, enhancing the global knowledge base in analytical chemistry and polymer engineering.

🛠️ Technical Skills

Her technical expertise spans polymer characterization, rheological analysis, nanomaterial synthesis, and analytical chemistry techniques. She has extensive experience in material testing and the application of nanotechnology in industrial and construction materials.

👩‍🏫 Teaching Experience and Mentorship

Emma Macías Balleza is deeply involved in postgraduate education, contributing as a faculty member in Materials Science programs. She has mentored numerous students and participated in advisory roles within institutional and national evaluation committees, such as SEP and CONHACYT. She also serves as a reviewer for prestigious scientific journals, ensuring the advancement of research in her field.

🌟 Legacy and Future Contributions

As the head of the Rheology Academic Group at the University of Guadalajara, she has been instrumental in advancing research on fluid behavior in complex systems. Her contributions to the study of sustainable nanomaterials hold promise for future advancements in environmentally friendly polymers and industrial applications. Looking ahead, her work aims to further integrate circular economy principles into materials science, promoting green and efficient solutions for polymer engineering.

📖Notable Publications

  • Influence of Chemical, Morphological, Spectroscopic and Calorimetric Properties of Agroindustrial Cellulose Wastes on Drainage Behavior in Stone Mastic Asphalt Mixtures

    • Authors: L.Y. Cabello-Suárez, J. Anzaldo-Hernández, J.R. Galaviz-Gonzalez, P. Limón-Covarrubias, E.R. Macías-Balleza
    • Journal: Materials
    • Year: 2024
  • Thermoplastic Starch Biocomposite Films Reinforced with Nanocellulose from Agave tequilana Weber var. Azul Bagasse

    • Authors: M.G. Lomelí-Ramírez, B. Reyes-Alfaro, S.L. Martínez-Salcedo, E.R. Macías-Balleza, S. García-Enriquez
    • Journal: Polymers
    • Year: 2023
  • Structural Behavior of Amphiphilic Triblock Copolymer P104/Water System

    • Authors: É.B. Figueroa-Ochoa, L.M. Bravo-Anaya, R. Vaca-López, Y. Rharbi, J.F.A. Soltero-Martínez
    • Journal: Polymers
    • Year: 2023
  • Optimization of the obtaining of cellulose nanocrystals from agave tequilana weber var. Azul Bagasse by acid hydrolysis

    • Authors: M.A. Gallardo-Sánchez, T. Diaz-Vidal, A.B. Navarro-Hermosillo, S.G. Enríquez, E.R. Macías-Balleza
    • Journal: Nanomaterials
    • Year: 2021

Tao Yang | Electrochemistry | Best Researcher Award

Prof. Tao Yang | Electrochemistry | Best Researcher Award

University of Science and Technology Beijing, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Prof. Tao Yang embarked on his academic journey at the University of Science and Technology Beijing (USTB), where he pursued a doctoral degree at the State Key Laboratory of Advanced Metallurgy from 2012 to 2018. His early research laid a strong foundation in materials science and electrochemistry, setting the stage for his future contributions to sustainable energy and carbon neutrality.

👨‍🏫 Professional Endeavors

After completing his doctorate, Prof. Yang continued at USTB as a postdoctoral researcher in the School of Materials Science and Engineering (2018-2021). During this period, he expanded his expertise in electrocatalysis and nanogenerator technologies. He then advanced to an associate professor role at the Collaborative Innovation Center of Steel Technology (2018-2021), further enhancing his research impact. Since July 2021, he has served as a full professor at the Institute of Carbon Neutrality at USTB, leading groundbreaking research initiatives in sustainable energy solutions.

🔬 Contributions and Research Focus

Prof. Yang's research spans multiple critical areas in electrochemistry and energy science, including:

Electrocatalysis & Hydrogen Production: Developing advanced materials for water splitting to generate hydrogen efficiently.

Carbon Dioxide Reduction & Utilization: Innovating techniques to convert CO₂ into valuable chemical fuels, addressing climate change challenges.

Piezoelectricity & Nanogenerators: Exploring self-powered energy harvesting technologies for renewable energy applications.

Electromagnetic Wave Absorption: Investigating materials that mitigate electromagnetic interference, contributing to advanced communication and defense technologies.

📊 Impact and Influence

With over 60 SCI/EI-indexed papers as the first or corresponding author, Prof. Yang has established himself as a prolific researcher. His work has amassed 3,500 citations on Google Scholar, achieving an h-index of 36. Notably, 8 of his papers have been featured as journal covers, and 7 have been recognized as ESI Highly Cited Papers, underscoring the significance of his research in the scientific community.

🏆 Academic Recognitions

Prof. Yang's remarkable contributions have earned him numerous accolades, including:

Postdoctoral Innovative Talent Support Program

Beijing Outstanding Talent – Young Backbone Individual

Inclusion in Stanford University’s World’s Top 2% Scientists (2022-2024) These prestigious honors highlight his sustained excellence and influence in the field of carbon neutrality and energy conversion.

🛠️ Technical Skills

Prof. Yang possesses a deep expertise in advanced material characterization and electrochemical techniques, including: Electrocatalysis testing and analysis, Nanomaterial synthesis and modification, Advanced spectroscopy and microscopy techniques, Computational modeling for material behavior predictions His technical prowess enables him to push the boundaries of innovation in clean energy technologies.

🎓 Teaching and Mentorship

As a professor and doctoral supervisor at USTB, Prof. Yang plays a pivotal role in shaping the next generation of researchers. He actively mentors Ph.D. and master's students, guiding them in cutting-edge research on sustainable energy solutions. His commitment to academic excellence ensures that his students receive top-tier education and research training.

🌏 Legacy and Future Contributions

Looking ahead, Prof. Yang aims to: Expand research on scalable hydrogen production technologies, Develop novel catalysts for efficient CO₂ conversion, Advance self-powered nanogenerator applications, Contribute to global efforts in achieving carbon neutrality His work continues to drive scientific innovation and practical solutions for a more sustainable future, making him a leading figure in electrochemical energy research.

📖Notable Publications

1. Gut dysbiosis is linked to hypertension
Authors: T Yang, MM Santisteban, V Rodriguez, E Li, N Ahmari, JM Carvajal, ...
Journal: Hypertension
Year: 2015

2. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys
Authors: T Yang, YL Zhao, Y Tong, ZB Jiao, J Wei, JX Cai, XD Han, D Chen, A Hu, ...
Journal: Science
Year: 2018

3. DSC: Scheduling parallel tasks on an unbounded number of processors
Authors: T Yang, A Gerasoulis
Journal: IEEE Transactions on Parallel and Distributed Systems
Year: 1994

4. Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy
Authors: YL Zhao, T Yang, Y Tong, J Wang, JH Luan, ZB Jiao, D Chen, Y Yang, ...
Journal: Acta Materialia
Year: 2017

5. A comparison of clustering heuristics for scheduling directed acyclic graphs on multiprocessors
Authors: A Gerasoulis, T Yang
Journal: Journal of Parallel and Distributed Computing
Year: 1992

6. The gut microbiota and the brain–gut–kidney axis in hypertension and chronic kidney disease
Authors: T Yang, EM Richards, CJ Pepine, MK Raizada
Journal: Nature Reviews Nephrology
Year: 2018

7. Hypertension-linked pathophysiological alterations in the gut
Authors: MM Santisteban, Y Qi, J Zubcevic, S Kim, T Yang, V Shenoy, ...
Journal: Circulation Research
Year: 2017

Jozsef Garai | Physical Chemistry | Best Researcher Award

Prof. Jozsef Garai | Physical Chemistry | Best Researcher Award

University of Debrecen, Hungary

👨‍🎓Profiles

🎓 Early Academic Pursuits

Jozsef Garai's academic journey began with a strong foundation in civil engineering. He earned his B.Sc. in Civil Engineering with a specialization in Highway Engineering from the Technical College of Transportation and Telecommunication, Budapest (1974). Continuing his pursuit of excellence, he completed an M.Sc. in Civil Engineering at the University of Technical Sciences, Budapest (1984). Expanding his horizons, he later obtained an M.Sc. in Earth and Space Sciences from the State University of New York (SUNY) at Stony Brook (2001), followed by a Ph.D. in Geosciences from Florida International University (FIU) in 2007, where he maintained an impressive GPA of 3.8. His academic journey culminated in a Habilitation in Geosciences at the University of Debrecen in 2014, further solidifying his expertise.

🏛️ Professional Endeavors

Dr. Garai has had a distinguished career spanning multiple continents and disciplines. He has held key academic positions, including serving as a Professor at the University of Debrecen (2017-2021) and a Senior Associate Professor (2014-2016). Earlier, he was an Associate Professor and Chair at Ybl Miklós College of Engineering, Szent István University (2011-2013). His postdoctoral research at FIU (2008-2010) in Mechanical and Materials Engineering highlights his dedication to advancing scientific knowledge. Additionally, he has served as a Research and Teaching Assistant at both FIU and SUNY (1998-2007), further contributing to academic development.

🔬 Contributions and Research Focus

Dr. Garai's research interests cover a diverse array of scientific fields, including Geosciences, Structural Engineering, and Materials Science. His expertise extends to Multi-Anvil and Diamond Anvil Cell experiments, Raman Spectroscopy, Fluorescence Spectroscopy, and Scanning Electron Microscopy. His work on carbonado diamond was recognized among the Top 100 Science Stories of 2007 (#60), showcasing its impact on the scientific community.

🌍 Impact and Influence

Beyond academia, Dr. Garai has actively contributed to scientific and engineering advancements through consultancy and industry collaborations. His role as a Consulting Engineer for American International Business Corp. (1990-1992) and an Engineering Lecturer and Assistant Professor at Ybl Miklós College of Engineering (1979-1990) highlights his blend of academic and practical expertise. Additionally, he played a pivotal role in research as a Geotechnical Engineer (1974-1979), working on infrastructure projects in Hungary.

📚 Academic Citations and Recognitions

Dr. Garai’s scholarly contributions have earned him multiple accolades, including: Dissertation Year Fellowship (2007), First Prize in Student Essay Awards in Magnetics (2004), Excellence in Teaching Award (2003), Second Prize, Scholarly Forum in Physical Sciences (2005, 2002), His work has been published and cited widely, contributing significantly to the fields of geosciences, material sciences, and structural engineering.

🛠️ Technical Skills

Dr. Garai is proficient in cutting-edge spectroscopy and microscopy techniques, including: Multi-Anvil and Diamond Anvil Cell experiments, Powder X-ray Diffraction (XRD), Raman and Infrared Spectroscopy, Fluorescence Spectroscopy, Microprobe Analysis, Scanning Electron Microscopy (SEM). Additionally, he has programming skills in PHP, Matlab, and Maple and experience in Web Design (HTML) and Computer Graphics, showcasing his versatility in both experimental and computational research.

👨‍🏫 Teaching Experience

Dr. Garai has extensive teaching experience, having mentored students at various institutions for over four decades. His roles include:

  • Professor, University of Debrecen (2017-2021),
  • Senior Associate Professor, University of Debrecen (2014-2016)
  • Chair & Associate Professor, Ybl Miklós College of Engineering (2011-2013)
  • Assistant Professor and Lecturer, Ybl Miklós College of Engineering (1979-1990)

His excellence in education was recognized with an Excellence in Teaching Award (2003), reflecting his commitment to nurturing future engineers and scientists.

🎖️ Legacy and Future Contributions

Dr. Garai’s legacy is marked by his impactful research, innovative contributions to geosciences and engineering, and his mentorship of students. His multidisciplinary expertise and global academic footprint ensure that his influence will continue to shape the fields of geosciences, materials science, and engineering. His dedication to scientific exploration, education, and industry collaboration sets a benchmark for aspiring researchers and professionals.

📖Notable Publications

The temperature dependence of the isothermal bulk modulus at 1 bar pressure
Authors: J. Garai, A. Laugier
Journal: Journal of Applied Physics
Year: 2007

Physical model for vaporization
Author: J. Garai
Journal: Fluid Phase Equilibria
Year: 2009

Derivation of the ideal gas law
Authors: A. Laugier, J. Garai
Journal: Journal of Chemical Education
Year: 2007

Infrared absorption investigations confirm the extraterrestrial origin of carbonado diamonds
Authors: J. Garai, S.E. Haggerty, S. Rekhi, M. Chance
Journal: The Astrophysical Journal
Year: 2006

Correlation between thermal expansion and heat capacity
Author: J. Garai
Journal: Calphad
Year: 2006

Semiempirical pressure-volume-temperature equation of state: MgSiO3 perovskite is an example
Author: J. Garai
Journal: Journal of Applied Physics
Year: 2007

Yi Yu | Materials Chemistry | Best Researcher Award

Prof. Yi Yu | Materials Chemistry | Best Researcher Award

Gannan Normal University, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Professor Yi Yu embarked on his academic journey with a strong foundation in photonics and materials science. His early research was focused on the development of novel inorganic optical materials, particularly for white light-emitting diodes (wLEDs). With a keen interest in the intersection of physics and material engineering, he pursued higher education that provided him with expertise in optical properties, luminescent materials, and photonic applications.

🏛️ Professional Endeavors

Currently serving as a Professor at Gannan Normal University, China, Yi Yu has been actively engaged in research, teaching, and mentoring young scientists. His expertise in optical materials has earned him recognition as a leading figure in photonics. In 2020, he received the prestigious Natural Science Foundation of Jiangxi Province for Distinguished Young Scholars, highlighting his contributions to the field.

🔬 Contributions and Research Focus

Professor Yi Yu’s research primarily revolves around inorganic optical materials for wLEDs and related applications. His work aims to improve the efficiency, stability, and color quality of wLEDs, making them more sustainable and commercially viable. He has contributed significantly to material synthesis, luminescent enhancement, and photonic device integration. His research findings have led to advancements in LED lighting technology, benefiting industries such as display technology, automotive lighting, and smart illumination systems.

🌍 Impact and Influence

With an extensive body of work in photonics, Professor Yi Yu has influenced both academic and industrial sectors. His research has helped bridge the gap between fundamental optical science and practical LED applications. His work is frequently cited by researchers in photonics, materials science, and semiconductor technology, demonstrating its broad impact.

📚 Academic Citations and Publications

Professor Yi Yu has published numerous high-impact research papers in SCI-indexed journals, solidifying his reputation as a key contributor to the field. His research articles are widely referenced, showcasing his role in advancing knowledge on luminescent materials, phosphors for LEDs, and energy-efficient lighting solutions.

⚙️ Technical Skills and Expertise

Yi Yu’s technical expertise spans across:

  • Synthesis of inorganic optical materials
  • Spectroscopic analysis of luminescent materials
  • Optoelectronic device fabrication
  • Photonic material characterization
  • Thermal stability and efficiency optimization in wLEDs

🎓 Teaching Experience and Mentorship

As a Professor, Yi Yu is dedicated to mentoring the next generation of photonics researchers. He has guided numerous students in their graduate and doctoral studies, helping them explore cutting-edge research in optical materials. His teaching methodology integrates theoretical knowledge with hands-on experimental training, ensuring that students develop both conceptual understanding and practical expertise.

🏆 Legacy and Future Contributions

Professor Yi Yu’s work continues to shape the future of photonics, with ongoing projects aimed at enhancing LED performance, developing next-generation luminescent materials, and expanding applications of inorganic optical materials. His contributions not only advance academic research but also pave the way for technological innovations in energy-efficient lighting and optoelectronics.

📖Notable Publications

Constructing core-shell structural bimetallic CoNi alloys doped carbon aerogels for highly efficient electromagnetic wave absorption
Authors: Q. Xu, X. Zhu, J. Yu, X. Liu, X. Zeng
Journal: Journal of Alloys and Compounds
Year: 2025

Benefit of Tb³⁺ ions to the spectral properties of Dy³⁺/Tb³⁺:CaYAlO₄ crystal for use in yellow laser
Authors: Y. Gong, Y. Wang, Z. Wang, Y. Sun, Y. Yu
Journal: Journal of Luminescence
Year: 2024

Benefit of Pr³⁺ ions to the spectral properties of Er³⁺/Pr³⁺:SrLaAlO₄ crystal for use in 2.7 μm mid-infrared laser
Authors: Y. Wang, J. Cheng, Y. Gong, Y. Sun, Y. Yu
Journal: Journal of Luminescence
Year: 2023

Dual-emission center ratiometric optical thermometer based on Bi³⁺ and Mn⁴⁺ co-doped SrGd₂Al₂O₇ phosphor
Authors: Y. Yu, K. Shao, C. Niu, X. Zhang, Y. Wang
Journal: RSC Advances
Year: 2023

Wei Zhao | Electrochemistry | Best Researcher Award

Mr. Wei Zhao | Electrochemistry | Best Researcher Award

Shenzhen University, China

👨‍🎓Profiles

Early Academic Pursuits 🎓

Dr. Wei Zhao's academic journey began with a strong foundation in physical sciences. He completed his B.Sc. in Applied Physics at the University of Science and Technology of China (USTC) in 2006. He then continued his studies at USTC, earning an M.Sc. in Physical Chemistry in 2009, where he worked under the guidance of Prof. Junfa Zhu at the National Synchrotron Radiation Laboratory. His pursuit of further knowledge led him to Germany, where he earned a Ph.D. in Physical Chemistry at the University of Erlangen-Nuremberg in 2013. His doctoral research, supervised by Prof. Hans-Peter Steinrueck, was focused on advanced topics in physical chemistry, setting the stage for his future research endeavors.

Professional Endeavors 💼

Dr. Zhao's professional career is marked by his significant contributions to academic research and teaching. In 2014, he began a postdoctoral fellowship at the Hong Kong University of Science and Technology, where he worked under Prof. Nian Lin. This experience helped refine his research skills in the area of physical chemistry and materials science. By 2015, Dr. Zhao moved to the University of Washington as a Research Associate in the Chemistry Department, collaborating with Prof. Charles T. Campbell. His work there led to numerous discoveries in surface chemistry and nanomaterials. In 2018, Dr. Zhao transitioned to Shenzhen University, first as an Assistant Professor and later as an Associate Professor. At the Institute for Advanced Study, he is now a Principal Investigator (PI), leading his research group in exploring innovative solutions in physical chemistry and nanomaterials.

Contributions and Research Focus 🔬

Dr. Zhao’s research focuses on the study of surface reactions, nanomaterials, and catalysis, with an emphasis on their potential applications in energy conversion and storage. His research uses a combination of theoretical and experimental techniques to investigate the fundamental processes that govern material behaviors at the nanoscale. His work aims to develop novel materials that can enhance the efficiency of various chemical processes, such as hydrogen production and carbon dioxide reduction. His innovative approaches in surface chemistry and nanomaterials design have contributed to advancing the field of sustainable energy technologies.

Impact and Influence 🌍

Dr. Zhao’s work has had a profound impact on both the scientific community and industry. Through his research, he has contributed to the development of new materials and technologies that hold promise for addressing global challenges such as energy sustainability and environmental protection. His studies have been widely cited in leading scientific journals, indicating the relevance and importance of his work. Dr. Zhao is recognized not only for his research contributions but also for his role in shaping the future of chemical and material sciences.

Academic Cites 📚

Dr. Zhao’s research output has been well-received by the academic community, with his work frequently cited in high-impact publications. His innovative findings in the fields of surface chemistry and nanomaterials have earned him recognition from scholars worldwide. As of 2024, his work has been cited numerous times, further cementing his position as a leading researcher in his field.

Technical Skills ⚙️

Dr. Zhao is highly skilled in a variety of experimental and computational techniques. His expertise includes surface science, spectroscopy, electron microscopy, and synchrotron radiation techniques. These skills allow him to conduct in-depth analyses of materials at the atomic and molecular level, providing valuable insights into their properties and behaviors. His technical proficiency is essential to the success of his research projects, which often involve complex experimental setups and cutting-edge technologies.

Teaching Experience 👩‍🏫

As an Associate Professor and Principal Investigator, Dr. Zhao is actively involved in teaching and mentoring students at Shenzhen University. He is known for his dedication to educating the next generation of scientists and researchers. Dr. Zhao offers courses on physical chemistry, nanomaterials, and surface science, and he supervises both undergraduate and graduate students. His mentorship extends beyond the classroom, as he actively guides students in their research projects, helping them develop the skills necessary to succeed in academia and industry.

Legacy and Future Contributions 🔮

Looking forward, Dr. Zhao aims to continue his pioneering work in the field of physical chemistry and nanomaterials. His research will likely lead to further advancements in energy storage and conversion technologies, with a focus on sustainability and efficiency. He envisions his work contributing to the development of green technologies that can address pressing global challenges. Dr. Zhao’s dedication to scientific inquiry and innovation positions him as a key figure in the future of material science and energy research.

📖Notable Publications