Rodouan Touti | Computational Modeling | Research Excellence Award

Prof. Dr. Rodouan Touti | Computational Modeling | Research Excellence Award

Faculty of sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah | Morocco

Touti Rodouan is a physicist whose research spans radiation protection, medical physics, and computational materials science. His work focuses on dosimetry and assessment of radiation doses resulting from ingestion, inhalation, and topical application of radioactive substances, using solid-state nuclear track detectors such as CR-39 and LR-115. In parallel, he applies density functional theory (DFT) to investigate the structural, electronic, elastic, and optical properties of advanced materials, particularly lead-free perovskites for energy storage, optoelectronic, and photovoltaic applications. His research integrates experimental radiation measurements with first-principles modeling to address health, environmental, and sustainable energy challenges.

Citation Metrics (Scopus)

200
 150
 100
  50
     0

Citations
163

Documents
31

h-index
7

Citations

Documents

h-index

View Scopus Profile View ORCID Profile View Google Scholar Profile

Featured Publications

Rohit Vekariya | Physical Chemistry | Outstanding Scientist Award

Assist. Prof. Dr. Rohit Vekariya | Physical Chemistry | Outstanding Scientist Award

CVM University | India

Dr. Rohit L. Vekariya’s research centers on the design, synthesis, and characterization of task-specific ionic liquids and their multidisciplinary applications. His work spans environmental remediation, soft matter and nanotechnology, catalysis, and energy storage systems. He has contributed significantly to water purification, nanoparticle synthesis, micellar self-assembly, and polymer electrolytes. His postdoctoral research advanced ionic-liquid-based catalysts and energy devices, including supercapacitors. Integrating techniques such as SANS, DLS, NMR, and electrochemistry, his research has achieved high international impact and recognition.

Citation Metrics (Scopus)

 2500
 2000
 1000
   500
     0

Citations
2,392

Documents
51

h-index
20

Citations

Documents

h-index

View Scopus Profile View ORCID Profile View Google Scholar Profile

Featured Publications

Pratik Sarkar | Computational Chemistry | Research Excellence Award

Mr. Pratik Sarkar | Computational Chemistry | Research Excellence Award

IIT Kharagpur | India

Pratik Sarkar is a Ph.D. research scholar in Computational Chemistry at the Indian Institute of Technology Kharagpur, focusing on theoretical modeling of molecular and nanoscale systems using advanced quantum chemical methods. His research employs density functional theory (DFT) and high-level post–Hartree–Fock approaches, including CCSD(T) and DLPNO-CCSD(T), to investigate electronic structure, bonding, stability, and reactivity. A major theme of his work is the computational design of platinum-free nanocluster and nanoalloy catalysts based on boron, aluminum, and gallium for the oxygen reduction reaction, contributing to sustainable electrocatalysis. He also studies lithium–sulfur clusters to elucidate polysulfide intermediates and lithiation mechanisms relevant to next-generation battery technologies. In parallel, his research explores unconventional carbon chemistry, including planar pentacoordinate and hypercoordinate carbon motifs. By applying bonding and aromaticity analyses such as QTAIM, NICS, and AdNDP, he provides deep insights into multicenter bonding and electron delocalization. His work is published in leading physical chemistry journals and presented at national and international conferences.

Citation Metrics (Scopus)

20
15
10
5
0

Citations
10

Documents
5

h-index
2

Citations

Documents

h-index

View Scopus Profile View ORCID Profile

Featured Publications

Msenhemba Mchihi | Physical Chemistry | Research Excellence Award

Dr. Msenhemba Mchihi | Physical Chemistry | Research Excellence Award

Yaba College of Technology | Nigeria

Dr. Msenhemba Moses Mchihi is a physical chemist whose research focuses on corrosion inhibition, green chemistry, nanomaterials, electrochemistry, adsorption studies, and computational chemistry. His work centers on developing eco-friendly corrosion inhibitors derived from plant extracts, green-synthesized metal oxide nanoparticles, and nanocomposites for protecting mild steel and aluminum in acidic and alkaline environments. Through extensive electrochemical, gravimetric, spectroscopic, microscopic, gas chromatography, and density functional theory (DFT) analyses, he has contributed significantly to understanding the mechanisms, thermodynamics, and kinetics of corrosion inhibition using sustainable materials. His research also extends to adsorption studies involving heavy-metal removal from aqueous solutions using low-cost agricultural wastes such as coconut shell activated carbon and rice husk, highlighting his commitment to environmental remediation. Dr. Mchihi has authored numerous publications in reputable chemistry journals, including studies on CuO-based nanocomposites, plant-mediated zinc oxide nanoparticles, green inhibitors such as Ficus sur, Justicia schimperi, Annonamuricata, Bauhinia tomentosa, and mixtures of Codiaeum variegatum and Ficus benjamina. He has also contributed a chemistry textbook on mole concept and chemical calculations. His scholarly excellence has earned him distinctions such as the Best Staff Award of the Chemical Science Department at Yaba College of Technology and recognition from the University of Ibadan Postgraduate College. In addition to research, he has presented at multiple national and international scientific conferences and serves in administrative roles, including Examination Officer and Seminar Coordinator at Yaba College of Technology.

Profiles : Scopus | ORCID | Google Scholar

Featured Publications

1. Mchihi, M. M., Olatunde, A. M., & Odozi, N. W. (2025). Electrochemical and gravimetric studies of the corrosion inhibitory properties of green synthesized copper oxide nanoparticles mediated by Ficus sur for mild steel in HCl. Jordan Journal of Chemistry, 20(2), 81–93.

2. Mchihi, M. M., Odozi, N. W., & Odimuko, A. B. (2025). Deciphering properties of Dryopteris marginalis as green corrosion inhibitor for mild steel in HCl: Electrochemical, gas chromatography and DFT studies. Sustainable Chemistry One World, 7, 100103.

3. Mchihi, M. M., Olatunde, A. M., & Odozi, N. W. (2025). CuO-based nanocomposite: Synthesis, characterization, and evaluation of the corrosion inhibition effectiveness for mild steel in HCl. Journal of Electrochemical Science and Engineering, 15(4), 2715.

4. Mchihi, M. M., Odozi, N. W., Nurudeen, A. O., Emesiani, M. C., & Seriki, B. O. (2024). Assessment of Helianthus tuberosus leaves extract as eco-friendly corrosion inhibitor for aluminum in sodium hydroxide: Insights from electrochemical, gravimetry, and computational consideration. Moroccan Journal of Chemistry, 12(4), 1462–1483.

5. Odozi, N. W., Emesiani, M. C., Charles, C. D., Seriki, B. O., & Mchihi, M. M. (2024). Electrochemical studies of the corrosion inhibitory potential of Annona muricata leaves extract on aluminum in hydrochloric acid medium. FUDMA Journal of Sciences, 8(3), 395–401.

Abdel-Nasser Alaghaz | Inorganic Chemistry | Research Excellence Award

Prof. Abdel-Nasser Alaghaz | Inorganic Chemistry | Research Excellence Award

Jazan University | Saudi Arabia

Dr. Abdel-Nasser M. A. Alaghaz is a distinguished Egyptian chemist and Professor of Inorganic and Analytical Chemistry at Al-Azhar University, with over two decades of dedicated academic and research experience. His research primarily focuses on coordination chemistry and phosphorus-containing ligands, with a particular emphasis on cyclodiphosph(V)azane derivatives and related compounds. Dr. Alaghaz has made significant contributions to the synthesis, characterization, and biological evaluation of transition metal complexes, including Co(II), Ni(II), Cu(II), and Pd(II). His work integrates detailed physicochemical analyses, such as thermal stability, electrical conductivity, and spectral characterization (IR, UV-Vis, NMR), to explore structure–property relationships. Many of his studies have investigated the correlation between molecular structure and biological activity, highlighting potential pharmaceutical applications and advancing the development of functional materials. Over the years, he has authored numerous high-impact publications in peer-reviewed journals, showcasing novel synthetic strategies and elucidating ligand–metal interactions. Beyond research, Dr. Alaghaz is a respected educator and mentor, guiding graduate and doctoral students, shaping curricula, and fostering scientific inquiry. His work bridges fundamental inorganic chemistry and applied bioinorganic research, influencing both academic and industrial practices. By combining theoretical insights with practical innovation, Dr. Alaghaz has significantly enriched the fields of inorganic synthesis, materials chemistry, and bioinorganic applications. His groundbreaking contributions and unwavering dedication make him a prominent figure in chemistry, inspiring future generations of scientists in Egypt and internationally.

Profiles : Scopus | ORCID | Google Scholar

Featured Publications

1. Siddiq, H. A., Alkhathami, N. D., Ageeli, A. A., Mousa, I., Alenazy, D. M., Alatawi, N. M., & Alaghaz, A.-N. M. A. (2025). Synthesis and quantum chemical calculations of nano‐sized metal (III/II) complexes of furan‐based Schiff base for promising therapeutic studies: Interaction with biomolecules, antioxidant activity, in vitro cytotoxicity, apoptotic activity, and cell cycle analysis. Applied Organometallic Chemistry.

2. Alenazy, D. M., Siddiq, H. A., Alatawi, N. M., Ageeli, A. A., Alkhathami, N. D., Mousa, I., & Alaghaz, A.-N. M. A. (2025). Synthesis, DFT, spectral characterization, cell cycle, apoptosis, cytotoxicity, DNA binding/cleavage, molecular docking, and antimicrobial insights of nano‐sized Pd (II) and Cu (II) complexes with benzothiazole‐appended ligand. Applied Organometallic Chemistry.

3. Alaghaz, A.-N. M. A., Hakami, O., Alamri, A. A., Amri, N., Souadi, G., & Aldulmani, S. A. (2025). Cell cycle arrest, apoptosis assay, cytotoxicity, molecular docking, DNA binding/cleavage, and biological evaluation of Pt(II), Ni(II), Pd(II), and Cu(II) nano‐sized complexes of 2‐(6-fluorobenzo[d]thiazol‐2‐yl)phenol: Design, synthesis, and spectral approach. Applied Organometallic Chemistry.

4. Mousa, I., Madkhali, M. M. M., Siddiq, H. A., Alaghaz, A.-N. M. A., Rezk, G. N., & El-Bindary, A. A. (2025). Synthesis, characterization, DFT calculations, and pharmacological activity of azo dye ligand and its Cu(II) complex comprising nitrogen and oxygen donor atoms. Applied Organometallic Chemistry.

5. Alkhathami, N. D., Alenazy, D. M., Mousa, I., Alatawi, N. M., Siddiq, H. A., Ageeli, A. A., & Alaghaz, A.-N. M. A. (2025). Design, synthesis, DFT, and biological evaluation of nano‐sized Pt(II) and Cu(II) complexes of 2‐(benzo[d]oxazol‐2‐yl)phenylphosphoramidic dichloride: Spectral analysis, cell cycle arrest, apoptosis assay, cytotoxicity, and DNA binding/cleavage. Applied Organometallic Chemistry.

Hendry Y. Nanlohy | Quantum Chemistry | Best Researcher Award

Prof. Dr. Hendry Y. Nanlohy | Quantum Chemistry | Best Researcher Award

Jayapura University of Science and Technology | Indonesia

Dr. Hendry Y. Nanlohy, ST., MT., is an accomplished Associate Professor in the Department of Mechanical Engineering at Jayapura University of Science and Technology, Indonesia, with a specialized research focus on combustion and fuel engineering, nanoparticles, nanomaterials, and advanced materials for energy applications. His research contributions significantly address global challenges related to sustainable and efficient energy conversion, emissions reduction, and development of high-performance energy materials. Dr. Nanlohy’s work advances the understanding of nanoparticle-based fuels, catalytic combustion, and environmentally friendly energy systems, offering transformative insights for next-generation clean energy technologies. His studies in nanomaterials synthesis and applications have strengthened the development of alternative fuels, high-efficiency combustion systems, and novel energy storage materials, making him a key contributor to the renewable and clean energy domain in Indonesia and beyond. A recognized scientific leader, Dr. Nanlohy has been actively involved in global academic collaboration and peer-reviewing, demonstrating academic excellence and intellectual integrity. His exceptional service as a reviewer spans over 27 prestigious international journals and conferences, including Q1 and Q2 Scopus-indexed platforms such as Materialia, Heliyon, Materials Today: Proceedings, and Scientia Iranica. Additionally, he has been a reviewer and technical committee member for numerous high-impact international conferences across Asia, Europe, and the Middle East, covering fields such as materials engineering, nanotechnology, combustion science, new energy systems, and advanced manufacturing technologies. His participation in renowned events including ICEEEE, CMSE, PCM, ICAMM, ICNNE, MSAM, and INCOS highlights his strong global research footprint. Through his dedicated contributions to research, peer review, and academic leadership, Dr. Nanlohy consistently demonstrates deep commitment to advancing scientific knowledge and sustainable technological innovation. His impactful research, international scholarly engagement, and leadership in energy and materials science underscore his prominent role in the global research community and position him as an influential figure in advancing clean and efficient energy solutions.

Profiles : Scopus | ORCID | Google Scholar

Featured Publications

Nanlohy, H., & Sazhin, S. (2025). Bio-graphene activated carbon of sago waste as a potential catalyst for crude coconut oil combustion: An experimental and quantum mechanics-based study. Results in Chemistry, 15, 102308.

Trismawati, & Nanlohy, H. Y. (2025). Atomic to macroscale analysis of combustion behavior in biofuel droplets with superhydrophobic silica dimethyl silylate. Results in Engineering, 106536.

Nanlohy, H. Y., Marianingsih, S., & Utaminingrum, F. (2024). A review of the artificial neural network’s roles in alternative fuels: Optimization, prediction, and future prospects. Mechanical Engineering for Society and Industry, 4(3), 513–534.

Sanata, A., Ilminnafik, N., Asyhar, M. M., Nanlohy, H. Y., Kristianta, F. X., & others. (2024). Characterization of combustion in cylindrical meso-scale combustor with wire mesh flame holder as initiation of energy source for future vehicles. Automotive Experiences, 7(1), 97–110.

Suyatno, Riupassa, H., Marianingsih, S., & Nanlohy, H. Y. (2023). Characteristics of SI engine fueled with BE50-Isooctane blends with different ignition timings. Heliyon, e12922.

 

Sudipta Dash | Computational Chemistry | Best Researcher Award

Mr. Sudipta Dash | Computational Chemistry | Best Researcher Award

Kalinga Institute of Social sciences | India

Mr. Sudipta Dash is a scholar and academic leader specializing in Applied Physics, with research emphases on quantum optoelectronic materials, carbon‑based nanostructures, functional perovskites, and intelligent instrumentation using IoT and AI technologies. After completing his M.Sc. from Ravenshaw University, he pursued teacher education at Acharya Nagarjuna University, earning his B.Ed and M.Ed. Professionally, Mr. Dash’s career spans roles in higher education and administration: he served as Principal at Gayatri Degree College, Lecturer and then Assistant Professor at Kalinga Institute of Social Sciences, and as of 2024, he is Head of the Department there. He has been recognized with several honours, including CSIR‑NET (2019), GATE (2018), and multiple Best Poster Awards. His inventive work is evidenced by patents in areas like anti‑dandruff/anti‑ripening shampoos; carbon quantum dots; AI‑based digital education methods; and outcome‑based assessment aligned with NEP 2020. His publication record includes studies on perovskite band gap engineering, optoelectronic properties of lead‑free compounds, toxicity assessment of nanomaterials, among others.

Profiles : Scopus | Google Scholar

Featured Publications

  • Dash, S., Behera, D., Mohanty, S. K., Palai, G., & Mohanty, I. (2024). Unveiling the potential of lead‑free KInBr₃ and RbInBr₃ perovskites: A breakthrough in optoelectronic and photovoltaic performance through DFT (HSE hybrid functional) and SCAPS‑1D simulations. Phase Transitions, 97(11‑12), 826–845.

  • Dash, S., Mohanty, S., & Palai, G. (2025). First‑Principles Insights into Structural, Electronic, Elastic, and Optical Behavior of AlGeX₃ (X = Cl, Br) Perovskites. Russian Journal of Inorganic Chemistry, 1–9.

  • Dash, S., Behera, D., Mohanty, S., Panda, J., & Palai, G. (2025). Comprehensive investigations on the optoelectronic properties of lead‑free K₂InSbCl₆ compound. Next Research, Article 100607.

  • Dash, S., Mohanty, S., Behera, D., Mohanty, S. K., & Palai, G. (2025). Band gap engineering and optical response of SrSiO₃ perovskite for high‑efficiency photonic applications. MRS Advances, 1–8.

 

Jun-Qing Yin | Computational Chemistry | Best Researcher Award

Prof. Dr. Jun-Qing Yin | Computational Chemistry | Best Researcher Award

Chengdu University | China

Profiles

Scopus
Orcid

Early Academic Pursuits

Dr. Jun-Qing Yin began his academic journey with a Bachelor’s degree in Chemistry, where he developed a strong foundation in physical and theoretical chemistry. His Master’s studies focused on the structural and energetic behaviors of gold clusters and their interaction with formaldehyde, showcasing early specialization in computational modeling and quantum chemical methods. His Ph.D. work advanced his theoretical expertise further, emphasizing surface chemistry and catalytic mechanisms of iron-based systems relevant to Fischer-Tropsch synthesis. These formative academic pursuits laid the groundwork for a career deeply rooted in the theoretical investigation of catalytic processes at the atomic level.

Professional Endeavors

Currently serving as a Research Fellow at the Institute of Advanced Study at Chengdu University, Dr. Yin has also held a postdoctoral position in the prestigious group of Professor Shigeyoshi Sakaki at Kyoto University. His career trajectory is marked by a consistent focus on the quantum chemical study of catalytic systems, with a specialization in transition metal surfaces, single-atom alloys, and interface chemistry. His work bridges the gap between theoretical predictions and experimental observables, forming key collaborations with experimentalists in the catalysis community.

Contributions and Research Focus

Dr. Yin’s research contributions are centered on surface catalysis, alloy stability, and reaction mechanisms. He has developed theoretical models for understanding the behavior of single-atom and phase-separated alloys in reactions such as NO-CO and dry reforming of methane. Additionally, his investigations into the performance of iron carbides, metal-support interactions, and the modification of catalytic surfaces using ligands contribute valuable insights to Fischer-Tropsch synthesis. His use of density functional theory (DFT) and other quantum mechanical tools reflects a deep understanding of electronic structures and catalytic behavior, advancing the design of more selective and efficient catalytic systems.

Impact and Influence

With a growing list of publications in top-tier journals such as Nature, Science, Journal of Catalysis, and ACS Catalysis, Dr. Yin’s work has gained substantial visibility in the fields of physical chemistry and catalysis. His collaboration in a landmark study on rhodium-zeolite catalysts for regioselective hydroformylation has positioned him at the forefront of molecular catalysis. His theoretical insights into metal-ligand interactions and catalyst support effects continue to influence both theoretical and applied research in sustainable energy and green chemistry.

Academic Citations

Although the precise citation metrics are not provided here, Dr. Yin’s publications in high-impact journals suggest a strong citation record. His involvement in collaborative research published in globally respected outlets like Nature and Science indicates a significant academic footprint. These works are likely to be highly cited within the communities of catalysis, surface chemistry, and computational materials science.

Technical Skills

Dr. Yin possesses advanced skills in quantum chemical modeling, particularly density functional theory (DFT), periodic boundary condition modeling, and computational catalysis. He is proficient in using simulation software such as VASP, Gaussian, and Materials Studio for the investigation of reaction mechanisms, adsorption behaviors, and surface reactivity. His ability to interpret complex electronic structures and reaction energy profiles makes him a valuable asset in any research setting focused on materials and energy applications.

Teaching Experience

While no formal teaching roles are specified, Dr. Yin has likely been involved in mentoring graduate students and collaborating with experimental teams, given his postdoctoral and research fellow positions. His ability to translate theoretical concepts into practical guidance for experimental interpretation reflects pedagogical strength, which may extend into future academic teaching responsibilities.

Legacy and Future Contributions

Dr. Yin is on a trajectory to make lasting contributions to the field of heterogeneous catalysis and materials chemistry. His research on alloy systems, particularly single-atom catalysts and metal-support interactions, provides foundational knowledge for the rational design of next-generation catalysts. As his collaborations and publication record expand, he is well-positioned to take on leadership roles in interdisciplinary research networks and contribute to global challenges in sustainable energy conversion.

Notable Publications

Regioselective hydroformylation of propene catalysed by rhodium-zeolite

Authors: Xiang-Jie Zhang, Tao Yan, Hua-Ming Hou, Jun-Qing Yin, Hong-Liu Wan, Xiao-Dong Sun, Qing Zhang, Fan-Fei Sun, Yao Wei, Mei Dong, Wei-Bin Fan, Jianguo Wang, Yu-Jie Sun, Xiong Zhou, Kai Wu, Yong Yang, Yong-Wang Li, Zhi Cao
Journal: Nature
Year: 2024

Catalysis of Nickel-Based gold single-atom alloy for NO-CO reaction: Theoretical insight into role of gold atom in enhancing catalytic activity

Authors: Jun-Qing Yin, Masahiro Ehara, Shigeyoshi Sakaki
Journal: Journal of Catalysis
Year: 2024

Surface modification of Fe5C2 by binding silica-based ligand: A theoretical explanation of enhanced C2 oxygenate selectivity

Authors: Jun-Qing Yin, Shu-Yuan Wang, Dan Xu, Yong You, Xing-Chen Liu, Qing Peng
Journal: Molecular Catalysis
Year: 2023

A new reaction mode of 3-halooxindoles: acting as C–C–O three-atom components for (3+3) cycloaddition to access indolenine-fused 2H-1,4-oxathiines

Authors: Ting-Jia Sun, Xue-Song Peng, Wei Sun, Yan-Ping Zhang, Xiao-Min Ma, Jian-Qiang Zhao, Zhen-Hua Wang, Yong You, Ming-Qiang Zhou, Jun-Qing Yin, Wei-Cheng Yuan
Journal: Organic Letters
Year: 2023

Theoretical exploration of properties of iron-silicon interface constructed by depositing Fe on Si(111)-(7×7)

Authors: Jun-Qing Yin, Yan-Ping Zhang, Yong You, Zhen-Hua Wang, Jian-Qing Zhao, Qiang Peng
Journal: Molecules
Year: 2023

Conclusion

Dr. Jun-Qing Yin exemplifies the qualities of an innovative and forward-thinking researcher. With a solid theoretical background, prolific scholarly output, and impactful collaborations, he continues to push the boundaries of physical chemistry and catalysis. His work not only advances scientific understanding but also lays the groundwork for technological innovations in green chemistry and energy-efficient catalysis.

 

Krittiya Sreebunpeng | Physical Chemistry | Best Researcher Award

Assist. Prof. Dr. Krittiya Sreebunpeng | Physical Chemistry | Best Researcher Award

Chandrakasem Rajabhat University Thailand

👨‍🎓Profiles

🎓 Early Academic Pursuits

Dr. Krittiya Sreebunpeng laid a solid foundation in physics through her studies at King Mongkut’s University of Technology Thonburi (KMUTT). She earned her B.S. in Physics in 2009 with a project on the calibration of radiating-time digital machines for radiation diagnosis. She went on to complete her M.S. in Physics in 2011 with a stellar GPA of 3.66, investigating the optical and scintillation properties of Pr³⁺-doped Lu₃Al₅O₁₂ crystals. Her passion for materials science culminated in a Ph.D. in Physics (2015), where her thesis focused on the luminescence and scintillation behavior of Pr³⁺-doped Lu₃Al₅O₁₂ and Y₃Al₅O₁₂ single crystal scintillators.

🔬 Research Focus and Contributions

Dr. Sreebunpeng’s core research revolves around scintillation materials, radiation detectors, crystal growth, and transparent ceramics, with extensions into nuclear safety and physics education. Her contributions to scintillator development have significantly advanced materials used in radiation detection. Two of her key completed research projects include:

  1. Photoluminescence and scintillation properties of K⁺, Pr- and Mg²⁺, Pr-doped garnet crystals (2019, funded by the National Research Council of Thailand).

  2. Fabrication of Mg²⁺ co-doped Ce:(Lu₂Y)(Al₅₋ₓGaₓ)O₁₂ ceramic scintillators for fast timing applications, supported by the Ministry of Higher Education, Science, Research, and Innovation.

🌏 Global Exposure and Training

Dr. Sreebunpeng’s academic journey includes international research stints and specialized technical training. She conducted summer research at the Shanghai Institute of Optics and Fine Mechanics (SIOM), China in 2018–2019. In 2015, she enhanced her expertise with research training at the National Centre for Nuclear Research in Poland and the Institute of Physics in Prague, Czech Republic. Her participation in radiation safety and research communication workshops reflects her commitment to well-rounded scientific practice.

👩‍🏫 Teaching Experience and Academic Roles

Dr. Sreebunpeng currently serves as a lecturer in Physics at the Faculty of Science, Chandrakasem Rajabhat University since 2016. Prior to that, she was a teaching assistant at KMUTT (2009–2015) and briefly taught general physics at Muban Chombueng Rajabhat University. Her dedication to pedagogy is reflected in her continual engagement with training programs on science teaching methods, research writing techniques, and technology tools such as EndNote and XRD analysis.

🛠️ Technical Skills and Experimental Expertise

She possesses robust technical expertise in scintillator material synthesis, optical characterization, and radiation detector analysis. Her hands-on skills cover crystal growth, transparent ceramics, photoluminescence spectroscopy, X-ray diffraction (XRD), and radiation protection protocols. These proficiencies are complemented by her training in mind-mapping techniques, scientific writing, and academic communication.

🏅 Impact, Recognition, and Influence

Dr. Sreebunpeng’s research has contributed to the development of advanced scintillation materials essential in medical imaging and nuclear safety. She was selected for Thailand’s “New Generation Researcher” program and has also played a crucial role as a local trainer for the Institute for the Promotion of Teaching Science and Technology (IPST). Her involvement in the academic and research communities demonstrates her growing influence in both applied and educational physics.

🌱 Legacy and Future Directions

Looking ahead, Dr. Sreebunpeng is poised to deepen her impact in nuclear materials science and radiation detection technologies, while continuing her dedication to science education and public awareness. Her multidisciplinary approach—spanning research, teaching, and training—places her as a vital contributor to Thailand’s scientific advancement, especially in the realms of radiation safety and detector innovation.

📖Notable Publications

Temperature-dependent characteristics, light yield nonproportionality, and intrinsic energy resolution of Ce,Mg:Lu₂Y(Al,Ga)₅O₁₂ garnet ceramics
Authors: K. Sreebunpeng, Wa. Chewpraditkul, N. Pattanaboonmee, W. Chewpraditkul, R. Kucerkova, V. Babin, Y. Wang, D. Zhu, C. Hu, M. Nikl, J. Li
Journal: Radiation Physics and Chemistry
Year: 2025

Effect of Ga³⁺ content on the luminous properties of Ce³⁺-doped Lu₂YGaxAl₅₋ₓO₁₂ phosphor ceramics for potential lighting application
Authors: Y. Wang, Z. Cheng, J. Ye, D. Zhu, C. Hu, Z. Zhou, T. Li, Wa. Chewpraditkul, K. Sreebunpeng, W. Chewpraditkul, J. Li
Journal: Journal of Luminescence
Year: 2025

Luminescence and scintillation properties of fast Ce,Mg:Lu₂YGaxAl₅₋ₓO₁₂ ceramic scintillators fabricated from co-precipitated powders
Authors: K. Sreebunpeng, Wa. Chewpraditkul, W. Chewpraditkul, R. Kucerkova, A. Beitlerova, M. Nikl, T. Szczesniak, M. Grodzixja-Kobylka, D. Zhu, C. Hu, J. Li
Journal: Optical Materials
Year: 2024

Luminescence and light yield of Ce³⁺-doped (60−x)SiO₂–xBaF₂–20Al₂O₃–20Gd₂O₃ scintillation glasses: The effect of BaF₂ admixture
Authors: P. Lertloypanyachai, Wa. Chewpraditkul, N. Pattanaboonmee, N. Yawai, K. Sreebunpeng, T. Nimphaya, A. Beitlerova, M. Nikl, W. Chewpraditkul
Journal: Optik
Year: 2023

Optical, luminescence and scintillation properties of Mg²⁺-codoped (Lu,Y)₃Al₂Ga₃O₁₂:Pr garnet crystals: The effect of Y
Authors: K. Sreebunpeng, Wa. Chewpraditkul, W. Chewpraditkul, A. Yoshikawa, M.E. Witkowski, W. Drozdowski, M. Nikl
Journal: [Journal name incomplete]
Year: 2022

Teng Liu | Organic Chemistry | Best Researcher Award

Prof. Teng Liu | Organic Chemistry | Best Researcher Award

Qujing Normal University, China

👨‍🎓Profiles

🎓 Academic Background and Early Career

Prof. Teng Liu has a strong foundation in chemistry, beginning with a Bachelor’s degree in Chemistry Education from Jiangxi Normal University (2006-2010). His academic journey continued at Yunnan University, where he obtained a Ph.D. in Organic Chemistry (2010-2016), specializing in asymmetric catalytic synthesis under the supervision of Prof. Zhihui Shao. His doctoral research focused on catalytic asymmetric isatin ketimines 1,2-addition reactions and nitrodienyne 1,4-addition reactions, contributing significantly to the field of stereoselective organic synthesis.

🔬 Professional Endeavors and Research Contributions

Prof. Teng Liu began his professional career as a Lecturer at Qujing Normal University (2017-2020) and was later promoted to Associate Professor in 2021. His research expertise lies in asymmetric catalytic synthesis and green chemistry, where he focuses on the development of efficient and sustainable synthetic methodologies for complex organic molecules. His work integrates chiral catalysis, selective cross-coupling reactions, and environmentally friendly organic transformations.

📑 Recent Research Achievements and Publications

In the last five years, Prof. Liu has published several high-impact SCI-indexed papers in renowned journals such as Organic Letters, Advanced Synthesis & Catalysis, and Green Chemistry. His notable publications include:

  • Base-Catalyzed Chalcogenative Annulation (Org. Lett., 2025): A novel approach for synthesizing 1,4-sulfa-/selena-zepanes using elemental sulfur/selenium.

  • Stepwise Synthesis of Pyrroloquinoline Diones (Adv. Synth. Catal., 2023): A one-pot method for constructing complex heterocyclic frameworks.

  • Cu(I)-Catalyzed Cascade Cyclization Reaction (Org. Lett., 2022): A groundbreaking method to construct pyrimido[5,4-b]indole derivatives, widely cited in the field.

  • Highly Selective C-P Cross-Coupling Reaction (Green Chem., 2019): A sustainable approach for the synthesis of ortho-amino triarylphosphine derivatives, advancing green chemistry methodologies.

His research has been highly cited and recognized in the field of organic chemistry, particularly in the areas of catalytic asymmetric synthesis and environmentally friendly chemical transformations.

🏆 Awards and Recognitions

Prof. Liu’s academic excellence has been acknowledged through several prestigious awards, including:

  • 2020: Excellent Doctoral Dissertation in Yunnan Province – Recognizing the significance of his Ph.D. research in asymmetric catalysis.

  • 2024: The Revitalize Yunnan Talent Support Program – Young Talents – A competitive award aimed at fostering outstanding young researchers in Yunnan Province.

🛠️ Research Focus and Impact

His current research interests center on asymmetric catalytic synthesis and green chemistry, aiming to develop highly efficient, selective, and eco-friendly synthetic methods. His work significantly impacts pharmaceutical synthesis, material science, and sustainable organic transformations. By integrating chiral catalysts and novel reaction mechanisms, he contributes to advancing both fundamental organic chemistry and practical applications in industrial synthesis.

🌱 Future Contributions and Academic Legacy

Looking ahead, Prof. Liu is committed to pushing the boundaries of green chemistry and asymmetric catalysis by exploring new catalytic systems, reaction pathways, and environmentally sustainable synthetic methodologies. His contributions to chemical education, research innovation, and sustainable chemical synthesis will continue to shape the next generation of scientists and drive progress in the field of organic chemistry.

📖Notable Publications

Base-Catalyzed Chalcogenative Annulation of N-Maleimido O-Aminobenzyl Alcohol with Elemental Sulfur/Selenium: Access to 1,4-Sulfa-/Selena-zepanes

Authors: Y. Wen, Yuanmin; T. Liu, Teng; S. Huang, Shuntao; Y. Ye, Yanqing; C. Huang, Chao

Journal: Organic Letters

Year: 2025

Brønsted-Acid Catalyzed Aldehyde Insertion to Construct C−X Bond: High Regio- and Chemoselectivity Synthesis of Dihydrobenzo[1,5]oxazocines and Pyrrolo[3,4-d]tetrahydropyrimidines

Authors: Y. Wen, Yuanmin; T. Liu, Teng; G. Zeng, Guiyun; C. He, Chixian; C. Huang, Chao

Journal: European Journal of Organic Chemistry

Year: 2025

Cs₂CO₃-Catalyzed Multi-Component One-Pot Stepwise Route for the Synthesis of Polysubstituted 2-Pyridones

Authors: S. Liu, Shitao; C. He, Chixian; G. Li, Guijun; X. Shen, Xianfu; T. Liu, Teng

Journal: ChemistrySelect

Year: 2024

Recent Advances in Total Synthesis of Prenylated Indole Alkaloids by Transition Metal-Catalyzed Reactions as the Key Step

Authors: T. Peng, Tianfeng; Y. Zhao, Yuxiang; S. Pu, Shaojian; Y. Miao, Yingchun; X. Shen, Xianfu

Journal: [No source information available]

Year: Not specified

Chemodivergence in Fluorine Source-Controlled Cascade Reaction of Aryne Precursors to Synthesize Pyrrolo[3,4-b]indoles and 3-Arylated Maleimides

Authors: Z. Wang, Zhuoyu; S. Huang, Shuntao; L. Yin, Lu; T. Liu, Teng; C. Huang, Chao

Journal: Journal of Organic Chemistry

Year: 2024