José Piñero | Physical Chemistry | Research Excellence Award

Prof. Dr. José Piñero | Physical Chemistry | Research Excellence Award

University of Cadiz  | Spain

Dr. José Carlos Piñero Charlo is a theoretical physicist specializing in physical chemistry and surface science, with strong expertise in advanced materials characterization. His research integrates theoretical modeling with high-resolution experimental techniques, particularly X-ray Photoelectron Spectroscopy, to elucidate surface terminations and electronic properties of semiconductor materials. He has made significant contributions to diamond-based power electronics, energy harvesting systems, and quantum sensing technologies. His recent work on perovskite quantum dots advances optoelectronic performance, reinforcing his interdisciplinary impact across materials science, nanotechnology, and energy applications.

Citation Metrics (Scopus)

  1000
  700
  400
   100
     0

Citations
906

Documents
49

h-index
16

Citations

Documents

h-index

View Scopus Profile View ORCID Profile View Google Scholar Profile

Featured Publications

Rohit Vekariya | Physical Chemistry | Outstanding Scientist Award

Assist. Prof. Dr. Rohit Vekariya | Physical Chemistry | Outstanding Scientist Award

CVM University | India

Dr. Rohit L. Vekariya’s research centers on the design, synthesis, and characterization of task-specific ionic liquids and their multidisciplinary applications. His work spans environmental remediation, soft matter and nanotechnology, catalysis, and energy storage systems. He has contributed significantly to water purification, nanoparticle synthesis, micellar self-assembly, and polymer electrolytes. His postdoctoral research advanced ionic-liquid-based catalysts and energy devices, including supercapacitors. Integrating techniques such as SANS, DLS, NMR, and electrochemistry, his research has achieved high international impact and recognition.

Citation Metrics (Scopus)

 2500
 2000
 1000
   500
     0

Citations
2,392

Documents
51

h-index
20

Citations

Documents

h-index

View Scopus Profile View ORCID Profile View Google Scholar Profile

Featured Publications

Guoqin Cao | Surface Chemistry | Research Excellence Award

Assoc. Prof. Dr. Guoqin Cao | Surface Chemistry | Research Excellence Award

Zhengzhou University | China

Dr. Guoqin Cao is an Associate Professor of Materials Science and Engineering at Zhengzhou University and a member of the National Key Laboratory. His research focuses on advanced surface coatings and metallurgical mechanisms for metallic materials operating in extreme environments, particularly nuclear and high-temperature marine conditions. He has developed Zr–Si multi-interface kinetic modulation strategies and proposed the “siliconization–oxidation” phase selection theory, enabling atomic-scale control of oxidation and phase evolution. His work has significantly advanced oxidation-resistant, high-entropy, and amorphous coating systems. Dr. Cao has published over 40 papers, holds multiple patents, secured national funding, and actively mentors students and serves on international journal editorial boards.

Citation Metrics (Scopus)

 2000
 1500
 1000
  500
     0

Citations
1,623

Documents
66

h-index
25

Citations

Documents

h-index

View Scopus Profile View ORCID Profile

Featured Publications

Jiqiang Hu | Surface Chemistry | Research Excellence Award

Assoc. Prof. Dr. Jiqiang Hu | Surface Chemistry | Research Excellence Award

Harbin Institute of Technology | China

Jiqiang Hu is an Associate Professor and Doctoral Supervisor at the Institute of Composite Materials and Structures, School of Aeronautics and Astronautics, Harbin Institute of Technology. His research focuses on the development, performance characterization, and engineering application of lightweight polymer and fiber-reinforced composites for aerospace and advanced structural applications. He specializes in interfacial modification strategies, damage and fracture mechanics, and thermomechanical behavior of thermoplastic composites such as CF/PPS, CF/PEEK, and carbon nanofiber-reinforced systems. Dr. Hu’s work integrates advanced experimental techniques with multiscale theoretical modeling and numerical methods, including FFT-based frameworks and non-local elastic–plastic damage models, to understand structure–property relationships and failure mechanisms. His research has led to significant improvements in interlaminar shear strength, fracture toughness, and interfacial adhesion through surface functionalization and molecular-level design. He has published over 20 SCI papers in leading journals such as Composites Part B, Composites Science and Technology, Engineering Fracture Mechanics, and ACS Applied Nano Materials. As principal investigator, he has led multiple projects funded by national foundations and postdoctoral programs, contributing to high-performance composite technologies for next-generation aerospace structures.

Citation Metrics (Scopus)

1600
1100
600
100
0

Citations
1,554

Documents
53

h-index
23

Citations

Documents

h-index

View Scopus Profile View Google Scholar Profile View ORCID Profile

Featured Publications

Msenhemba Mchihi | Physical Chemistry | Research Excellence Award

Dr. Msenhemba Mchihi | Physical Chemistry | Research Excellence Award

Yaba College of Technology | Nigeria

Dr. Msenhemba Moses Mchihi is a physical chemist whose research focuses on corrosion inhibition, green chemistry, nanomaterials, electrochemistry, adsorption studies, and computational chemistry. His work centers on developing eco-friendly corrosion inhibitors derived from plant extracts, green-synthesized metal oxide nanoparticles, and nanocomposites for protecting mild steel and aluminum in acidic and alkaline environments. Through extensive electrochemical, gravimetric, spectroscopic, microscopic, gas chromatography, and density functional theory (DFT) analyses, he has contributed significantly to understanding the mechanisms, thermodynamics, and kinetics of corrosion inhibition using sustainable materials. His research also extends to adsorption studies involving heavy-metal removal from aqueous solutions using low-cost agricultural wastes such as coconut shell activated carbon and rice husk, highlighting his commitment to environmental remediation. Dr. Mchihi has authored numerous publications in reputable chemistry journals, including studies on CuO-based nanocomposites, plant-mediated zinc oxide nanoparticles, green inhibitors such as Ficus sur, Justicia schimperi, Annonamuricata, Bauhinia tomentosa, and mixtures of Codiaeum variegatum and Ficus benjamina. He has also contributed a chemistry textbook on mole concept and chemical calculations. His scholarly excellence has earned him distinctions such as the Best Staff Award of the Chemical Science Department at Yaba College of Technology and recognition from the University of Ibadan Postgraduate College. In addition to research, he has presented at multiple national and international scientific conferences and serves in administrative roles, including Examination Officer and Seminar Coordinator at Yaba College of Technology.

Profiles : Scopus | ORCID | Google Scholar

Featured Publications

1. Mchihi, M. M., Olatunde, A. M., & Odozi, N. W. (2025). Electrochemical and gravimetric studies of the corrosion inhibitory properties of green synthesized copper oxide nanoparticles mediated by Ficus sur for mild steel in HCl. Jordan Journal of Chemistry, 20(2), 81–93.

2. Mchihi, M. M., Odozi, N. W., & Odimuko, A. B. (2025). Deciphering properties of Dryopteris marginalis as green corrosion inhibitor for mild steel in HCl: Electrochemical, gas chromatography and DFT studies. Sustainable Chemistry One World, 7, 100103.

3. Mchihi, M. M., Olatunde, A. M., & Odozi, N. W. (2025). CuO-based nanocomposite: Synthesis, characterization, and evaluation of the corrosion inhibition effectiveness for mild steel in HCl. Journal of Electrochemical Science and Engineering, 15(4), 2715.

4. Mchihi, M. M., Odozi, N. W., Nurudeen, A. O., Emesiani, M. C., & Seriki, B. O. (2024). Assessment of Helianthus tuberosus leaves extract as eco-friendly corrosion inhibitor for aluminum in sodium hydroxide: Insights from electrochemical, gravimetry, and computational consideration. Moroccan Journal of Chemistry, 12(4), 1462–1483.

5. Odozi, N. W., Emesiani, M. C., Charles, C. D., Seriki, B. O., & Mchihi, M. M. (2024). Electrochemical studies of the corrosion inhibitory potential of Annona muricata leaves extract on aluminum in hydrochloric acid medium. FUDMA Journal of Sciences, 8(3), 395–401.

Tun Naw Sut | Surface Chemistry | Best Researcher Award

Dr. Tun Naw Sut | Surface Chemistry | Best Researcher Award

Sungkyunkwan University | South Korea

Dr. Sut Tun Naw is an accomplished interdisciplinary researcher whose work advances the frontiers of nanotechnology, biomimetic materials, and lipid-based membrane engineering for biomedical and diagnostic applications. With a dual Ph.D. in Nanomedicine from Nanyang Technological University and Chemical Engineering from Sungkyunkwan University, he brings a uniquely integrated perspective to studying molecular interactions at biointerfaces. His research focuses on lipid self-assembly, supported lipid bilayers, membrane biophysics, plasmonic biosensing, antimicrobial nanostructures, and virus–membrane interactions. Dr. Sut’s contributions have significantly deepened scientific understanding of how lipid organization, membrane curvature, cholesterol content, and multivalency govern nanoscale membrane behavior. Using advanced biophysical tools including QCM-D, nanoplasmonic sensing, and engineered membrane platforms he has elucidated mechanisms underlying vesicle deformation, antimicrobial lipid synergy, protein adsorption, and virus-mimicking membrane disruption. His innovative work includes designing lipid bicelle nanostructures for antibacterial applications, developing solvent-free fabrication of antimicrobial lipid nanoparticles, and engineering hybrid supported lipid bilayers for biosensing and antiviral technologies. He has also contributed to translational research through the development of next-generation plasmonic sensor platforms for virus detection, lipid-based coatings for diagnostic assays, and membrane-mimetic structures for therapeutic delivery. With over 50 peer-reviewed publications in high-impact journals such as ACS Nano, Advanced Healthcare Materials, Langmuir, Chemical Engineering Journal, and Applied Materials Today, Dr. Sut has established himself as a leading young scientist in membrane engineering and nanobiotechnology. His roles as Guest Editor and Topic Editor further reflect his influence within the scientific community. Through creativity, rigorous experimentation, and interdisciplinary collaboration, Dr. Sut Tun Naw continues to pioneer breakthroughs with broad implications for diagnostics, virology, nanomedicine, and biomolecular engineering.

Profiles : Scopus | ORCID | Google Scholar

Featured Publications

Sut, T. N., Yoon, B. K., & Jackman, J. A. (2025). Synergistic membrane disruption of E. coli tethered lipid bilayers by antimicrobial lipid mixtures. Biomimetics, 10, 739.

Lee, C. J., Jannah, F., Sut, T. N., Haris, M., & Jackman, J. A. (2025). Curvature-sensing peptides for virus and extracellular vesicle applications. ACS Nano, 19, 36845–36875.

Kim, D., Baek, H., Lim, S. Y., Lee, M. S., Lyu, S., Lee, J., Sut, T. N., Gonçalves, M., Kang, J. Y., Jackman, J. A., & Kim, J. W. (2025). Mechanobiologically engineered mimicry of extracellular vesicles for improved systemic biodistribution and anti-inflammatory treatment efficacy in rheumatoid arthritis. Advanced Healthcare Materials, 14, 2500795.

Molla, A., Sut, T. N., Yoon, B. K., & Jackman, J. A. (2025). Headgroup-driven binding selectivity of alkylphospholipids to anionic lipid bilayers. Colloids and Surfaces B: Biointerfaces, 255, 114964.

Ruano, M., Sut, T. N., Tan, S. W., Mullen, A. B., Kelemen, D., Ferro, V. A., & Jackman, J. A. (2025). Solvent-free microfluidic fabrication of antimicrobial lipid nanoparticles. ACS Applied Bio Materials, 8, 2194–2203.

 

Yuhua Yang | Materials Chemistry | Best Researcher Award

Dr. Yuhua Yang | Materials Chemistry | Best Researcher Award

Jiangxi Science and Technology Normal University | China

Dr. Yuhua Yang is an accomplished materials scientist specializing in nanomaterials synthesis and advanced electrochemical energy-storage systems, with a strong focus on lithium-ion and lithium-sulfur battery technologies. He holds a bachelor’s degree from Nanchang University, a master’s degree from Beijing University of Posts and Telecommunications, and a Ph.D. from Hunan University. He has significant industrial and academic experience, having served in roles at Haier Group, China Netcom Corporation, and Yichun University before joining the School of Materials and Energy at Jiangxi Science and Technology Normal University. His research portfolio centers on bio-derived nanostructures and engineered electrode materials designed to overcome critical battery challenges, including volume expansion, low coulombic efficiency, and poor cycle stability. Representative studies include innovative Sn-based and Ni-based electrodes derived from bacterial carbon and natural biotemplates, such as Bacillus subtilis-based carbon @Sn anodes and yolk-shell Ni₃P-carbon@graphene frameworks, demonstrating enhanced electrochemical stability and durability. His recent publications also explore advanced core-shell architectures and flexible bacterial-carbon/graphene systems , reflecting his continuing drive toward high-capacity, stable, and flexible battery platforms. Notably, his contribution to bacteria-derived carbon materials for Li-S batteries published in Nano Letters  has been cited 110 times, underscoring international recognition of his work. Across 15 indexed publications, Dr. Yang has accumulated 515 citations from 487 documents and holds an h-index of 7 in Scopus, indicating strong and growing impact in the fields of materials chemistry and energy storage. His innovative approach of integrating biological templates with advanced nanostructuring strategies provides sustainable pathways for next-generation battery materials, positioning him as a rising leader in energy and nanomaterials research.

Profile : Scopus 

Featured Publications

Li, F., Han, P.-T., … Yang, Y.-H. (2025). The core-shell structure of bacteria-based C@Sn/Carbon nanotubes exhibits super-stable cycling performance for lithium-ion battery anodes. Journal of Power Sources, 645.

Li, F., Han, P.-T., … Yang, Y.-H. (2025). Flexible Co₃(PO₄)₂@ bacterial carbon/reduced graphene oxides for Li-ion batteries anode. Materials Letters, 389.

Zhang, Z.-W., Li, F., … Yang, Y.-H. (2024). Ultra-high first coulombic efficiency and stable cycle performance of bacterial-based C/Sn/SnS nanomaterial for lithium-ion battery anodes. Chemical Physics Letters, 840.

Yang, Y.-H., Xi, Z.-C., … Zhou, J. (2023). Gram-positive bacteria Bacillus subtilis-based carbon @ Sn anode for high-performance Li-ion batteries. Journal of Materials Science: Materials in Electronics, 34(8).

Yang, Y.-H., Zhang, Z.-W., … Zhou, J. (2022). The photoluminescence materials of green light Gd₂O₃:Eu and its influencing factors. Journal of the Physical Society of Japan, 91(11).

Jinxiao Li | Inorganic Chemistry | Best Researcher Award

Dr. Jinxiao Li | Inorganic Chemistry | Best Researcher Award

Dalian University | China

Dr. Jinxiao Li, currently affiliated with the College of Environmental and Chemical Engineering, Dalian University, is an accomplished researcher specializing in biomass-derived energy materials and sustainable energy conversion technologies. He earned his Ph.D. in Power Engineering and Engineering Thermophysics from Shandong University, where his doctoral research focused on the preparation of hierarchical porous carbon from plant-based materials and its application in supercapacitors. Over the past decade, Dr. Li has developed a robust research profile that bridges materials chemistry, renewable energy, and catalysis. Dr. Li’s research centers on biomass conversion, porous carbon fabrication, catalyst design, and hydrogen production. His innovative work on nitrogen-doped hierarchical porous carbons and activation techniques for improved electrochemical performance has significantly contributed to the development of high-efficiency supercapacitors and electrocatalytic systems. By integrating green synthesis methods and advanced characterization techniques such as BET, SEM-EDS, TEM, XRD, XPS, ICP, and FTIR, Dr. Li has advanced understanding of the structural-performance relationships in energy materials. With 21 publications, an impressive 1,291 citations, and an h-index of 14 (Scopus), Dr. Li’s scholarly output reflects both quality and influence in the field of energy materials and environmental chemistry. His work not only addresses fundamental scientific challenges but also offers practical implications for clean energy generation and carbon neutrality initiatives. In recognition of his research excellence, Dr. Li has been honored with the Dalian City Young Talents Award and the Outstanding College Graduates of Shandong Province Award. As an active expert member of the Dalian Energy Conservation Association, he continues to promote sustainable development through research and academic service. Dr. Li’s ongoing projects focus on next-generation biomass-based catalysts and hydrogen energy systems, positioning him as a leading figure in the pursuit of sustainable, high-performance energy materials.

Profiles : Scopus | ORCID

Featured Publications

  • Lian, M., Han, X., Li, J., Song, R., Yang, C., Zhang, J., Zhong, H., & Pan, L. (2025). Hierarchical porous carbon supports: Construction, mechanism, and catalytic performance as efficient microreactors for methanol steam reforming. Inorganic Chemistry Communications, 182(Part 2), 115561.

  • Zhao, Y.-e., Li, J., Xu, A., Liu, Y., Lian, M., Zhang, J., Zhong, H., Yang, C., Song, R., & Pan, L. (2025). Hierarchical porous carbon-supported bimetallic catalyst for enhanced low-temperature steam methane reforming. Catalysis Science & Technology.

  • Lv, S., Lian, S., Li, J., Wang, Y., Wei, J., Zhong, H., & Pan, L. (2025). Mechanochemical construction of stable Cu/MCM-41 with efficient hydrogen production via methanol steam reforming. International Journal of Hydrogen Energy, 164, 150818.

  • Li, J., Han, K., & Li, S. (2018). Porous carbons from Sargassum muticum prepared by H3PO4 and KOH activation for supercapacitors. Journal of Materials Science: Materials in Electronics.

Xolile Fuku | Analytical Chemistry | Best Researcher Award

Prof. Xolile Fuku | Analytical Chemistry | Best Researcher Award

University of South Africa | South Africa

Prof. Xolile Godfrey Fuku is an Associate Professor at the Institute for Nanotechnology and Water Sustainability (iNanoWS) at the University of South Africa (UNISA). With a distinguished academic and research background in electrochemistry, nanotechnology, and sustainable energy systems, Prof. Fuku has positioned himself as a leading figure in green energy and environmental technologies. His work focuses on electrochemical sensors, hydrogen fuel cells, battery materials, CO₂ conversion, and integrated water monitoring systems aligning closely with global sustainability and climate change goals. Prof. Fuku holds a PhD in Chemistry from the University of the Western Cape, where his doctoral research developed a quantum dots genosensor for breast cancer biomarkers under the supervision of Prof. Emmanuel Iwuoha. He also holds an MSc in Chemistry and has expanded his expertise through business qualifications, including a Postgraduate Diploma in Business Administration and an ongoing MBA from Wits Business School. Over the years, Prof. Fuku has demonstrated excellence in research leadership and capacity development. He manages a multidisciplinary research team at iNanoWS and has supervised several MSc and PhD students in the fields of renewable energy, nanotechnology, and material science. His research outputs include over 60 peer-reviewed publications, multiple international book chapters, and numerous conference presentations. As of 2025, his work has garnered 2,532 citations with an H-index of 19, according to Google Scholar. His efforts have been supported by prestigious grants from organizations such as the National Research Foundation (NRF), CSIR, Water Research Commission (WRC), and international bodies including the Chinese Foreign Talent Program. He is also affiliated with prominent scientific societies such as SACNASP, the Royal Society of Chemistry, and the African Academy of Sciences. Prof. Fuku continues to contribute significantly to advancing Africa’s leadership in clean and sustainable technologies through research, mentorship, and innovation.

Profiles : Scopus | Orcid | Google Scholar

Featured Publications

  • Nompetsheni, I., Hlongwa, N. W., Palaniyandy, N., & Fuku, X. (2025). CQD–TiO₂ composite as a potential crypto-electrode modifier for high-performance aptasensing with ultra-low detection limits. Journal of Applied Electrochemistry, 1–22.

  • Zia Ul Haq, M., Singh, B., Fuku, X., Barhoum, A., & Tian, F. (2025). A systematic review of the use of electronic nose and tongue technologies for detecting food contaminants. Chemosensors, 13, 262.

  • Phosha, N. N., Fuku, X. G., Tijing, L., & Motsa, M. M. (2025). Exploring the application of solar irradiation in driving a standalone membrane distillation unit. Applied Thermal Engineering, 127169.

  • Gazu, N. T., Morrin, A., Fuku, X., Mamba, B. B., & Feleni, U. (2025). Recent technologies for the determination of SARS‐CoV‐2 in wastewater. ChemistrySelect, 10.

  • Palaniyandy, N., Sekhosana, K., Lakshmi, D., Fuku, X., & Sundar, D. K. S. (2025). Advancement of Pt and Pd-based catalysis for green, sustainable energy and biomedical applications. Current Research in Green and Sustainable Chemistry, 100446.

  • Karuga, J., Fuku, X., Nkambule, T., Mamba, B., & Kebede, M. A. (2024). Advances in mitigating oxygen evolution, phase transformation, and voltage fading in Li/Mn-rich cathode materials via cationic doping and surface modification. Journal of Energy Storage, 98, 113144.

  • Norvivor, F. A., Azizi, S., Fuku, X., Atibu, E. K., Idris, A. O., Sibali, L., & Maaza, M. (2024). Ecological and human health risk of heavy metals in Nubui River: A case of rural remote communities. Frontiers in Water, 6, 1397853.

 

Myrtil Kahn | Coordination Chemistry | Best Researcher Award

Dr. Myrtil Kahn | Coordination Chemistry | Best Researcher Award

CNRS | France

Profiles

Scopus
Orcid

Early Academic Pursuits

Dr. Myrtil L. Kahn began her academic journey with a PhD in molecular compounds, under the supervision of a renowned expert in the field of coordination chemistry. Her doctoral work laid a strong foundation in molecular chemistry, which she later expanded into interdisciplinary domains. Her postdoctoral research included advanced work on ferrite nanoparticles and intermetallic particles, which positioned her at the intersection of nanoscience, materials chemistry, and applied physics.

Professional Endeavors

Following her postdoctoral experience, Dr. Kahn joined CNRS and quickly rose through the ranks to become a Senior Scientist and Research Director. She currently leads the “Nano-chemistry, Organization, and Sensors” team at the Laboratory of Coordination Chemistry (LCC) and also co-directs a multidisciplinary research initiative in collaboration with another leading national laboratory. This joint effort culminated in the establishment of a CNRS-affiliated joint research laboratory, reflecting her leadership in managing strategic partnerships with key industrial and governmental stakeholders, including aerospace and space agencies.

Contributions and Research Focus

Dr. Kahn’s research centers on nanoscience and its application to broad societal challenges such as energy, environment, space, aeronautics, and health. She has significantly contributed to the design and synthesis of hybrid nano-objects and multifunctional coatings. Her work focuses on controlling the structural and functional properties of nanoparticles particularly semiconductor and magnetic oxides and integrating them into real-world devices. Utilizing a safe-by-design philosophy, she innovates at the interface of molecular chemistry, surface science, and nanotechnology. Her research also emphasizes understanding surface-ligand interactions through advanced techniques like NMR spectroscopy, which is crucial for ensuring colloidal stability and optimizing material behavior in biological and industrial environments.

Impact and Influence

Dr. Kahn has established herself as a leader in applied nanosciences, successfully bridging fundamental chemistry with device integration. Her research has attracted substantial funding through over thirty competitive contracts, nearly half of which involve industrial collaborations. These projects have led to multiple patents with international extensions, showcasing her commitment to innovation and knowledge transfer. Beyond scientific output, her leadership in organizing large-scale conferences and her role in interdisciplinary teams underscore her influence across both academic and industrial landscapes.

Academic Citations

Her research excellence is reflected in her strong citation metrics. With thousands of citations and an impressive h-index, her work enjoys sustained recognition in the global scientific community. She has authored more than a hundred publications in peer-reviewed international journals, contributed to several book chapters, and is actively involved in reviewing and editorial responsibilities within leading scientific events and journals.

Technical Skills

Dr. Kahn possesses deep technical expertise in organometallic synthesis, nanoparticle surface chemistry, colloidal stability, and functional coatings. She has extensive experience in spectroscopic analysis, particularly NMR, for the investigation of ligand dynamics and surface coordination. Her proficiency extends to hybrid material fabrication, integration of nanoparticles into sensors and devices, and the development of safe-by-design methodologies. This multidisciplinary toolkit enables her to work effectively at the interface of chemistry, physics, and biology.

Teaching Experience

While her primary role is research-intensive, Dr. Kahn actively contributes to mentoring young researchers and postdoctoral fellows. She fosters scientific development through collaborative research, co-authorship, and direct supervision. Her mentorship style is marked by encouraging innovation and interdisciplinary approaches, preparing early-career scientists for careers in both academia and industry.

Legacy and Future Contributions

Dr. Kahn’s legacy is one of impactful science, interdisciplinary collaboration, and societal relevance. Her commitment to applied nanoscience has led to the development of novel materials and processes with potential applications in biotechnology, aerospace, and environmental technology. As co-director of a cutting-edge joint research lab, she continues to expand her collaborative reach, ensuring that her contributions influence the next generation of researchers. Her ongoing projects in multifunctional nanocomposites and hybrid processes promise continued breakthroughs in high-performance materials.

Notable Publications

Competition between ordered morphologies of functionalized silver nanoparticles elucidated by a joint experimental and multiscale theoretical study

Authors: David Loffreda; Nathalie Tarrat; Corinne Lacaze‑Dufaure; Franck Rabilloud; Katia Fajerwerg; Myrtil L. Kahn; Vincent Collière; Christine Lepetit; Pierre Fau
Journal: Nano Today
Year: 2025

Understanding Ion‑Exchange Processes in the Synthesis of ZnSₓ@ZnO₁₋ₓ Heterostructures from Controlled Sulfidation of ZnO Nanocrystals

Authors: Ekaterina Bellan; Martin Jakoobi; Vincent Collière; Yannick Coppel; Julien Trébosc; Olivier Lafon; Pierre Lecante; Paul Fleurat‑Lessard; Céline Dupont; Jean‑Cyrille Hierso; Pierre Fau; Katia Fajerwerg; Lauriane Pautrot‑d’Alençon; Thierry Le Mercier; Myrtil L. Kahn
Journal: Chemistry of Materials
Year: 2024

Spontaneous Emulsification of Organometallic Complexes Applied to the Synthesis of Nanocapsules Active for H₂ Release from Ammonia‑Borane

Authors: Olivier Gazil; Ludivine Rault; Déborah Iglicki; Vincent Collière; Gizem Karacaoglan; Didier Poinsot; Moad Bouzid; Jean‑Cyrille Hierso; Myrtil L. Kahn; Nick Virgilio; Fabienne Gauffre
Journal: Langmuir (The ACS Journal of Surfaces and Colloids)
Year: 2024

Synthesis of TiO₂/SBA‑15 Nanocomposites by Hydrolysis of Organometallic Ti Precursors for Photocatalytic NO Abatement

Authors: Ons El Atti; Julie Hot; Katia Fajerwerg; Christian Lorber; Bénédicte Lebeau; Andrey Ryzhikov; Myrtil L. Kahn; Vincent Collière; Yannick Coppel; Nicolas Ratel‑Ramond; Philippe Ménini; Pierre Fau
Journal: Inorganics
Year: 2024

Conclusion

Dr. Myrtil L. Kahn stands as a prominent figure in nanoscience and coordination chemistry. Her pioneering research, strong industrial collaborations, and leadership in both national and international scientific communities demonstrate her eligibility for high-level scientific honors. Through her interdisciplinary vision and dedication to real-world impact, she continues to shape the future of materials science and remains an exemplary model for academic and industrial synergy.