Hardik Varu | Analytical Chemistry | Best Researcher Award

Dr. Hardik Varu | Analytical Chemistry | Best Researcher Award

Dr. Subhash University | India

Dr. Hardik L. Varu is a dedicated researcher in analytical and pharmaceutical chemistry, recognized for his impactful contributions to method development, validation, and the analytical study of bioactive compounds. His research spans modern spectroscopic, chromatographic, and green analytical approaches, with a strong focus on pharmaceuticals, impurity profiling, and chemosensor development. Dr. Varu has published 13 high-quality research papers with one more accepted in reputable international journals, frequently serving as first or corresponding author. His work includes innovative UV-Vis, kinetic, derivative, and HPTLC-based methods, alongside studies on drug degradation behavior, demonstrating both scientific rigor and real-world applicability. His interdisciplinary collaborations have also led to contributions in synthetic chemistry, biological evaluation, and in-silico modeling of therapeutically relevant compounds. A notable strength of Dr. Varu’s research profile is his robust innovation record, evidenced by two awarded patents, two published patents, a WIPO-filed PCT application, and another patent-ready invention. These patents span pharmaceutical impurity characterization, chemosensor technologies, and laboratory devices, reflecting his ability to translate research into practical solutions. He maintains active international collaborations with esteemed researchers from Egypt, Syria, and Saudi Arabia, further expanding the global impact of his work. In addition to his research, Dr. Varu contributes to the scientific community as a reviewer for multiple Springer Nature and Web of Science–indexed journals. His expertise in analytical instrumentation, software tools, and regulatory-oriented teaching areas further strengthens his academic profile. With excellence in research productivity, innovation, and global collaboration, Dr. Varu stands out as a promising and influential young researcher, making him a strong contender for prestigious research awards.

Profiles : Scopus | ORCID | Google Scholar

Featured Publications

1. Varu, H. L., Kapuriya, N. P., Bapodra, A. H., & Ambasana, M. A. (2025).
Separation, identification and theoretical ADME studies of Emtricitabine degradation adducts. Journal of the Indian Chemical Society.

2. Varu, H. L., Parmar, H. N., Vadhel, H. D., & Ambasana, M. A. (2025, July 25).
A comprehensive review of analytical methodologies for Memantine hydrochloride. Journal of Analytical Chemistry.

3. Varu, H. L., Bapodra, A. H., & Ambasana, M. A. (2024).
First order derivative spectroscopic evaluation of carfilzomib in parenteral preparation. Indian Journal of Pharmaceutical Sciences.

4. Vachhani, D., Parekh, J. H., Patra, S., Varu, H. L., Soni, M., & Jebaliya, H. J. (2024).
Green analytical method development and validation studies of Viloxazine hydrochloride in pure and commercial products using UV–Vis spectroscopy. Journal of Applied Spectroscopy.

5. Varu, H. L., Kapuriya, N. P., Bhalodia, J. J., Bapodra, A. H., & Ambasana, M. A. (2024).
Kinetic spectrophotometric determination of Memantine hydrochloride based on the formation of its dinitrochlorobenzene adduct. Journal of Analytical Chemistry.

Mehdi Eslamifar | Analytical Chemistry | Best Researcher Award

Mr. Mehdi Eslamifar | Analytical Chemistry | Best Researcher Award

Agricultural Engineering University Kiel | Germany

Profile

Google scholar

Early Academic Pursuits

Mehdi Eslamifar began his academic journey with a Bachelor’s degree in Agricultural Engineering from Shahed University, Tehran, where he gained foundational knowledge in agronomic systems and technical agricultural processes. He further pursued a Master of Science in Natural Resources at the University of Tehran, focusing on sustainable agricultural practices and environmental resource management. His early academic background established a robust interdisciplinary foundation combining agronomy, resource sustainability, and applied sciences.

Professional Endeavors

Mehdi Eslamifar has developed a diverse professional background spanning both academic and industry roles. His experience as a freelance consultant at Farabin Agri Co. in Tehran allowed him to engage in financial oversight, accounting, and administrative operations within the agricultural sector. Later, he transitioned into academia, serving as a student assistant at the University of Hohenheim, where he contributed to the execution of biogas yield tests. Most recently, he has been working as a research associate at the Institute of Agricultural Process Engineering at Christian-Albrechts-University of Kiel, where he conducts advanced research using near-infrared (NIR) and nuclear magnetic resonance (NMR) spectroscopy for the analysis of agricultural materials.

Contributions and Research Focus

Eslamifar’s primary research focus lies in the application of spectroscopy techniques particularly NIR and NMR for nutrient analysis and quality assessment of agricultural substrates. His expertise includes the development and validation of calibration models to enhance the precision of chemical and physical property measurements. Through his work, he bridges the gap between theoretical chemistry and practical applications in agriculture, ensuring accurate, real-time sensing that supports sustainable land management and precision farming.

Impact and Influence

Eslamifar has contributed to the scientific understanding of how modern sensor technologies can optimize agricultural practices. His work on the on-farm validation of NIR sensors for manure analysis and the application of spectral preprocessing techniques to predict soil properties are notable contributions that have practical implications in farming efficiency and environmental stewardship. These studies demonstrate his commitment to developing tools that enable data-driven decision-making in agriculture, enhancing productivity while reducing environmental impact.

Academic Publications and Citations

Among his scholarly outputs are peer-reviewed publications, including articles in VDI-Berichte and Discover Applied Sciences. These works showcase the innovative integration of spectroscopy and data science for agricultural analysis. His role as lead or contributing author reflects his active engagement in collaborative and interdisciplinary research environments. While citation metrics are not detailed here, the topical relevance and publication venues suggest growing recognition within the agricultural and environmental sciences communities.

Technical Skills

Eslamifar’s technical proficiency includes a wide range of analytical and programming tools used in data analysis and modeling. He is skilled in Microsoft Office, SPSS, R, MATLAB, and Python tools essential for processing complex datasets and building predictive models. His hands-on experience with spectroscopy equipment and statistical software enables him to work seamlessly across experimental and computational domains.

Teaching Experience

In his academic journey, Eslamifar has engaged in teaching support roles, including his time as a student assistant at the University of Hohenheim. In this position, he contributed to practical laboratory activities related to biogas production. While formal lecturing roles are not highlighted, his collaborative research work and laboratory supervision indicate experience in guiding students and contributing to the academic learning environment.

Legacy and Future Contributions

With a strong track record in applied spectroscopy research, Mehdi Eslamifar is positioned to make ongoing contributions to sustainable agriculture and environmental monitoring. His interdisciplinary approach, combining engineering, chemistry, and data science, positions him as a forward-thinking scientist capable of leading advancements in precision agriculture. His doctoral work, focused on NIR and NMR spectroscopy, further supports the development of non-destructive, real-time analytical methods for field and laboratory applications.

Notable Publications

On farm validation of different NIR sensors for manure sensing
Authors: E. Thiessen, M. Eslamifar, R. Kock, E. Hartung
Journal: VDI-Berichte 2406
Year: 2022

Effective spectral pre-processing methods enhance accuracy of soil property prediction by NIR spectroscopy
Authors: M. Eslamifar, H. Tavakoli, E. Thiessen, R. Kock, J. Correa, E. Hartung
Journal: Discover Applied Sciences
Year: 2025

Conclusion

Mehdi Eslamifar is a highly capable and innovative agricultural scientist with a solid academic foundation and practical research impact. His work in advanced nutrient sensing technologies demonstrates not only technical excellence but also relevance to global challenges in agriculture and environmental sustainability. As he continues to refine his research and expand his scholarly contributions, Eslamifar is poised to leave a lasting legacy in the integration of analytical science and agricultural innovation.

Bao Sun | Analytical Chemistry | Best Researcher Award

Dr. Bao Sun | Analytical Chemistry | Best Researcher Award

The Second Affiliated Hospital of Xi’an Medical University, China

👨‍🎓Profiles

🎓 Academic Background

Dr. Bao Sun is currently a full-time Ph.D. candidate at the School of Life Sciences, Northwestern University, a Double First-Class institution. Under the supervision of Professor Zheng Xiaohui, a national talent recognized by the “Hundred Thousand Talents Project,” Dr. Sun is engaged in advanced research in the fields of clinical pharmacology and drug efficacy. He holds a Master’s degree in Pharmacology from Zhengzhou University, also a Double First-Class university, where he studied under Professor Qiao Hailing. His academic journey has been rooted in translational medical research with strong emphasis on drug mechanism and patient-centric therapy.

🏥 Professional Experience

Dr. Sun works at the Second Affiliated Hospital of Xi’an Medical College, where he has served in the Department of Pharmacy with primary responsibilities in clinical pharmacy services and pharmaceutical management. He has undergone clinical pharmacist training at Xijing Hospital, earning a Clinical Pharmacist Certificate issued by the Chinese Medical Association Clinical Pharmacist Branch. His experience bridges academic knowledge with hospital-based application, particularly in optimizing therapeutic strategies for patients.

🧠 Research Focus and Publications

Dr. Sun’s research interests lie in neuropathic pain mechanisms, anti-inflammatory agents, and drug-resistance modulation. He is a co-author of several high-impact papers:

  • “A novel compound DBZ ameliorates neuropathic pain and anxiety-like behaviors in SNI mouse models”, published in Talanta Open (IF = 4.2), explores the PI3K/AKT/Fyn/NMDA signaling pathway.

  • “DBZ alleviates chronic inflammatory pain”, published in Drug Resistance (IF = 4.177), underscores the compound’s therapeutic promise.

  • “A Rare Case of Biliary Cryptococcosis”, a noteworthy clinical observation contributing to case-based medical literature.

  • Contributions to pharmacist-driven treatment models and literature reviews in infection and pharmacological care.

🧪 Technical and Professional Skills

Dr. Sun demonstrates robust capabilities in drug efficacy evaluation, clinical trial collaboration, and pharmacological data interpretation. He applies molecular pharmacology techniques and integrates clinical data with biochemical pathways to improve patient outcomes. He is experienced in multidisciplinary research, coordinating between physicians, pharmacists, and researchers for holistic therapeutic interventions.

📣 Leadership and Service

As the Secretary of the Youth Work Committee of the Shaanxi Pharmaceutical Society, Dr. Sun is responsible for event planning, academic coordination, and inter-organizational engagement. He has organized and delivered nine city-level seminars under the “Multidisciplinary Training Seminar on Drug Clinical Application and Management” program, contributing significantly to regional pharmaceutical education.

🏆 Awards and Recognition

Dr. Sun was honored as an Outstanding Worker by the Shaanxi Pharmaceutical Association. He also received the Third Prize in the “Medicine” TED Speech Competition organized by the Shaanxi Youth Pharmacist Alliance. His academic and public communication skills have been recognized both in scientific and professional platforms.

🌟 Legacy and Future Contributions

With a strong foundation in clinical pharmacology, academic research, and hospital-based pharmacy, Dr. Bao Sun continues to bridge the gap between laboratory research and bedside care. His future goals include contributing to personalized medicine, developing novel analgesics, and enhancing interdisciplinary collaboration in clinical research. His leadership in pharmaceutical education ensures that his influence will extend across both academic and healthcare domains.

📖Notable Publications

  1. A novel compound DBZ ameliorates neuropathic pain and anxiety-like behaviors in SNI mouse model: Role of PI3K/AKT/Fyn/NMDA signal pathway
    Authors: Bao Sun, Le Yang, Saiying Wang, et al.
    Journal: Under Review
    Year: Not yet published

  2. A Novel Compound DBZ Alleviates Chronic Inflammatory Pain and Anxiety-Like Behaviors by Targeting the JAK2-STAT3 Signaling Pathway
    Authors: Bao Sun, M. Wu, Y. Ru, et al.
    Journal: Journal of Biological Chemistry
    Year: 2025 (May 9)

  3. Development of a non-derivatized LC-MS/MS method for simultaneous quantification of ten neurotransmitters in five neuroinflammatory mouse models
    Authors: Bao Sun, Zhaodi Xia, Chen Wang, et al.
    Journal: Talanta Open
    Year: 2025

  4. A Rare Case of Biliary Cryptococcosis: Clinical Pharmacist Participation in Treatment and Pharmaceutical Care and Literature Review
    Authors: Bao Sun, Yingshuang Tang, Dan Chen, et al.
    Journal: Infection and Drug Resistance
    Year: 2023

  5. Hepatoprotective Role of Berberine on Doxorubicin-Induced Hepatotoxicity – Involvement of Cyp
    Authors: Bao Sun, Yue Yang, Mengzi He, et al.
    Journal: Current Drug Metabolism
    Year: 2020

 

Sushmita Bhushan | Analytical Chemistry | Best Researcher Award

Mrs. Sushmita Bhushan | Analytical Chemistry | Best Researcher Award

Netaji Subhas University of Technology, India

👨‍🎓Profiles

🎓 Early Academic Pursuits

Mrs. Sushmita Bhushan has consistently demonstrated academic excellence throughout her educational journey. She began with a First Division in Secondary and Senior Secondary education under the U.P. Board. Building on this foundation, she earned a Diploma in Electronics Engineering from the Institute of Engineering & Rural Technology, Prayagraj. Her passion for electronics and communication led her to pursue the A.M.I.E in Electronics & Communication Engineering from IEI, Kolkata. She further specialized by obtaining her M.Tech in RF & Microwave Engineering with First Division from Guru Gobind Singh Indraprastha University, New Delhi, demonstrating her growing expertise in high-frequency systems.

🧑‍💼 Professional Endeavors

Professionally, Mrs. Bhushan has acquired significant experience in both academic and research environments. She began her career as a Technical Assistant in the Department of Electronics & Communication Engineering at the Indian Institute of Information Technology (IIIT), Prayagraj. Later, she joined Netaji Subhas University of Technology (NSUT), Delhi, as a University Research Fellow (URF), where she continues to contribute to the university’s research excellence.

🔬 Contributions and Research Focus

Currently pursuing her Ph.D. in Electronics and Communication Engineering from NSUT, Delhi, Mrs. Bhushan focuses on the Design and Implementation of Dielectric Resonator Antennas for Jamming Applications, under the supervision of Prof. Rajveer Singh Yaduvanshi. Her research plays a crucial role in developing compact, efficient, and high-performance antenna systems for electromagnetic interference and defense-related communication disruption technologies. She is also a co-inventor of a granted Indian Patent titled “An Animal Scarer Device”—a testament to her innovation in applied electronics.

🌍 Impact and Influence

Through her academic research and patent contributions, Mrs. Bhushan has added value to both industrial and defense communication sectors. Her work is particularly relevant in national security applications and intelligent wireless systems. By integrating theory and practical design, she has become a promising contributor in the RF and microwave community.

📚 Academic Cites and Publications

Her academic impact is further reflected through co-authored publications and ongoing research dissemination in peer-reviewed journals and conferences. These include collaborative works with renowned researchers such as Prof. Yaduvanshi and others in advanced antenna and RF system design—though detailed citations were not listed in this summary, they reflect growing academic recognition.

🛠️ Technical Skills

Mrs. Bhushan is proficient in several advanced design and simulation tools, including HFSS, CST, and ADS for antenna modeling. She is adept in PCB designing using Multisim, Ultiboard, and EDWinXP software. Additionally, she possesses hands-on skills in Optical Instrumentation (e.g., Splicing, OTDR) and Surface Mount Technology (SMT), making her a versatile engineer and researcher capable of bridging simulation with practical implementation.

👩‍🏫 Teaching Experience

She has taught key undergraduate subjects including Digital Logic Design, Electronics Devices and Circuits, and RF and Microwave Engineering, demonstrating her ability to translate complex technical concepts into effective classroom instruction. Her teaching reflects both theoretical understanding and hands-on experience, enriching the learning process for her students.

🌟 Legacy and Future Contributions

As she continues her doctoral journey, Mrs. Bhushan’s goal is to contribute to academia and industry through innovative research, meaningful patents, and impactful teaching. Her work in dielectric resonator antenna design is set to influence future advancements in wireless communication and jamming systems, and her commitment to technical education ensures she will continue shaping future engineers and researchers.

📖Notable Publications

Design and implementation of reconfigurable communication and sensing antenna
Authors: Sushmita Bhushan, Rajveer Singh Yaduvanshi
Journal: AEU-International Journal of Electronics and Communications
Year: 2025

Design and Implementation of Rectangular Dielectric Resonator Antennas for GPS-Based Toll System
Authors: Mishti Gautam, Rajveer Yaduvanshi, Anup Kumar, Sushmita Bhushan, Saurabh Katiyar
Journal: MAPAN
Year: 2024

Design and Implementations of Pigeon’s Away Electronic System
Authors: Arjun Sharma, Rajveer Yaduvanshi, Anup Kumar, Harshul Jain, Sushmita Bhushan, Saurabh Katiyar, Amit Pandit
Journal: MAPAN
Year: 2023

2.4 GHz Wi-Fi jammer using cylindrical dielectric resonator antenna for prison applications
Authors: Sushmita Bhushan, Rajveer Singh Yaduvanshi
Journal: MAPAN
Year: 2023

Defected ground split ring resonator-based sensor for adulteration detection in fluids
Authors: Sushmita Bhushan, Sanjeev Kumar, Neeta Singh, Sachin Kumar
Journal: Wireless Personal Communications
Year: 2021

Tuba Çakıcı Can | Analytical Chemistry | Best Researcher Award

Assoc. Prof. Dr. Tuba Çakıcı Can | Analytical Chemistry | Best Researcher Award

Atatürk University,Turkey

👨‍🎓Profiles

🎓 Early Academic Pursuits

Assoc. Prof. Dr. Tuba Çakıcı Can began her academic journey with a deep-rooted interest in physics, culminating in a Ph.D. in Solid-State Physics from Atatürk University, Institute of Science, Turkey, between 2010 and 2014. Her doctoral dissertation focused on In₂S₃ thin films grown on InP substrates using chemical spray methods, analyzing how electrical properties of structures like Au/In₂S₃/n-InP/In vary with sample temperature. This early research laid the groundwork for her continued engagement with the physics of thin films and electronic interfaces.

💼 Professional Endeavors

Currently serving at Atatürk University, Vocational School of Technical Sciences, in the Department of Electronics and Automation, Dr. Çakıcı Can blends academic rigor with technical education. Her practical engagement with interdisciplinary physics and automation has established her as a key contributor in both education and applied research. Her involvement spans electronics, materials science, medical physics, and cutting-edge technological interfaces.

🏅 Awards and Achievements

Dr. Çakıcı Can has received multiple accolades for her research and innovation. Notably, she was honored with the Academic Incentive Award (Ekim Ayı Akademik Teşvik Ödülü) from Atatürk University in October 2022, and secured 1st place in the DAKAF 2022 AR-GE Project Competition for her innovative work on solar energy, titled “GÜNEŞİM ARABAMDA”. Additionally, she received funding from TÜBİTAK’s 2224-B National Scientific Events Participation Support Program in 2015, underscoring her active engagement in Turkey’s national research ecosystem.

🧪 Contributions and Research Focus

Dr. Çakıcı Can’s research traverses a diverse array of fields including solid-state physics, thin film technologies, electronic and optical properties of materials, interfaces, biophysics, and medical physics. She has contributed significant insights into low-dimensional structures and electrical characterization of advanced materials. Her interdisciplinary approach merges physics with real-world applications in biomedical and material science technologies, making her a notable figure in modern physics and engineering education.

🌍 Scientific Networks and Affiliations

A prolific collaborator, Dr. Çakıcı Can is affiliated with multiple prestigious research groups, including the Şahin Research Group at Erciyes University, the Prof. Dr. Selim Acar Research Group at Gazi University, and the Laboratory of Prof. Dr. Hakan Altan at Middle East Technical University (METU). Her national collaborations speak to her influence and connectivity in Turkey’s academic and scientific landscape.

✍️ Editorial and Scientific Contributions

Since 2021, Dr. Çakıcı Can has served as Editor and Scientific Committee Member for the journal The World of Biomedical Technology, and has taken on editorial responsibilities from 2023 onward. Her editorial work highlights her leadership in scholarly publishing and her role in guiding scientific dialogue in biomedical and applied physics.

💬 Technical and Interpersonal Skills

Her credentials extend beyond laboratory expertise. Dr. Çakıcı Can has completed several certifications, including IT and Cybersecurity Awareness Training by the Erzurum Chamber of Commerce and Industry (2021), and a Kaplan International Language Course certified by Cambridge University Assessments in 2017, enhancing her language and communication skills for international collaborations.

👩‍🏫 Teaching Experience and Mentorship

In her role at Atatürk University, she actively mentors vocational and undergraduate students, emphasizing hands-on learning in electronics, automation, and applied physics. Her commitment to integrating real-world relevance into physics education helps bridge the gap between academic theory and industry-ready skills.

🌱 Legacy and Future Contributions

Assoc. Prof. Dr. Tuba Çakıcı Can’s legacy is being built through her impactful contributions to electronic materials research, her mentorship of emerging scientists, and her proactive engagement with interdisciplinary science. As she continues to expand her research on the electrical and optical properties of low-dimensional structures, and participates in biomedical innovations, she stands as a beacon of interdisciplinary collaboration and scientific leadership in Turkey and beyond.

📖Notable Publications

Bacterial MgSe complex nanoparticle synthesis and electrical characterization of fabricated Ag/MgSe/p-Si hetero-structure under dark and illumination
Authors: T. Çakıcı, Ö. Gür Özdal, N. Almousa, F. Yıldız, E. Kavaz Perişanoğlu, H. Khalil, Antoaneta Ene, H.M.H. Zakaly
Journal: Heliyon
Year: 2023

Correction to: Investigation of optical, structural, and electrical properties of heterostructure Fe₂O₃ deposited by RF magnetron sputtering on ZnO layer by spray pyrolysis
Authors: Sevda Sarıtaş, Tuba Çakıcı, Günay Merhan Muğlu, Muhammet Yıldırım
Journal: Journal of Materials Science: Materials in Electronics
Year: 2023

The Trends in Nano Materials Synthesis and Applications
Author: Tuba Çakıcı
Publisher: Efe Academy Publishing
Year: 2022

Investigation of optical, structural, and electrical properties of heterostructure Fe₂O₃ deposited by RF magnetron sputtering on ZnO layer by spray pyrolysis
Authors: Sevda Sarıtaş, Tuba Çakıcı, Günay Merhan Muğlu, Muhammet Yıldırım
Journal: Journal of Materials Science: Materials in Electronics
Year: 2022

Investigation of Optical, Structural and Electrical Properties of Heterostructure Fe₂O₃ Deposited by RF Magnetron Sputtering on ZnO Layer by Spray Pyrolysis
Authors: Sarıtaş S., Çakıcı T., Muğlu G.M., Yıldırım M.
Platform: ResearchSquare
Year: 2021

SrO Effect on Photon/Particle Radiation Protection Characteristics of SrO–PbO–B₂O₃ Glasses
Authors: M.S. Al-Buriahi, E. Kavaz, U. Perişanoğlu, A. Alalawi, T. Çakıcı, S. Alomairy, Y.S. Rammah
Journal: Journal of Inorganic and Organometallic Polymers and Materials
Year: 2021

Shiyuan Dong | Spectroscopy | Best Researcher Award

Mr. Shiyuan Dong | Spectroscopy | Best Researcher Award

Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Shiyuan Dong hails from Liaocheng City, Shandong Province. He completed his undergraduate studies in Electrical Engineering and Automation (Motors and Electrical Appliances) at Qingdao University. He later pursued a Master’s degree in Optical Engineering with a focus on Fiber Optic Sensing Technology at the School of Physics and Electronic Engineering, Chongqing Normal University. During his academic training, he was jointly mentored at the Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (SIAT, CAS), and the Institute of Integrated Circuits under the guidance of Xu Tiantian-Youqing and Yi Zhengkun-Haiyou. Dong has consistently maintained an excellent academic record, including a GPA of 87.86/3.82, and passed the CET-6 English exam, enabling him to effectively read and write professional scientific literature.

🧪 Professional Endeavors

Mr. Dong currently works in the Fiber Optic Sensing Laboratory at SIAT, CAS, where he is responsible for distributed fiber optic acoustic wave sensing detection experiments in extreme environments. He plays a key role in sensor development, including the design, testing, and calibration of fiber optic force and shape sensors. In addition, he contributes to project application writing and comprehensive project management, including stages such as application, mid-term evaluation, and final acceptance. His responsibilities also include constructing and debugging various experimental platforms involving fiber optic sensors.

🔬 Contributions and Research Focus

Dong’s core research focuses on fiber optic sensing, tactile sensors, and medical robots. Among his most notable achievements is his work on a miniature force sensor for the tip of a flexible ureteroscope and the development of a multifunctional magnetic catheter robot with triaxial force sensing capability for minimally invasive surgery. He has also worked on advanced topics like low-loss high-birefringence anti-resonant optical fiber structures, HC-ARFs geometric modeling, and GaAs fiber-optic temperature sensing.

🌍 Impact and Influence

Dong has garnered significant recognition in the optics and photonics communities. He has received multiple Outstanding Poster Awards at national academic leagues and forums. His poster work has earned distinction at high-level conferences, such as the National Optics and Optical Engineering Doctoral Academic League and the China Optical Society Graduate Student Forum. He has presented reports at forums like the Academic Forum on Biomedical Photonics Cross-integration and the Optoelectronics Global Conference.

📚 Academic Citations and Publications

Dong has published as first author in prestigious journals such as the IEEE Transactions on Instrumentation and Measurement (CAS Region 2 Top, JCR Q1, IF=5.6) and the Journal of Lightwave Technology (CAS Zone 1 Top, JCR Q1, IF=4.1). He is also a second author on publications in the IEEE Sensors Journal (JCR Q1, IF=4.3) and Journal of Lightwave Technology. He has contributed as a reviewer for journals like IEEE Transactions on Industrial Electronics.

🛠️ Technical Skills

Shiyuan Dong possesses advanced capabilities in mechanical structure design and simulation, proficient in tools such as SolidWorks, ANSYS, and COMSOL. His data analysis and visualization expertise extends to Python (with neural networks and deep learning), MATLAB, and Origin. He also holds a Welding Skills Certificate and has been actively involved in sensor calibration, demodulation method design, and statistical modeling.

👨‍🏫 Teaching and Leadership

Dong’s leadership in science and technology has been recognized by his university’s Communist Youth League Committee and the Chongqing Municipal Education Commission. He has won awards such as the Outstanding Graduate Student Award, Postgraduate Scholarship, and the May 4th Award. In addition to research, he has contributed to academic communities by mentoring peers, organizing reports, and serving as an exhibitor and guest speaker at several national and international events.

🌟 Legacy and Future Contributions

Mr. Dong has been the first or co-inventor of several Chinese invention patents, including innovations in force sensors, decoupling methods, and magnetic catheter robots. His ongoing collaborations span institutions such as the Chinese University of Hong Kong and Fudan University, as well as companies like Fujikura (China) and Lingyun Technology. He is committed to advancing the field of optical engineering with a focus on intelligent medical systems and photonic technologies, and his trajectory indicates a promising future as a leading innovator in fiber optic sensing and minimally invasive medical devices.

📖Notable Publications

  • Title: Recent advances of bifunctional electrocatalysts and electrolyzers for overall seawater splitting
    Authors: X. Wang, M. Geng, S. Sun, Q. Xiang, S. Dong, K. Dong, Y. Yao, Y. Wang, …
    Journal: Journal of Materials Chemistry A, 12 (2), 634–656
    Year: 2024

  • Title: Exhaustive design and statistical analysis of hc-arfs based on geometric modeling
    Authors: Z. Liu, S. Dong, L. Zhang, H. Liu, Z. Zhou, Y. Dong, T. Yang
    Journal: Journal of Lightwave Technology
    Year: 2024

  • Title: A high-precision miniature triaxial FBG force sensor for detecting tissue anomalies
    Authors: S. Dong, Z. Liu, Y. Lou, D. Luo, J. Wu, B. Yang, H. Liu, T. Yang, Y. Dong
    Journal: Journal of Lightwave Technology
    Year: 2024

  • Title: Miniature FBG force sensor capable of effectively resisting lateral forces
    Authors: S. Dong, X. Zhang, Y. Lou, D. Luo, J. Wu, R. Tao, H. Liu, T. Yang, Y. Dong
    Journal: Optics Express, 33 (4), 6581–6596
    Year: 2025

  • Title: Fiber Bragg grating-based temperature-compensated force sensor development for minimally invasive surgery
    Authors: S. Dong, T. Yang, Y. Lou, X. Wan, Z. Liu, T. Xi, J. Wu, Y. Dong
    Journal: AOPC 2023: Optic Fiber Gyro, Vol. 12968, pp. 347–355
    Year: 2023

  • Title: A Miniaturized FBG Tactile Sensor for the Tip of a Flexible Ureteroscope
    Authors: S. Dong, S. Ma, T. Zhou, Y. Lou, X. Xiong, K. Wei, D. Luo, J. Wu, H. Liu, R. Tao, …
    Journal: Sensors, 25 (9), 2807
    Year: 2025

 

Deepak M | Analytical Chemistry | Best Researcher Award

Dr. Deepak M | Analytical Chemistry | Best Researcher Award

Centre for Medicinal Plants Research, India

👨‍🎓Profiles

Early Academic Pursuits 🎓

Dr. Deepak M’s academic journey is rooted in Chemistry, with a Master of Science (M.Sc.) from Bharathiar University, Coimbatore, Tamil Nadu in 2008. His passion for chemistry led him to pursue a Ph.D. in Chemistry from the same university, which he completed in 2023. His research focus throughout his academic career has centered on the exploration of medicinal plants and the chemistry behind their active components, aligning with his current work as a scientist specializing in phytochemistry.

Professional Endeavors 💼

Dr. Deepak has amassed over 13 years of professional experience in the field of phytochemistry. His career is closely tied to the Centre for Medicinal Plants Research (CMPR) at Arya Vaidya Sala, Kottakkal, Malappuram, where he has held multiple positions since 2010. He currently serves as a Scientist at CMPR, a role he has held since April 2021. Prior to this, Dr. Deepak was a Project Scientist (2016-2021), a Senior Research Fellow (2012-2016), and a Junior Research Fellow (2010-2012) at CMPR. Before his tenure at CMPR, he worked as a Junior Research Fellow at the Centre for Water Resources Development and Management (CWRDM), Government of Kerala, where he focused on water quality research from 2009 to 2010.

Research Focus and Expertise 🔬

Dr. Deepak’s research is deeply rooted in phytochemistry, with a particular emphasis on the phytochemical characterization of medicinal plants. His work includes the scientific validation of traditional knowledge and the study of secondary metabolites found in plants, which are crucial for understanding their medicinal potential. Over the years, he has gained significant expertise in using sophisticated analytical instruments such as HPLC, HPTLC, FTIR, GC, GC/MS, and LC/MS to isolate, identify, and characterize active compounds in plants. His dedication to the standardization of Ayurvedic formulations and the isolation of natural compounds has positioned him as a leading expert in his field. Dr. Deepak is particularly interested in the screening of biological activities of plant-derived compounds, further contributing to the validation of Ayurvedic medicine.

Impact and Influence 🌍

Dr. Deepak’s work in phytochemical screening has significantly influenced the scientific community’s understanding of medicinal plants and their therapeutic potential. His contributions extend beyond his research as he has collaborated on various projects funded by prestigious organizations such as the Indian Council for Medical Research (ICMR), the National Medicinal Plants Board, and the Ministry of AYUSH. Additionally, his work has also received funding from private sector entities such as the TATA Trusts, Mumbai. These collaborations have further reinforced his impact on both the academic and practical aspects of medicinal plant research.

Academic Citations 📚

Dr. Deepak’s research has been cited extensively in international journals, a testament to the importance and relevance of his work in the field of medicinal plant research. His publications, which span more than 20 research articles, cover a range of topics including phytochemical profiling, biological activity screening, and the scientific validation of traditional medicinal knowledge. These contributions have influenced further studies and developments in the use of plant-derived medicines.

Technical Skills 🧑‍💻

Dr. Deepak is highly skilled in using state-of-the-art analytical instruments crucial for phytochemical research. His proficiency with instruments such as HPLC, HPTLC, GC-MS, FTIR, and LC/MS enables him to conduct comprehensive analyses of plant materials. His ability to isolate, separate, purify, and identify natural compounds from plants has been instrumental in his research. He is also well-versed in water quality monitoring, a skill that complements his work on plant-based formulations and their applications in Ayurvedic medicine.

Teaching and Mentorship 👨‍🏫

Though his primary focus has been on research, Dr. Deepak’s expertise in phytochemistry and medicinal plants has allowed him to contribute to academic environments as well. His role as a mentor to junior research fellows and project scientists at CMPR has helped nurture the next generation of scientists specializing in the field. His guidance in phytochemical analysis and biological evaluation has provided valuable hands-on experience to students and research fellows.

Legacy and Future Contributions 🌱

Dr. Deepak’s career thus far reflects a commitment to advancing the scientific understanding of medicinal plants and their therapeutic properties. His ongoing work at CMPR, particularly in plant-based compound isolation and biological activity screening, promises to open new avenues for Ayurvedic formulations and natural medicine. As he continues his research, Dr. Deepak aims to further develop sustainable methods for identifying and utilizing plant-derived bioactive compounds, contributing to the growing field of natural products research. His future work will undoubtedly focus on bridging the gap between traditional medicine and modern scientific validation, solidifying his legacy in phytochemistry.

📖Notable Publications

Chemical Composition of the Essential Oils from Stem, Root, Fruit and Leaf of Piper longum Linn
Authors: T. Varughese, P.K. Unnikrishnan, M. Deepak, I. Balachandran, …
Journal: Journal of Essential Oil Bearing Plants
Volume: 19 (1), Pages: 52-58
Year: 2016

Pharmacognostic characterization and comparison of fruits of Tribulus terrestris L. and Pedalium murex L.
Authors: A. Jayanthy, M. Deepak, A.B. Remashree
Journal: Not provided
Year: 2013

Spectrophotometric and tandem mass spectroscopic analysis of Indian borage (Plectranthus amboinicus (Lour.) Spreng.) for its polyphenolics characterization
Authors: C.T. Sulaiman, M. Deepak, I. Balachandran
Journal: Beni-Suef University Journal of Basic and Applied Sciences
Volume: 7 (4), Pages: 471-473
Year: 2018

Chemical profiling of selected Ayurveda formulations recommended for COVID-19
Authors: S. C.T., R. Deepak M., P.R., A. E.M., I. Balachandran
Journal: Beni-Suef University Journal of Basic and Applied Sciences
Volume: 10 (1), Pages: 1-5
Year: 2021

Purification of Bhallathaka (Semecarpus anacardium Lf) enhanced anti-cancer activity
Authors: M. Deepak, M. Salman
Journal: Regulatory Toxicology and Pharmacology
Volume: 122, Article: 104898
Year: 2021

Eduard Tokar | Analytical Chemistry | Best Researcher Award

Mr. Eduard Tokar | Analytical Chemistry | Best Researcher Award

Sakhalin State University, Russia

👨‍🎓Profiles

🎓 Education and Academic Journey

Mr. Eduard Tokar’ has built a solid academic foundation in chemistry and industrial ecology. He earned his Bachelor’s (2011-2015) and Master’s (2015-2017) degrees in Chemistry from Far Eastern Federal University (FEFU), Russia. His passion for research led him to postgraduate studies (2017-2021) in Industrial Ecology and Biotechnology, where he specialized in the environmental impact of industrial processes. In 2022, he was awarded the title of Candidate of Chemical Sciences (PhD) in Physical Chemistry and Ecology, solidifying his expertise in both chemical sciences and environmental sustainability.

🏛️ Professional Experience and Teaching

Eduard Tokar’ has an extensive background in both academic research and teaching, with a focus on nuclear technology and environmental safety. His career at Far Eastern Federal University began in 2015 as a laboratory research assistant and leading engineer in the Department of General Inorganic and Organoelement Chemistry. From 2019 to 2021, he served as a Junior Researcher in the Academic Department of Nuclear Technology, contributing to advancements in radiation safety and nuclear materials.

Currently, he is a Senior Lecturer at the Department of Nuclear Technology (2021 – Present) at Sakhalin State University. In this role, he is actively involved in student supervision, curriculum development, and research projects. He manages the educational process for undergraduate and graduate students in courses such as:

🔬 Research Interests and Contributions

Mr. Tokar’ specializes in nuclear and radiation safety at nuclear power facilities, working on methods to reduce environmental hazards associated with nuclear energy. His research extends to radiochemistry, materials science, and water purification techniques for removing radionuclides. His expertise in industrial ecology contributes to the development of sustainable solutions for managing nuclear waste and minimizing environmental contamination.

🏆 Impact and Influence in Nuclear and Environmental Chemistry

With a strong focus on nuclear technology and radiation safety, Mr. Tokar’ plays a crucial role in preparing students for careers in nuclear power, radiochemistry, and environmental protection. His work ensures that future scientists and engineers are equipped with the knowledge and skills necessary to maintain nuclear safety and develop sustainable energy solutions.

🛠️ Technical Expertise

Mr. Tokar’ has in-depth knowledge of chemical and nuclear technologies, with expertise in: Radiochemistry and Radioecology, Water purification and environmental remediation, Mathematical modeling and statistical analysis in experiments, Materials chemistry for nuclear energy applications, Chemical safety and risk assessment in nuclear power plants.

🎓 Teaching and Mentorship

A dedicated educator and mentor, Mr. Tokar’ has guided numerous students in chemical technology and nuclear safety, supervising theses on modern energy materials. His ability to integrate theoretical knowledge with practical applications helps students gain real-world expertise in nuclear power facility management and environmental protection.

🌍 Legacy and Future Contributions

Eduard Tokar’ continues to make significant contributions to nuclear and environmental chemistry, aiming to develop safer and more sustainable nuclear energy technologies. His expertise in radiation safety and water purification is critical for minimizing the environmental impact of nuclear energy production. As the world moves towards cleaner and more efficient energy solutions, his research will remain at the forefront of ensuring safety and sustainability in the nuclear industry.

📖Notable Publications

Sorbents Based on Polyacrylonitrile Fiber for Complex Recovery of Artificial 137Cs and Natural Radionuclides from Natural Media
Authors: Iuliia G. Shibetskaia, Viktoriia A. Razina, N. A. Bezhin, Sofia B. Yarusova, Ivan Gundarovich Tananaev
Journal: Water (Switzerland)
Year: 2025

Composite Sorbents Based on Chitosan Polymer Matrix and Derivatives of 4-Amino-N′-hydroxy-1,2,5-oxadiazole-3-carboximidamide for Uranium Removal from Liquid Mineralized Media
Authors: Anna I. Matskevich, Konstantin V. Maslov, Veronika A. Prokudina, Nikita S. Markin, E. A. Tokar’
Journal: Gels
Year: 2025

Composite Sorbents Based on Polymeric Se-Derivative of Amidoximes and SiO2 for the Uranium Removal from Liquid Mineralized Media
Authors: Anna I. Matskevich, Konstantin V. Maslov, Veronika A. Prokudina, Evgenij A. Eliseenko, E. A. Tokar’
Journal: Gels
Year: 2025

Decontamination of Spent Ion-Exchange Resins from the Nuclear Fuel Cycle Using Chemical Decontamination and Direct Current
Authors: Anna I. Matskevich, Nikita S. Markin, Marina Palamarchuk, E. A. Tokar’, Andrei Mikhailovich Egorin
Journal: Journal of Cleaner Production
Year: 2024

Distribution of Np, Pu, and Am in Water, Suspended Matter, and Bottom Sediments of Peter the Great Bay
Authors: Natalia V. Kuzmenkova, Vladimir G. Petrov, Alexandra K. Rozhkova, S. N. Kalmykov, Xiaolin Hou
Journal: Radiochemistry
Year: 2024

New Sorbents Based on Polyacrylonitrile Fiber and Transition Metal Ferrocyanides for 137Cs Recovery from Various Composition Solutions
Authors: Iuliia G. Shibetskaia, Viktoriia A. Razina, N. A. Bezhin, Victoria S. Yankovskaya, Ivan Gundarovich Tananaev
Journal: Applied Sciences (Switzerland)
Year: 2024

Yangting Ou | Analytical Chemistry | Best Researcher Award

Ms. Yangting Ou | Analytical Chemistry | Best Researcher Award

Guangdong University of Technology, China

👨‍🎓Profiles

🎓 Early Academic Pursuits

Ms. Yangting Ou embarked on her academic journey at Guangdong University of Technology, where she is currently pursuing a master’s degree. From the outset, she demonstrated a strong dedication to her studies, culminating in her being awarded the prestigious First-Class Scholarship in 2024 for her outstanding academic performance. This early recognition reflects her commitment to academic excellence and her growing potential as a researcher in the field of advanced materials and semiconductor technologies.

💼 Professional Endeavors

In parallel with her academic studies, Ms. Ou has actively contributed to several significant research projects. She has been involved in major national and provincial-level programs, such as The National Key R&D Program of China (No. 2024YFE0205600) and the Guangdong S&T Programme (No. 2024B0101120003). These projects have provided her with a solid foundation in applied research, focusing on cutting-edge topics relevant to the semiconductor industry.

🔬 Contributions and Research Focus

Ms. Ou’s research is centered on semiconductor polishing processes, with a particular emphasis on electrochemical-assisted chemical mechanical polishing (ECMP). Through her involvement in this area, she has proposed several innovative research methods, contributing new insights and methodologies that serve as an essential reference for advancing ECMP technologies. Her research has resulted in the publication of four SCI-indexed papers, showcasing her ability to deliver impactful scientific work at an early stage in her career.

🌍 Impact and Influence

While still in the early stages of her research career, Ms. Ou’s contributions are beginning to shape the future of semiconductor processing. Her patent, reflects her innovative approach to solving complex challenges in semiconductor polishing. By providing new techniques and frameworks, her work supports both academic research and industrial applications in materials science and microelectronics manufacturing.

📚 Academic Citations

As Ms. Ou is at the beginning of her academic journey, she has not yet accumulated citations for her published work. However, with the growing relevance of her research in semiconductor technologies and polishing processes, her contributions are expected to gain academic recognition and citations in the near future.

🛠️ Technical Skills

Ms. Ou has developed a diverse technical skill set through her research activities. She is proficient in materials characterization techniques, process optimization, and electrochemical analysis related to semiconductor fabrication. Her hands-on experience with laboratory instrumentation and data interpretation is complemented by her understanding of advanced polishing and surface modification processes.

👩‍🏫 Teaching Experience

While her primary focus has been on research, Ms. Ou has also contributed to academic activities within her department. She has supported faculty members in guiding undergraduate students during laboratory sessions and has assisted in mentoring junior researchers involved in collaborative projects.

🌟 Legacy and Future Contributions

Looking ahead, Ms. Ou aspires to further deepen her research into semiconductor processing and electrochemical systems. She aims to expand her research portfolio by exploring interdisciplinary approaches that integrate materials science, chemistry, and advanced manufacturing. Her future contributions are expected to play a pivotal role in optimizing semiconductor fabrication processes, improving manufacturing efficiency, and fostering technological innovation in the microelectronics industry.

📖Notable Publications

New skin corrosion effect of magnetorheological electro-Fenton polishing investigated by friction and wear experiments
Authors: Yangting Ou, Hao Wang, Yusen Wu, Zhijun Chen, Qiusheng Yan, Jisheng Pan
Journal: Materials Science in Semiconductor Processing
Year: 2024

Study on the Electro-Fenton Chemomechanical Removal Behavior in Single-Crystal GaN Pin–Disk Friction Wear Experiments
Authors: Yangting Ou, Zhijun Shen, Jiaqi Xie, Jisheng Pan
Journal: Micromachines
Year: 2025

Tribochemical behavior of GaN in electro-Fenton system based on bimetallic micro-electrolytic catalysts
Authors: Zhijun Chen, Jisheng Pan, Weijun Deng, Qiusheng Yan, Jiaxi He, Yangting Ou, Song Fan
Journal: Ceramics International
Year: 2025

Md Ahasan Ahamed | Analytical Chemistry | Analytical Chemistry Award

Mr. Md Ahasan Ahamed | Analytical Chemistry | Analytical Chemistry Award

Bangladesh University of Textiles, Bangladesh

👨‍🎓Profiles

📘 Early Academic Pursuits

The academic journey began with a B.Sc. in Mechanical Engineering from Bangladesh University of Engineering and Technology (BUET) in 2014. During this phase, research was conducted on electricity generation from compression of speed breakers, demonstrating an early interest in applied engineering solutions. Further academic advancement led to a M.S. in Mechanical Design and Production Engineering from Konkuk University, South Korea (2020-2022), where the research focused on developing a pre-programmed microdroplet generator for controlling chemical concentrations. Currently, pursuing a Ph.D. in Electrical Engineering at Pennsylvania State University (2022-2026), integrating Recombinase Polymerase Amplification (RPA) with nanopore sensing for point-of-care disease detection.

🏆 Professional Endeavors

With over six years of teaching and research experience, the professional journey includes roles as Lecturer and Assistant Professor at Bangladesh University of Textiles (BUTEX) and BGMEA University of Fashion & Technology (BUFT) from 2014 to 2020. Transitioning into the research domain, positions were held as a Graduate Research Assistant at Konkuk University (2020-2022) and Pennsylvania State University (2022-Present). Recently, appointed as a Visiting Scholar at Indiana University, Bloomington (2025-Present), further broadening the academic and research exposure.

🔬 Contributions and Research Focus

A strong research background in point-of-care (POC) devices, disease diagnosis, and sensor technology has led to significant contributions in designing microfluidic devices and nanopore sensors. Proficiency in biochemical reaction methodologies, including Polymerase Chain Reaction (PCR), Recombinase Polymerase Amplification (RPA), Loop-mediated Isothermal Amplification (LAMP), and CRISPR/Cas12, has played a crucial role in developing diagnostic tools for infectious diseases like Monkeypox, SARS-COVID, Cowpox, and HIV.

🌍 Impact and Influence

The research has had a profound impact on healthcare and diagnostic technologies, especially in early detection methods for infectious diseases. The work in integrating machine learning algorithms with sensor-based diagnostics has pushed the boundaries of automation and accuracy in medical testing. The interdisciplinary nature of the research—bridging mechanical design, electrical engineering, and biotechnology—positions it as a key contributor to next-generation disease detection systems.

📊 Academic Citations & Publications

With a growing influence in the academic world, the research work has been recognized with 67 citations, 18 published papers, and 6 conference and poster presentations. The continuous contribution to high-impact journals and international conferences highlights the commitment to advancing knowledge in biomedical engineering and sensor technology.

🛠️ Technical Skills

Expertise spans across instrumentation, fabrication, and analysis, including hands-on experience with: 3D Printing: Asiga UV Max X43, Ultimaker 3.0, Laser Systems: Universal Laser Systems, Microscopy: Optical Microscopes, Nikon Ti U Inverted Camera, pco.edge 5.5, Sensors & Electronics: Pressure Sensors (PX-309 series, Eve flow series), Axopatch 200b, Molecular Diagnostic Tools: Thermal Cycler (BIORAD T100), Plasma Treatment Machines, Software & Programming: MATLAB, Python, and Machine Learning Algorithms.

🎓 Teaching Experience

With over six years of teaching experience, expertise has been shared in Mechanical Engineering, Engineering Drawing, Machine Design, MATLAB, and Python programming with undergraduate students. The ability to bridge theoretical knowledge with hands-on applications has benefited students in engineering and research domains.

🌱 Legacy and Future Contributions

Looking ahead, the focus remains on developing innovative diagnostic devices that are cost-effective, rapid, and highly accurate for real-world applications. The integration of machine learning with nanopore sensors will continue to be a significant area of exploration. Additionally, mentoring future researchers and students in interdisciplinary fields will be an integral part of academic and professional contributions.

📖Notable Publications

Sensitive and specific CRISPR-Cas12a assisted nanopore with RPA for Monkeypox detection
Authors: MA Ahamed, MAU Khalid, M Dong, AJ Politza, Z Zhang, A Kshirsagar, ...
Journal: Biosensors and Bioelectronics 246, 115866
Year: 2024

Electricity generation from speed breaker by air compression method using wells turbine
Authors: MA Ahamed, MI Reza, M Al-Amin
Journal: Journal of Advanced Engineering and Computation 4 (2), 140-148
Year: 2020

Pre-programmed microdroplet generator to control wide-ranging chemical concentrations
Authors: MA Ahamed, G Kim, Z Li, SJ Kim
Journal: Analytica Chimica Acta 1236, 340587
Year: 2022

Functionalized Cellulose for Textile Organic Pollutant Treatment: a Comprehensive Review
Authors: MM Rashid, N Abir, SAB Kamal, M Al-Amin, MA Ahamed, MT Islam, ...
Journal: Water Conservation Science and Engineering 9 (11)
Year: 2024

A Portable Centrifuge for Universal Nucleic Acid Extraction at the Point-of-Care
Authors: AJ Politza, T Liu, A Kshirsagar, M Dong, MA Ahamed, W Guan
Journal: Available at SSRN 4781228
Year: 2024