Rodouan Touti | Computational Modeling | Research Excellence Award

Prof. Dr. Rodouan Touti | Computational Modeling | Research Excellence Award

Faculty of sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah | Morocco

Touti Rodouan is a physicist whose research spans radiation protection, medical physics, and computational materials science. His work focuses on dosimetry and assessment of radiation doses resulting from ingestion, inhalation, and topical application of radioactive substances, using solid-state nuclear track detectors such as CR-39 and LR-115. In parallel, he applies density functional theory (DFT) to investigate the structural, electronic, elastic, and optical properties of advanced materials, particularly lead-free perovskites for energy storage, optoelectronic, and photovoltaic applications. His research integrates experimental radiation measurements with first-principles modeling to address health, environmental, and sustainable energy challenges.

Citation Metrics (Scopus)

200
 150
 100
  50
     0

Citations
163

Documents
31

h-index
7

Citations

Documents

h-index

View Scopus Profile View ORCID Profile View Google Scholar Profile

Featured Publications

Syed Kashif Ali | Analytical Chemistry | Analytical Chemistry Award

Assoc. Prof. Dr. Syed Kashif Ali | Analytical Chemistry | Analytical Chemistry Award

Jazan University | Saudi Arabia

Dr. Syed Kashif Ali, Associate Professor of Analytical Chemistry at Jazan University, KSA, is a distinguished researcher with over 15 years of experience in analytical, green, and pharmaceutical chemistry. His work focuses on nanomaterials synthesis, electrochemical analysis, environmental remediation, and the application of medicinal plants, combining fundamental research with practical solutions for societal challenges. He has successfully led multiple funded projects, including the development of transition metal-based nanocomposites for supercapacitors and batteries, novel green potentiometric sensors, and electrochemical detection of wastewater pollutants. His research encompasses the photocatalytic degradation of organic contaminants, CO2 photoreduction, water purification, and design of hybrid supercapacitors, integrating advanced analytical techniques such as chromatographic, spectroscopic, and electrochemical methods. Dr. Ali’s work bridges experimental and computational approaches, employing molecular modeling, machine learning, and structure-based design to advance environmental and pharmaceutical applications. He has an extensive publication record in high-impact journals, reflecting his contributions to both fundamental science and applied chemistry. Additionally, he has mentored numerous undergraduate and postgraduate students, fostering the next generation of analytical chemists. His research exemplifies innovation, sustainability, and excellence in analytical methodologies, making him a leading figure in advancing green chemistry, nanotechnology, and environmental monitoring.

Profiles : Scopus | ORCID 

Featured Publications

  1. Syed Kashif Ali, et al. (2025). Bifunctional schiff base copper complex catalyst for environmental remediation and antibacterial mechanism via docking studies. Journal of Molecular Structure.

  2. Syed Kashif Ali, et al. (2025). Eco-friendly synthesis of benzoxazole substituted chromene containing benzene sulfonamide derivatives: Antibacterial activity and molecular docking. Journal of Molecular Structure.

  3. Syed Kashif Ali, et al. (2025). Biosynthesis of zinc oxide nanostructures using leaf extract of Azadirachta indica: Characterizations and in silico and nematicidal potentials. Catalysts, 15(7), 693.

  4. Syed Kashif Ali, et al. (2025). Enhanced photo-Fenton degradation of ciprofloxacin using novel CuO/gC3N4/MXene ternary nanocomposite: Synthesis, characterization and mechanistic insights. Ceramics International.

  5. Syed Kashif Ali, et al. (2025). Unleashing the potential of bifunctional electrocatalyst: Designing efficient Ni@MnS/SGCN nanocomposite for clean energy conversion. Journal of Industrial and Chemical Sciences.

 

Pandurangan Vijayalakshmi | Polymer Chemistry | Women Researcher Award

Dr. Pandurangan Vijayalakshmi | Polymer Chemistry | Women Researcher Award

Department of Chemistry, Tamilnadu Open University | India

Dr. Vijayalakshmi P is an emerging researcher in environmental chemistry, nanomaterials, photocatalysis, and electrochemistry, with a strong publication record and interdisciplinary research experience. Her doctoral work focused on the design and synthesis of advanced semiconductor-based nanocomposites and their photocatalytic degradation efficiency toward hazardous organic pollutants, including antibiotics, pesticides, and dyes. She has developed a wide range of Z-scheme and heterojunction photocatalysts such as V₂O₅/g-C₃N₄/ZnO, Bi₂O₃/g-C₃N₄/ZnO, TiO₂/g-C₃N₄/CuFe₂O₄, and ZrO₂-based composites, demonstrating significant improvements in visible-light-driven degradation performance. Her research extends to energy storage materials, supercapacitors, electrochemical sensing, and CO₂ reduction, reflected in her contributions to high-impact journals including Ionics, ChemistrySelect, Electrochimica Acta, Langmuir, and Emergent Materials. She has also collaborated on studies involving nanostructures for sensing carbendazim, biocompatible nanoscaffolds, and spinels for antibacterial and dielectric applications. Skilled in multiple analytical and characterization techniques XRD, SEM, TEM, UV–Vis, PL, EIS. she integrates materials synthesis with mechanistic and kinetic studies to address real-world environmental challenges. Her international exposure includes a research internship at the National Taipei University of Technology. Recognized with the Visionary Research Scientist Award (2025), she continues to advance innovative solutions for environmental remediation and sustainable energy applications.

Profiles : Scopus | ORCID | Google Scholar

Featured Publications

  • Vijayalakshmi, P., Shanmugavelan, P., & Mareeswaran, P. M. (2024). Enhanced photocatalytic activity of V₂O₅/g-C₃N₄/ZnO nanocomposite for efficient degradation of amoxicillin, chlorpyrifos, and methylene blue. Ionics, 1–29.

  • Vijayalakshmi, P., Shanmugavelan, P., Anisree, S., & Mareeswaran, P. M. (2024). Enhanced visible-light Z-scheme photocatalytic degradation of amoxicillin, chlorpyrifos, and methylene blue by Bi₂O₃/g-C₃N₄/ZnO nanocomposite. Journal of Materials Research, 39(22), 3103–3125.

  • Vijayalakshmi, P., Shanmugavelan, P., Muthu Mareeswaran, P., Yuvakkumar, R., & Nehru, S. (2024). Visible-light photocatalytic activity of a novel TiO₂/g-C₃N₄/CuFe₂O₄ nanocomposite in degradation of amoxicillin, chlorpyrifos, and methylene blue. ChemistrySelect, 9(38), e202400943.

  • Vijayalakshmi, P., Shanmugavelan, P., Mareeswaran, P. M., & Kandasamy, K. (2024). Synthesis of novel ZrO₂/g-C₃N₄/CuFe₂O₄ nanocomposite and its efficient photocatalytic degradation of amoxicillin, chlorpyrifos, and methylene blue. Asian Journal of Chemistry, 36(3), 697–709.

  • Anisree, S., Shanmugavelan, P., Vijayalakshmi, P., Kishore, R., & Srivastava, N. (2024). Synthesis, characterization and anticancer screening of novel phenylbenzylidene thiosemicarbazone derivatives. Phosphorus, Sulfur, and Silicon and the Related Elements, 199(4), 267–276.

 

Wenkai Huang | Environmental Chemistry | Best Researcher Award

Dr. Wenkai Huang | Environmental Chemistry | Best Researcher Award

University of Barcelona | Spain

Dr. Wenkai Huang is a dynamic early-career researcher in materials science and environmental chemistry, specializing in the design, synthesis, and application of advanced nanomaterials for sustainable energy and environmental remediation. His research focuses on carbon nanomaterials, transition-metal nanoparticles, and single-atom catalysts, with applications spanning hydrogen energy, catalytic conversion, and wastewater treatment. Wenkai has made significant contributions to the development of high-performance catalysts for controlled hydrogen generation, including innovative “on-off” switch catalytic systems for hydrazine, formic acid, ammonia borane, and related hydrogen-storage materials. His work has been published in leading journals such as International Journal of Hydrogen Energy, Fuel, ACS Applied Nano Materials, Carbon Energy, and Green Chemical Engineering, demonstrating both scientific rigor and originality. He has also advanced environmental catalysis through the synthesis of Co₃O₄ nanocubes and lignin-derived carbon materials for the degradation of emerging contaminants in wastewater, contributing to more efficient pollutant removal technologies. In addition to his journal publications, Wenkai is co-inventor on patents related to graphene quantum dots and porous carbon nanospheres, reflecting his strength in translating research into practical innovations. His academic journey from top-performing undergraduate at Lanzhou University of Technology, to postgraduate excellence at China Three Gorges University, to his current research at the University of Barcelona demonstrates consistent achievement supported by multiple competitive scholarships, including the China Scholarship Council award. Combined with earlier engineering experience in advanced aluminum materials, Wenkai brings strong interdisciplinary expertise to the advancement of clean energy catalysis and environmental nanotechnology.

Profiles : Scopus | ORCID

Featured Publications

Huang, W., Llopart-Roca, P., Nieto-Sandoval, J., Bayarri, B., & Sans, C. (2025). Enhanced peroxymonosulfate activation by oxalic acid–activated lignin-derived carbon to degrade sulfamethoxazole: Performance and mechanism. Green Chemical Engineering.

Xu, F., Wang, Y., Wang, C., Huang, W., & Liu, X. (2023). Dehydrogenation of hydrous hydrazine over carbon nanosphere-supported PtNi nanoparticles for on-demand H₂ release. Fuel, 332, 126116.

Huang, W., Xu, F., Li, D., Astruc, D., & Liu, X. (2023). “On–off” switch for H₂ and O₂ generation from HCOOH and H₂O₂. Carbon Energy, 5(3), e269.

Huang, W., Xu, F., Tian, S., Wang, C., & Liu, X. (2022). Bimetallic PtNi nanoclusters supported on carbon nanospheres as catalysts for H₂ production from dimethylamineborane hydrolysis. ACS Applied Nano Materials.

Huang, W., Jin, X., Li, Q., et al. (2023). Co₃O₄ nanocubes for degradation of oxytetracycline in wastewater via peroxymonosulfate activation. ACS Applied Nano Materials, 6(13), 12497–12506.

Ting Han | Organic Chemistry | Young Scientist Award

Assist. Prof. Dr. Ting Han | Organic Chemistry | Young Scientist Award

Texas Woman’s University | United States

Dr. Ting Han is a dynamic early-career scientist whose research spans organic synthesis, porphyrin chemistry, photocatalysis, functional materials, and molecular sensing technologies. He completed his Ph.D. in Organic Chemistry at the University of North Texas, where he specialized in macrocyclic compounds, cross-coupling reactions, and the synthesis of π-extended porphyrins and semiconductor-like 2D organic materials. With six years of combined teaching and research experience, Dr. Han has developed strong expertise in experimental design, analytical instrumentation, method development, and advanced spectroscopic techniques, including fluorescence, phosphorescence, transient absorption, and spectroelectrochemistry. His research accomplishments include designing and synthesizing over 20 novel organic molecules, developing new porphyrin-based photocatalysts for environmental remediation, and advancing biosensor technologies for detecting pollutants, biomolecules, and hazardous chemicals. Dr. Han has published 15 peer-reviewed articles in prominent journals such as Chemical Communications, Materials Chemistry Frontiers, Journal of Materials Chemistry B, Analyst, ACS Sensors, and Microchimica Acta, with a cumulative citation count of 294 and an H-index of 8. His innovative work also led to three granted Chinese patents in sensing and nanomaterial applications. In addition to his research, he is an experienced educator skilled in teaching General and Organic Chemistry, mentoring students, and designing laboratory and online learning experiences. After serving as a Visiting Lecturer at Texas Woman’s University, Dr. Han joined the institution as an Assistant Professor, where he continues building an active research group focused on functional organic materials, sustainable chemistry, and next-generation sensing platforms. His multidisciplinary expertise and impactful contributions reflect significant promise as a rising scientist in the field of organic and materials chemistry.

Profiles : Scopus | ORCID | Google Scholar

Featured Publications

  • Han, T., Starrett, N., Martin, K., Bueno Arroyo, J., Wang, S., & Rawashdeh-Omary, M. (in press). Green synthetic strategies for porphyrins: Toward sustainable functional macrocycles. ChemistrySelect.

  • Han, T., Wang, S., Salazar, G. A., & Rawashdeh-Omary, M. (2025). Porous porphyrin-based photocatalysts: Recent progress and applications in environmental remediation. Materials Chemistry Frontiers.

  • Han, T., Sharma, P., Khetrapal, N., & Wang, H. (2024). Conjugated porphyrin trimers linked through benzo[4,5]imidazo[2,1-a]isoindole bridges. Chemical Communications, 60(77), 10696–10699.

  • Han, T., Jang, Y., Arvidson, J., D’Souza, F., & Wang, H. (2022). Optical and photophysical properties of platinum benzoporphyrins with C2v and D2h symmetry. Journal of Porphyrins and Phthalocyanines, 26(6–7), 458–468.

  • Han, T., & Wang, G. (2019). Peroxidase-like activity of acetylcholine-based colorimetric detection of acetylcholinesterase activity and inhibitor organophosphorus. Journal of Materials Chemistry B, 7(16), 2613–2618.

 

Jianguang Xiao | Materials Chemistry | Best Researcher Award

Prof. Jianguang Xiao | Materials Chemistry | Best Researcher Award

North University of China | China

Dr. Jianguang Xiao is an Associate Professor of Ordnance Science and Technology at North University of China, Ph.D., and supervisor for master’s degree candidates. Recognized as a Young Outstanding Talent of Shanxi Province’s “Sanjin Elite” Program, Dr. Xiao has made significant contributions to the study of reactive materials, explosion and shock dynamics, and target vulnerability assessment, particularly for UAVs, vehicles, and ammunition systems. His research integrates mechanics, thermotics, and chemistry, providing advanced modeling and simulation methods for reactive material behavior under high-velocity impact, energy release, and deflagration conditions. Dr. Xiao has led and participated in over twenty vertical and horizontal research projects, including funding from the National Natural Science Foundation of China, National Defense Foundation Projects, and Shanxi Provincial Natural Science Foundation. Notable projects include studies on the preparation and energy release characteristics of Tetrafluoroethylene-Hexafluoropropylene-Vinylidene Fluoride-based reactive materials and the development of integrated shock/deflagration material models. He has authored 28 high-level academic documents, including SCI and EI journal papers, one academic monograph, and holds three invention patents. His work has garnered 391 citations from 279 documents, achieving an h-index of 10, reflecting the significant impact of his research on the field of reactive materials and defense engineering. Dr. Xiao’s publications cover topics such as molecular dynamics simulation of chemical reactions, impact-induced deflagration behavior, and enhanced damage effects of reactive materials on concrete targets. Beyond research, Dr. Xiao actively contributes to the academic community. He serves on the youth editorial boards of journals including Journal of China Ordnance, Aeronautical Weaponry, and Journal of North University of China, and is a peer reviewer for prominent journals like Defence Technology and International Journal of Impact Engineering. He has been consecutively recognized as an Excellent Reviewer by multiple journals, emphasizing his commitment to maintaining high scholarly standards. Dr. Xiao’s interdisciplinary expertise, innovative contributions to reactive materials research, and active academic engagement make him a leading figure in his field, demonstrating both scientific excellence and practical impact.

Profiles : Scopus | ORCID | Research Gate

Featured Publications

  • Xiao, J., Zhang, J., Ma, J., et al. (2024). Mechanics–thermotics–chemistry coupling response model and numerical simulation of reactive materials under impact load. Advances in Engineering Software, 192, 103647.

  • An, D., Xiao, J.*, Ma, J., et al. (2024). Molecular dynamics simulation of chemical reactions in polytetrafluoroethylene-based reactive materials. Journal of North University of China (Natural Science Edition), 45(02), 222–228.

  • Nie, Z., Xiao, J., Wang, Y., & Xie, Z. (2022). Mechanical properties and ignition reaction characteristics of THV-based reactive materials. Journal of China Ordnance, 43(12), 3030.

  • Xiao, J., Nie, Z., Wang, Z., Du, Y., & Tang, E. (2020). Energy release behavior of Al/PTFE reactive materials powder in a closed chamber. Journal of Applied Physics, 127(16), 165106.

  • Xiao, J., Wang, Z., Nie, Z., Tang, E., & Zhang, X. (2020). Evaluation of Hugoniot parameters for unreacted Al/PTFE reactive materials by modified SHPB test. AIP Advances, 10(4), 045211.

 

Si Mengting | Environmental Chemistry | Best Researcher Award

Assoc. Prof. Dr. Si Mengting | Environmental Chemistry | Best Researcher Award

Yangtze University | China

Dr. Mengting Si is an Associate Professor at the School of Petroleum Engineering, Yangtze University, China. She earned her Ph.D. and M.S. from the School of Energy and Power Engineering at Huazhong University of Science and Technology, and her B.Sc. in Automotive Engineering from Jilin University. Her research focuses primarily on carbon capture, utilization and storage (CCUS), and soot formation during fossil fuel combustion, particularly leveraging hyperspectral imaging and optical diagnostic techniques. Dr. Si has a strong research track record, having authored 31 publications indexed in Scopus, which have collectively received 396 citations across 357 documents, reflecting an h-index of 11. She has secured multiple prestigious research grants, including two as Principal Investigator from the National Natural Science Foundation of China, and one from the State Key Laboratory of Coal Combustion. Her work has appeared in top-tier journals such as Combustion and Flame, Renewable Energy, and Applied Optics. In addition to her publications, she has contributed to several national-level collaborative research projects and holds one Chinese patent. Dr. Si’s research has also been presented at leading academic conferences, including the International Pittsburgh Coal Conference and the Annual Conference of the Chinese Society of Engineering Thermophysics. Her contributions to combustion diagnostics and emissions control have earned her multiple awards, including the 1st Prize for Scientific and Technological Progress in Petroleum and Chemical Automation and the 3rd Prize of Natural Science of Hubei Province. Dr. Si continues to advance cleaner combustion technologies and sustainable energy research.

Profiles : Scopus | Research Gate

Featured Publications

  • Si, M., Liu, J., Zhang, Y., Liu, B., Luo, Z., & Cheng, Q. (2024). Effect of co-combustion of coal with biomass on the morphology of soot. Renewable Energy, 226, 120374.

  • Si, M., Liu, J., Chang, K., Zhang, Y., Luo, Z., & Cheng, Q. (2024). Evolution of physicochemical characteristics of soot in a single coal combustion flame. Combustion and Flame, 260, 113243.

  • Si, M., Cheng, Q., Yuan, L., Zhang, Y., & Luo, Z. (2022). Study on the combustion behavior of single coal particle using a thermal-imaging technique. Combustion and Flame, 242, 112178.

  • Si, M., Cheng, Q., Yuan, L., Luo, Z., Xu, Z., & Zhao, H. (2022). Physical and chemical characterization of two kinds of coal-derived soot. Combustion and Flame, 238, 111759.

  • Si, M., Cheng, Q., Yuan, L., Luo, Z., Yan, W., & Zhou, H. (2021). Study on combustion behavior and soot formation of single coal particle using hyper-spectral imaging technique. Combustion and Flame, 233, 111568.

 

Abolfazl Olyaei | Organic Chemistry | Best Researcher Award

Assoc. Prof. Dr. Abolfazl Olyaei | Organic Chemistry | Best Researcher Award

Imam Khomeini International University | Iran

Dr. Abolfazl Olyaei is an associate professor at Imam Khomeini International University, Qazvin. He earned his B.Sc. in Pure Chemistry from Tabriz University and completed his M.Sc. in Organic Chemistry at Tehran University under Professor Mohammad Raouf Darvich. He continued his studies at Tehran University, receiving a Ph.D. in Organic Chemistry, supervised by Professor Mehdi Ghandi. Dr. Olyaei’s research focuses on organic synthesis, particularly the synthesis of heterocyclic compounds, multicomponent reactions, green chemistry, catalysis, organocatalysis, and the application of materials and organomaterials across various scientific fields. Over the years, he has contributed extensively to scientific literature, authoring numerous research and review articles in reputable journals, highlighting his expertise and impact in organic and heterocyclic chemistry. He has authored 89 research documents with 908 citations recorded by Scopus and an h-index of 17, while Google Scholar reports over 1091 citations and an h-index of 19. His work integrates modern synthetic methods with environmentally friendly approaches, contributing to advancements in catalysis and material science. Dr. Olyaei’s academic dedication and prolific publication record make him a prominent figure in the field of organic chemistry in Iran and internationally.

Profiles : Scopus | Orcid | Google scholar 

Featured Publications

Sajjadi, S. B., Olyaei, A., & Shalbafan, M. (2025). Novel naphtho[2,3-b]furan-2,4,9(3H)-trione derivatives as potent ERα inhibitors: Design, regioselective synthesis, HMBC-NMR characterization, in silico molecular docking and ADME studies. BMC Chemistry, 19(1), 253.

Shalbafan, M., Sadeghpour, M., & Olyaei, A. (2025). Study on the interaction of Olmesartan with human serum albumin (HSA) by spectroscopic and molecular docking techniques. Chemical Review and Letters, 8(3), 509–516.

Olyaei, A., Zanjanchi, F., Farzogi, M., & Sadeghpour, M. (2025). Comparative study of electronic structure and photophysical properties of some new Lawsone dyes in dye-sensitized solar cells by DFT and TD-DFT. Russian Journal of Physical Chemistry B, 19(2), 336–347.

Olyaei, A., Sadeghpour, M., & Sajjadi, S. B. (2025). A review on synthesis of furonaphthoquinones through Lawsone derivatives annulation reactions and their biological properties. RSC Advances, 15(5), 3515–3546.

Kayyal, M., Olyaei, A., Pourshamsian, K., & Sadeghpour, M. (2025). Molecular docking and prediction of ADME/drug-likeness properties of some benzochromenopyrimidine derivatives as inhibitors of cyclooxygenase 2 (COX-2). Chemical Review and Letters, 8(2), 300–308.

Adrian De La Fuente Ballesteros | Analytical Chemistry | Excellence in Innovation Award

Dr. Adrian De La Fuente Ballesteros | Analytical Chemistry | Excellence in Innovation Award

University of Valladolid | Spain

Profiles

Scopus
Orcid
Google scholar

Early Academic Pursuits

Dr. Adrián de la Fuente Ballesteros began his academic journey with a Bachelor’s degree in Chemistry, followed by multiple Master’s programs in Advanced Techniques in Chemistry, Teaching, Scientific Communication, and Artificial Intelligence and Innovation. This diverse academic foundation reflects a strong interdisciplinary approach, combining core scientific training with skills in pedagogy, innovation, and emerging technologies. His academic path demonstrates not only a deep commitment to scientific excellence but also a forward-looking mindset that embraces communication and digital transformation.

Professional Endeavors

Dr. Adrián currently holds the position of Postdoctoral Fellow in Analytical Chemistry at the University of Valladolid. His professional trajectory includes leadership in various competitive research projects, authorship of high-impact scientific publications, and the development of proprietary innovations such as a patented food formulation. As a Principal Investigator, he has led funded research initiatives involving novel food development, environmental monitoring, and sustainable chemical analysis. Beyond the laboratory, he plays key roles in scientific societies, organizing committees, and international collaborations contributing actively to the European and global research ecosystem.

Contributions and Research Focus

Dr. Adrián’s core research lies in the development and validation of advanced analytical methodologies, particularly for detecting analytes in food and environmental matrices. His expertise spans bioactive compounds, pesticide residues, alkaloids, and volatile organic compounds, using sophisticated chromatographic techniques like LC and GC-MS. Notably, he is a prominent advocate of White Analytical Chemistry a framework that integrates environmental sustainability into method development. He has pioneered tools such as the Violet Innovation Grade Index (VIGI) and GLANCE, a graphical evaluation tool, both designed to simplify and standardize analytical method assessment. These tools enhance the practicality, greenness, and innovation of analytical practices.

Impact and Influence

Dr. Adrián’s influence extends well beyond academia. He has presented at over 50 scientific conferences across Europe and North America, contributing oral communications, posters, and keynote interventions. His work has impacted areas ranging from food safety and contaminant tracking to educational innovation and science communication. His outreach efforts have involved direct engagement with the public, including hands-on workshops, high school science programs, and family-oriented events. Furthermore, he has been recognized with numerous awards for scientific excellence, innovation, and communication, underlining his multifaceted impact on research, education, and society.

Academic Citations and Editorial Involvement

Dr. Adrián has contributed significantly to scientific literature through peer-reviewed publications in high-impact journals. He serves as a peer reviewer for over 30 articles in journals covering food chemistry, analytical methods, and environmental science. In addition to his reviewing responsibilities, he is a member of editorial boards for respected publications, including Food & Nutrition Journal, CMJ Food Chemistry, and Environmental Science and Pollution Research. His presence in these editorial roles not only validates his expertise but also positions him as a gatekeeper for scientific quality and innovation in his field.

Technical Skills and Methodologies

Technically, Dr. Adrián is proficient in a wide range of analytical tools and techniques. His skillset includes liquid chromatography (LC), gas chromatography (GC), mass spectrometry (MS), microextraction methods, and sustainable sample preparation approaches. He is particularly specialized in developing analytical methods aligned with Green and White Analytical Chemistry principles. Additionally, he leverages digital technologies and artificial intelligence tools to enhance method evaluation, showcasing a progressive integration of traditional and modern scientific methodologies.

Teaching and Mentorship Experience

In the realm of academia, Dr. Adrián has contributed significantly to teaching and mentorship. He has delivered over 100 hours of lectures and laboratory sessions in undergraduate and graduate courses related to Analytical Chemistry and Science Education. He has supervised more than 15 Bachelor’s and Master’s theses, fostering the growth of the next generation of chemists. His involvement in teaching innovation projects focused on mobile learning, flipped classrooms, power skills, and AI-based education demonstrates a strong dedication to enhancing pedagogical practices and academic engagement.

Scientific Outreach and Communication

A notable aspect of Adrián’s profile is his passion for science communication. He has designed award-winning educational initiatives such as “The Mysteries of Sherlock Holmes,” encouraging young learners to explore scientific reasoning through interactive puzzles. He has also been a coordinator for large public engagement events like European Researchers’ Night, where he introduced families to the science behind bee products. His consistent efforts to make science accessible and engaging for all age groups have been widely recognized and celebrated.

Legacy and Future Contributions

Dr. de la Fuente Ballesteros is building a lasting legacy that bridges analytical chemistry, sustainability, education, and communication. Through his innovations in method development, promotion of green metrics, and integration of AI in science, he is shaping the future of how chemistry is practiced and evaluated. His work is not only grounded in scientific excellence but also in a commitment to ethical and practical science that addresses global challenges. Looking forward, he is well-positioned to lead large-scale, multidisciplinary research initiatives and continue mentoring emerging scientists with a focus on innovation and sustainability.

Notable Publications

Ten principles for developing and implementing tools in the context of white analytical chemistry

  • Authors: Fuente-Ballesteros, A. et al.
    Journal: Sustainable Chemistry and Pharmacy
    Year: 2025

Violet Innovation Grade Index (VIGI): A new survey-based metric for evaluating innovation in analytical methods

  • Authors: Adrián Fuente-Ballesteros, Víctor Martínez-Martínez, Ana M. Ares, Silvia Valverde, Victoria Samanidou, José Bernal.
    Journal: Analytical Chemistry
    Year: 2025

Development and validation of an analytical methodology to determine deltamethrin residues and its metabolites in pine products using GC-QTOF-MS

  • Authors: Ana Jano, Adrián Fuente-Ballesteros, José Bernal, Ana M. Ares, Silvia Valverde.
    Journal: ACS Agricultural Science & Technology
    Year: 2025

Miniaturized analytical method to evaluate the profile of biogenic volatile organic compounds from Spanish tree species by gas chromatography coupled to mass spectrometry and chemometric tools

  • Authors: Adrián Fuente-Ballesteros, Ana M. Ares, José Bernal, Silvia Valverde.
    Journal: Journal of Chromatography Open
    Year: 2025

Paving the way towards green contaminant analysis: Strategies and considerations for sustainable analytical chemistry

  • Authors: Adrián Fuente-Ballesteros, Ana M. Ares, José Bernal.
    Journal: Green Analytical Chemistry
    Year: 2025

Conclusion

Dr. Adrián de la Fuente Ballesteros stands out as an exceptional scientist and innovator whose work embodies excellence in analytical chemistry, sustainability, and science communication. His diverse skill set, forward-thinking mindset, and passion for education and outreach make him a powerful force in both academic and societal contexts. As he continues to expand his research and leadership activities, his contributions are likely to leave a meaningful and enduring impact on the scientific community and beyond.